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DECOMPOSING THE DISENTANGLING
ALGEBRA ON WIENER SPACE

G.W. JOHNSON AND YEON-HEE PARK

ABSTRACT. For any functional H in the disentangling al-
gebra Ac

a,t and any partition a = r0 < r1 < · · · < rh = t of

[a, t], we show that H can be decomposed into a sum of terms
where each term is the ∗ product of h functions, one from each
of the disentangling algebras Ac

rj−1,rj
, j = 1, . . . , h. Corre-

spondingly, we show that the operator-valued path integral

of H, Ka,t
λ

(H), can be written as the sum of time-ordered
products of the h operators associated with the h subintervals
of [a, t]. We also consider various special cases of these re-
sults. The ∗ product is a noncommutative multiplication (or
concatenation) of functions on Wiener space.

1. Introduction. A family {At, t > 0} of commutative Banach
algebras of functionals on Wiener space was introduced in [4] and
it was shown that for every F ∈ At, the functional integral Kt

λ(F )
exists and is given by a time-ordered perturbation expansion which
serves to disentangle, in the sense of Feynman’s operational calculus
for noncommuting operators, the operator Kt

λ(F ). The first author
and Lapidus introduced in [6] the noncommutative operations ∗ and
� on Wiener functionals, and they showed as one of their main
results that if F ∈ At1 and G ∈ At2 , then F ∗ G ∈ At1+t2 and
Kt1+t2

λ (F ∗ G) = Kt1
λ (F )Kt2

λ (G). It follows then that the product
of operators which can be disentangled (in their framework) can itself
be disentangled.

Our aim in this paper is related but quite different. It is to show
that for any H ∈ Ac

a,t (see Definition 2.4 below) and any partition
a = r0 < r1 < · · · < rh = t of [a, t], H can be decomposed into a sum
of terms where each term is the ∗ product of Fj ’s one from each of the
algebras Ac

rj−1,rj
, j = 1, . . . , h. This decomposition of the function H

along with the relationship between the functional integrals K
rj−1,rj

λ (·),
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j = 1, . . . , h and the ∗ operation yields a corresponding decomposition
of the operator Ka,t

λ (H) into a sum of products in the Banach algebra
L(L2(Rd)) of the h operators associated with the h subintervals of the
partition. The general formula for the decomposition of an arbitrary
function H ∈ Ac

a,t (see Theorem 2.10 below) is quite complicated.
But there are interesting special cases that are relatively simple. A
particularly interesting case involves the exponential function (other
analytic functions can be treated as well). There is also a type of
multinomial formula. This formula and others from the present paper
have been found useful for doing certain explicit calculations in the
thesis of L. Johnson [9] (in preparation). The initial motivation for the
present work is discussed briefly in the remark at the end of this paper.

2. Decomposing the Banach algebra. We begin with some
definitions and notations from [4].

Let C,C+, C̃+ denote, respectively, the complex numbers, the com-
plex numbers with positive real part, and the nonzero complex numbers
with nonnegative real part. Let L2(Rd) denote the space of Borel mea-
surable C-valued functions ψ on Rd such that |ψ|2 is integrable with
respect to Lebesgue measure on Rd.

Given t > 0, let C[0, t] = Ct = C0,t denote the space of continuous
functions x on [0, t] with values in Rd. Let C0[0, t] = Ct

0 = C0,t
0

denote Wiener space, that is, the set of all x in Ct which vanish at 0.
mt = m0,t will denote Wiener measure on Ct

0. Let L(L2(Rd)) be the
space of bounded linear operators from L2(Rd) into itself. The space
of Borel measurable C-valued functions on Rd which are essentially
bounded will be denoted L∞(Rd). U(0, t) will denote the space of
complex continuous Borel measures µ on the open interval (0, t). A
C-valued Borel measurable function θ on (0, t) × Rd is said to belong
to L∞1:µ = L∞1:µ(0, t) if

‖θ‖∞1,µ :=
∫ t

0

‖θ(s, ·)‖∞ d|µ|(s) < ∞.

Note that if θ ∈ L∞1:µ, then θ(s, ·) ∈ L∞(Rd) for µ almost everywhere
s in (0, t).

Definition 2.1. Fix t > 0. Let F be a function from Ct to C. Given
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λ > 0, ψ ∈ L2(Rd) and ξ ∈ Rd, we consider the expression

(2.1) (Kt
λ(F )ψ)(ξ) =

∫
Ct

0

F (λ−1/2x + ξ)ψ(λ−1/2x(t) + ξ) dm(x).

The operator-valued function space integral Kt
λ(F ) exists for λ > 0

if (2.1) defines Kt
λ(F ) as an element of L(L2(Rd)). If, in addition,

Kt
λ(F ), as a function of λ, has an extension to an analytic function

on C+ and a strongly continuous function on C̃+, we say that Kt
λ(F )

exists for λ ∈ C̃+. When λ is purely imaginary Kt
λ(F ) is called the

analytic (in mass) operator-valued Feynman integral of F .

Definition 2.2. Given functions F and G defined on Ct, we
say that F is equivalent to G (write F ∼ G) if, for every λ > 0,
F (λ−1/2x + ξ) = G(λ−1/2x + ξ) for mt × Leb almost everywhere
(x, ξ) ∈ Ct

0 × Rd.

We restrict attention to continuous measures whereas that restriction
is not made in [4]. Let A0 be the collection of functions of the
form H(x) =

∏m
u=1

∫ t

0
θu(s, x(s)) dµu(s), where θu ∈ L∞1:µu

and
µu ∈ U(0, t), u = 1, . . . ,m.

Lemma 2.3. Let Hn be a sequence from A0 such that
∑∞

n=0

∏mn

u=1 ×
‖θn,u‖∞1:µn,u

< ∞. Then for every λ ∈ C̃+, the individual terms of
the series

∑∞
n=0 Hn(λ−1/2x + ξ) are defined and the series converges

absolutely for mt × Leb almost everywhere (x, ξ) ∈ Ct
0 × Rd.

Proof. This is a special case of Corollary 2.1 in [4] and so follows
immediately.

Definition 2.4. Let (Hn) be a sequence from A0 satisfying

(2.2)
∞∑

n=0

mn∏
u=1

‖θn,u‖∞1:µn,u
< ∞.

Let H be defined by

(2.3) H(λ−1/2x + ξ) =
∞∑

n=0

Hn(λ−1/2x + ξ).
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We define Ac
t to be the collection of equivalence class of functionals,

each of which contains a function H which arises as just described from
a sequence (Hn) in A0. For H in Ac

t , we define ‖H‖c
t as the infimum of

the left side of (2.2) for all choices of sequences (Hn) from A0 satisfying
(2.3).

The proof of the next result is almost exactly the same as the proof
of Theorem 6.1 from [4] and so will not be given.

Theorem 2.5. (Ac
t , ‖ · ‖c

t) is a commutative Banach algebra with
identity. Moreover, given H in Ac

t , Kt
λ(H) exists for all λ ∈ C̃+ and

satisfies the norm estimate ‖Kt
λ(H)‖ ≤ ‖H‖c

t .

Remark. (1) Ac
t is a subalgebra of the algebra At.

(2) Since t varies and θ ∈ L∞1:µ(a, t) and µ is a complex continuous
Borel measure on (a, t), we are using the symbols Ka,t

λ ,Ac
a,t and ‖ · ‖c

a,t

instead of Kt
λ,At and ‖ · ‖t, respectively, which were used in [4].

We will need the following definitions. Fix r1, . . . , rh such that

(2.4) a = r0 < r1 < · · · < rh = t.

Let Rj be the map which restricts x ∈ Ca,t to the subinterval [rj−1, rj ],
j = 1, . . . , h. Given x ∈ Ca,t and j ∈ {1, . . . , h}, we define

(2.5) xj(s) = (Rjx)(s) = x(s), s ∈ [rj−1, rj ].

Now, given functions Fj on Crj−1,rj , j = 1, . . . , h, we define F1�· · ·�Fh

and F1 ∗ · · · ∗ Fh on Ca,t by

(F1 � · · · � Fh)(x) := F1(x1) + · · · + Fh(xh),(2.6)
(F1 ∗ · · · ∗ Fh)(x) := F1(x1) · · ·Fh(xh).(2.7)

These operations �, ∗ are different from, but very similar to, the
operations �, ∗ in [6].

We are seeking a decomposition of any H ∈ Ac
a,t with respect to any

partition as in (2.4) of [a, t]. The general case is rather complicated but
we start here with a simple example for the case h = 2 which allows us
to illustrate notation which will be useful as we continue.
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Example 2.6. Let a < r < t. Let H(x) =
∫ t

a
θ(s, x(s)) dµ(s) where

θ ∈ L∞1:µ(a, t), µ is a complex continuous Borel measure on (a, t), and
x ∈ Ca,t. Then H is a function on Ca,t which clearly belongs to Ac

a,t.
Now we define

F (x1) :=
∫ r

a

θ(s, x1(s)) dµ(s) =
∫ r

a

θ(s, x(s)) dµ(s),

(2.8)

G(x2) :=
∫ t

r

θ(s, x2(s)) dµ(s) =
∫ t

r

θ(s, x(s)) dµ(s).

(2.9)

Then F and G are functions on Ca,r and Cr,t, respectively, and
F ∈ Ac

a,r and G ∈ Ac
r,t. So we can write

(2.10)

H(x) =
∫ t

a

θ(s, x(s)) dµ(s)

=
∫ r

a

θ(s, x1(s)) dµ(s) +
∫ t

r

θ(s, x2(s)) dµ(s)

= F (x1) + G(x2) = (F � G)(x).

Hence we can write

H(x) = F (x1) + G(x2) = (F ∗G◦)(x) + (F ◦ ∗G)(x),

where we interpret F ◦ to be 1[a,r], where 1[a,r] is the function which is
identically one on Ca,r. Similarly, G◦ is interpreted as 1[r,t] where 1[r,t]

is identically one on Cr,t.

The simple decomposition of the special function H in (2.11) leads to
simple decompositions of Hn and exp(H) in the proposition to follow.
The case of a general function H in the disentangling algebra Ac

a,t is
much more complicated (see Theorem 2.10 below).

Proposition 2.7. Let the function H : Ca,t → C be defined by

(2.11) H(x) =
∫ t

a

θ(s, x(s)) dµ(s)
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where θ ∈ L∞1:µ(a, t), and let Rj be the restriction map from Ca,t to
Crj−1,rj , where j = 1, 2, . . . , h, r0 = a, rh = t. For the function Fj

on Crj−1,rj given by Fj(xj) =
∫ rj

rj−1
θ(s, xj(s)) dµ(s), j = 1, . . . , h, we

have H = F1 � · · · � Fh. Further,

(1) exp(F1 � · · · � Fh) = exp(F1) ∗ · · · ∗ exp(Fh).

(2) (F1 � · · · � Fh)n =
∑

q1+···qh=n

n!
q1! · · · qh!

F q1
1 ∗ · · · ∗ F qh

h .

Proof. Closely related formulas are proved in Theorem 3.4 of [6] in
the case h = 2. The simple proofs of (1) and (2) above follow the same
lines.

Lemma 2.8 and Theorem 2.9 will establish our main result in the case
h = 2. The proof of this case already includes the main ideas used in
proving Theorem 2.10, but the combinatorics involved are somewhat
simpler.

Lemma 2.8. Let Hu(x) =
∫ t

a
θu(s, x(s)) dµu(s) where θu ∈

L∞1:µ(a, t), u = 1, 2, . . . ,m, x ∈ Ca,t, and let a < r < t.
Then, for the function Fu1(x) =

∫ r

a
θu(s, x(s)) dµu(s) and Fu2(x) =∫ t

r
θu(s, x(s)) dµu(s), we have

m∏
u=1

Hu =
m∏

u=1

(Fu1 � Fu2) =
2∑

i1=1

· · ·
2∑

im=1

m∏
u=1

F
δ(iu,1)
u1 ∗

m∏
u=1

F
δ(iu,2)
u2 ,

where δ is the Kronecker delta and F ◦
u1, F

◦
u2 are identically one on Ca,r

and Cr,t, respectively.

Proof. For any u, we define Fu1(x) :=
∫ r

a
θu(s, x(s)) dµu(s) and

Fu2(x) :=
∫ t

r
θu(s, x(s)) dµu(s). Then Hu(x) = Fu1(x1) + Fu2(x2) by

(2.8) and (2.9). We can also write Hu(x) = (F 1
u1 ∗ F ◦

u2)(x) + (F ◦
u1 ∗

F 1
u2)(x). Note that this last equality is the desired formula when m = 1.

We will proceed by induction. We now examine the case m = 2. Using
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the case m = 1, we obtain

(H1H2)(x) = (F 1
11 ∗ F ◦

12 + F ◦
11 ∗ F 1

12)(F
1
21 ∗ F ◦

22 + F ◦
21 ∗ F 1

22)(x)
= (F 1

11 ∗ F ◦
12)(F

1
21 ∗ F ◦

22)(x) + (F 1
11 ∗ F ◦

12)(F
◦
21 ∗ F 1

22)(x)
+ (F ◦

11 ∗ F 1
12)(F

1
21 ∗ F ◦

22)(x) + (F ◦
11 ∗ F 1

12)(F
◦
21 ∗ F 1

22)(x)

= (F 1
11F

1
21)(x1)(F ◦

12F
◦
22)(x2) + (F 1

11F
◦
21)(x1)(F ◦

12F
1
22)(x2)

(2.12)

+ (F ◦
11F

1
21)(x1)(F 1

12F
◦
22)(x2) + (F ◦

11F
◦
21)(x1)(F 1

12F
1
22)(x2)

= (F 1
11F

1
21 ∗ F ◦

12F
◦
22)(x) + (F 1

11F
◦
21 ∗ F ◦

12F
1
22)(x)

+ (F ◦
11F

1
21 ∗ F 1

12F
◦
22)(x) + (F ◦

11F
◦
21 ∗ F 1

12F
1
22)(x).

So

H1H2 =
2∑

i1=1

2∑
i2=1

F
δ(i1,1)
11 F

δ(i2,1)
21 ∗ F

δ(i1,2)
12 F

δ(i2,2)
22 ,

and this is the desired formula for m = 2. Now we assume that the
formula holds for m and examine the case m + 1.

H1 · · ·HmHm+1

= (H1 · · ·Hm)Hm+1

=
{ 2∑

i1=1

· · ·
2∑

im=1

m∏
u=1

F
δ(iu,1)
u1 ∗

m∏
u=1

F
δ(iu,2)
u2

}

· {F 1
m+1,1 ∗ F ◦

m+1,2 + F ◦
m+1,1 ∗ F 1

m+1,2

}

=
{ 2∑

i1=1

· · ·
2∑

im=1

[( m∏
u=1

F
δ(iu,1)
u1

)
F 1

m+1,1

]
∗

[( m∏
u=1

F
δ(iu,2)
u2

)
F ◦

m+1,2

]}

+
{ 2∑

i1=1

· · ·
2∑

im=1

[( m∏
u=1

F
δ(iu,1)
u1

)
F ◦

m+1,1

]
∗

[( m∏
u=1

F
δ(iu,2)
u2

)
F 1

m+1,2

]}

=
2∑

i1=1

· · ·
2∑

im=1

2∑
im+1=1

m+1∏
u=1

F
δ(iu,1)
u1 ∗

m+1∏
u=1

F
δ(iu,2)
u2 ,

where the last equality will now be explained. Let u = m + 1. When
im+1 = 1, the last factor in the lefthand product is F

δ(1,1)
m+1,1 = F 1

m+1,1.

The last factor in the righthand product is F
δ(1,2)
m+1,2 = F ◦

m+1,2. Now we
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consider the case when im+1 = 2. Then the last factor in the lefthand
product is F

δ(2,1)
m+1,1 = F ◦

m+1,1. On the other hand, the last factor in

the righthand product is F
δ(2,2)
m+1,2 = F 1

m+1,2. Thus we see that the last
equality in the string of four equalities above is justified, and so our
induction proof is complete.

Theorem 2.9. Let H be in Ac
a,t, and let a < r < t. Then there exist

Fnu1 ∈ Ac
a,r and Fnu2 ∈ Ac

r,t, u = 1, . . . ,mn, n = 1, 2, . . . , defined in
(2.14) below such that

H =
∞∑

n=0

2∑
i1=1

· · ·
2∑

imn=1

mn∏
u=1

F
δ(iu,1)
nu1 ∗

mn∏
u=1

F
δ(iu,2)
nu2 ,

where δ is the Kronecker delta and F ◦
nu1, F

◦
nu2 are identically one on

Ca,r and Cr,t, respectively.

Proof. Let H be in Ac
a,t, and let a < r < t. We take an arbitrary

representation of H in terms of measures µn,u ∈ U(a, t) and functions
θn,u ∈ L∞1:µn,u

(a, t), u = 1, . . . ,mn, n = 1, 2, . . . , such that

H(x) =
∞∑

n=0

mn∏
u=1

∫ t

a

θn,u(s, x(s)) dµn,u(s), x ∈ Ca,t,

where

(2.13)
∞∑

n=0

mn∏
u=1

‖θn,u‖∞1:µn,u
< ∞.

Also we can write H(x) as follows. H(x) =
∑∞

n=0

∏mn

u=1 Hnu(x) where
Hnu(x) =

∫ t

a
θn,u(s, x(s)) dµn,u(s). Now we define

(2.14)
Fnu1(x) =

∫ r

a

θn,u(s, x(s)) dµn,u(s),

Fnu2(x) =
∫ t

r

θn,u(s, x(s)) dµn,u(s).
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Then Fnu1 ∈ Ac
a,r and Fnu2 ∈ Ac

r,t because of (2.13). Hence, by
Lemma 2.8,

H(x) =
∞∑

n=0

mn∏
u=1

Hnu(x)

=
∞∑

n=0

2∑
i1=1

· · ·
2∑

imn=1

( mn∏
u=1

F
δ(iu,1)
nu1 ∗

mn∏
u=1

F
δ(iu,2)
nu2

)
(x).

More generally, if we use the same method from Lemma 2.8 and
Theorem 2.9, we obtain that for any H ∈ Ac

a,t and any partition
a = r0 < r1 < · · · < rh = t of [a, t], H can be written as the sum
of terms where each term is the ∗ product of Fj ’s, one from each of
the algebras Ac

rj−1,rj
, j = 1, . . . , h. We state this result precisely as

the following theorem. This theorem and the corresponding result for
operators, Theorem 3.8, are our main results.

Theorem 2.10. Let H be in Ac
a,t, and let σ be any partition of [a, t]

such that σ : a = r0 < r1 < · · · < rh = t. Let Rj be the restriction map
from Ca,t to Crj−1,rj where j = 1, . . . , h, r0 = a, rh = t. Then there
exist Fnu1 ∈ Ac

a,r1
, Fnu2 ∈ Ac

r1,r2
, . . . , Fnuh ∈ Ac

rh−1,rh
, u = 1, 2, . . . ,

mn, n = 1, 2, . . . , defined much as in (2.14) above such that

H =
∞∑

n=0

h∑
i1=1

· · ·
h∑

imn=1

mn∏
u=1

F
δ(iu,1)
nu1 ∗ · · · ∗

mn∏
u=1

F
δ(iu,h)
nuh ,

where F ◦
nuj is identically one on Crj−1,rj , Fnuj is a function on

Crj−1,rj , j = 1, 2, . . . , h, respectively, and δ is the Kronecker delta.

Proof. Let a = r0 < r1 < · · · < rh = t. The key is to extend
Lemma 2.8. We define

Fu1(x) =
∫ r1

a

θu(s, x(s)) dµu(s), . . . , Fuh(x) =
∫ rh

rh−1

θu(s, x(s)) dµu(s).

Then Hu(x) = Fu1(x1)+Fu2(x2)+ · · ·+Fuh(xh), where xj ∈ Crj−1,rj ,
j = 1, . . . , h, and we can write

m∏
u=1

Hu =
m∏

u=1

(F 1
u1 ∗ F ◦

u2 ∗ · · · ∗ F ◦
uh + · · · + F ◦

u1 ∗ F ◦
u2 ∗ · · · ∗ F 1

uh).



1012 G.W. JOHNSON AND Y.-H. PARK

Now we examine the case m = 2. We have

H1H2 = (F 1
11 ∗ F ◦

12 ∗ · · · ∗ F ◦
1h + F ◦

11 ∗ F 1
12 ∗ · · · ∗ F ◦

1h + · · ·
+ F ◦

11 ∗ F ◦
12 ∗ · · · ∗ F 1

1h)
· (F 1

21 ∗ F ◦
22 ∗ · · · ∗ F ◦

2h + F ◦
21 ∗ F 1

22 ∗ · · · ∗ F ◦
2h + · · ·

+ F ◦
21 ∗ F ◦

22 ∗ · · · ∗ F 1
2h).

In order to obtain H1, H2, we use the formula (a1 + · · ·+ah)(b1 + · · ·+
bh) =

∑h
i=1

∑h
j=1 aibj . If, for example, we multiply the second term of

H1 with the first term of H2, we obtain

(F ◦
11 ∗ F 1

12 ∗ · · · ∗ F ◦
1h)(F 1

21 ∗ F ◦
22 ∗ · · · ∗ F ◦

2h)(x)
= (F ◦

11F
1
21 ∗ F 1

12F
◦
22 ∗ · · · ∗ F ◦

1hF
◦
2h)(x).

This equality is the i1 = 2, i2 = 1 term of the equation

h∑
i1=1

h∑
i2=1

F
δ(i1,1)
11 F

δ(i2,1)
21 ∗ F

δ(i1,2)
12 F

δ(i2,2)
22 ∗ · · · ∗ F

δ(i1,h)
1h F

δ(i2,h)
2h .

Therefore,

H1H2 =
h∑

i1=1

h∑
i2=1

F
δ(i1,1)
11 F

δ(i2,1)
21 ∗F

δ(i1,2)
12 F

δ(i2,2)
22 ∗ · · · ∗F

δ(i1,h)
1h F

δ(i2,h)
2h .

The proof of the desired formula can now be completed by induction.
We omit this step since it is essentially the same as in the proof of
Lemma 2.8. The final formula in this theorem now follows in essentially
the same way as in the proof of Theorem 2.9.

3. Consequences of the decomposition for the functional
integral Ka,t

λ . Our main result in this section, Theorem 3.8, gives a
time-ordered decomposition of the operator Ka,t

λ (H) where H ∈ Ac
a,t

has the decomposition given by Theorem 2.10. The operator Ka,t
λ (H)

is written as the sum of products of the h operators associated with
the h subintervals of a given partition of [a, t]. The other results
or examples in this section are either (i) of a general nature and
closely follow results from [6], [7] or (ii) start with the special function
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H(x) :=
∫ t

a
θ(s, x(s)) dµ(s) and consider the operator decomposition

associated with a partition of the interval [a, t] and the decomposition
of the functions Hn and exp(H).

Theorem 3.1. Let σ be any partition of [a, t] such that σ : a =
r0 < r1 < · · · < rh = t. Let Fj be in Ac

rj−1,rj
, j = 1, . . . , h. Then

F1 ∗ · · · ∗Fh is in Ac
a,t and, for all λ ∈ C̃+, Krj−1,rj

λ (Fj), j = 1, . . . , h,
and Ka,t

λ (F1 ∗ · · · ∗ Fh) exist and

Ka,t
λ (F1 ∗ · · · ∗ Fh) = Ka,r1

λ (F1) · · ·Krh−1,t
λ (Fh).

Proof. The proof of this result proceeds much like the proofs of
Theorems 5.2 and 5.3 in [6].

Theorem 3.2. Let H ∈ Ac
a,t, and let f be a C-valued function which

is analytic in a disk about the origin with radius strictly greater than
‖H‖c

a,t. Then the function G defined by G(x) := f(H(x)) is in Ac
a,t

and so Ka,t
λ (G) exists for all λ ∈ C̃+.

Proof. This follows using some standard facts about Banach algebras
[10, pp. 202 205].

Theorem 3.3. Let H(x) =
∫ t

a
θ(s, x(s)) dµ(s) where θ ∈ L∞1:µ(a, t).

Then for F and G as in (2.8) and (2.9), exp(F � G), exp(F ) ∗ exp(G)
are in Ac

a,t and, for all λ ∈ C̃+,

Ka,t
λ (exp(F � G)) = Ka,r

λ (exp(F ))Kr,t
λ (exp(G)).

Proof. Since H ∈ Ac
a,t, by Theorem 3.2, Ka,t

λ (exp(H)) exists for all
λ ∈ C̃+. So by (1) of Proposition 2.7 and Theorem 3.1,

Ka,t
λ (exp(H)) = Ka,t

λ (exp(F � G))

= Ka,t
λ (exp(F ) ∗ exp(G))

= Ka,r
λ (exp(F ))Kr,t

λ (exp(G)).
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The next result follows from the h = 2 case of formula (2) in
Proposition 2.7 and Theorem 3.4 of [6] and the equalities Ka,r

λ (F ◦) =
exp[−(r − a)(H◦/λ)], Kr,t

λ (G◦) = exp[−(t − r)(H◦/λ)] where H◦ =
−1/2∆ is the free Hamiltonian acting in L2(Rd).

Theorem 3.4. Let H(x) =
∫ t

a
θ(s, x(s)) dµ(s) where θ ∈ L∞1:µ(a, t),

and let n be a positive integer. Let a < r < t. Then for F and G as in
(2.8) and (2.9), (F � G)n is in Ac

a,t and, for all λ ∈ C̃+,

Ka,t
λ [(F � G)n] =

∑
p+q=n

n!
p!q!

Ka,r
λ (F p)Kr,t

λ (Gq).

The proof of Theorem 3.4 as given above is simple. One can instead
give the proof by computing appropriate Wiener integrals. However,
here and certainly in more involved situations (for example, Corol-
lary 3.6 of the present paper), the resulting computations are much
lengthier and it is not easy to recognize general patterns. The results
in this paper have helped considerably in formulating and proving some
of the results and examples in the thesis of Johnson [9] and in a related
paper of hers with the first author of this paper.

In Example 3.5 to follow we write explicit formulas for the operators
involved in Theorem 3.4 in the case h = n = 2 where a = 0 and r = t/2.

Example 3.5. Let µ be a continuous measure and let θ ∈ L∞1:µ.
We consider the case h = n = 2, a = 0 and r = t/2 of Theorem 3.4.
Let F (x) := {∫ t

0
θ(s, x(s)) dµ(s)}2/2, F1(x) :=

∫ t/2

0
θ(s, x(s)) dµ(s) and

F2(x) :=
∫ t

t/2
θ(s, x(s)) dµ(s). Then

F (x) = (F1 � F2)2(x)/2 = F 2
1 (x1)/2 + F1(x1)F2(x2) + F 2

2 (x2)/2
= (F 2

1 ∗ F ◦
2 )(x)/2 + (F1 ∗ F2)(x) + (F ◦

1 ∗ F 2
2 )(x)/2.

By Corollary 1.2 in [4], we have

Kt
λ(F ) =

∫ t

0

∫ s2

0

e−s1(H◦/λ) θ(s1) e−(s2−s2)(H◦/λ)θ(s2)

· e−(t−s2)(H◦/λ) d(µ× µ)(s1, s2),
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where 0 < s1 < s2 < t. Similarly, we obtain K
(0,t/2)
λ (F1), K

(t/2,t)
λ (F2),

K
(0,t/2)
λ (F ◦

1 ) and K
(t/2,t)
λ (F ◦

2 ). So by the semigroup property of
e−s(H◦/λ), we have

K
(0,t/2)
λ (F 2

1 )K(t/2,t)
λ (F ◦

2 )/2

=
∫ t/2

0

∫ s2

0

e−s1(H◦/λ) θ(s1) e−(s2−s1)(H◦/λ) θ(s2) e−(t/2−s2)(H◦/λ)

· e−(t−t/2)(H◦/λ) d(µ× µ)(s1, s2)

=
∫ t/2

0

∫ s2

0

e−s1(H◦/λ) θ(s1) e−(s2−s1)(H◦/λ)θ(s2)

· e−(t−s2)(H◦/λ) d(µ× µ)(s1, s2),

where 0 < s1 < s2 < t/2. Similarly, we have

K
(0,t/2)
λ (F ◦

1 )K(t/2,t)
λ (F 2

2 )/2

=
∫ t

t/2

∫ s2

0

e−s1(H◦/λ) θ(s1) e−(s2−s1)(H◦/λ) θ(s2)

· e−(t−s2)(H◦/λ) d(µ× µ)(s1, s2),

where t/2 < s1 < s2 < t. Also,

K
(0,t/2)
λ (F1)K

(t/2,t)
λ (F2)

=
∫ t/2

0

e−s1(H◦/λ) θ(s1) e−(t/2−s1)(H◦/λ) dµ(s1)

·
∫ t

t/2

e−(s2−t/2)(H◦/λ) θ(s2) e−(t−s2)(H◦/λ) dµ(s2)

=
∫ t/2

0

∫ t

t/2

e−s1(H◦/λ) θ(s1) e−(s2−s1)(H◦/λ) θ(s2)

· e−(t−s2)(H◦/λ) d(µ× µ)(s1, s2),

where 0 < s1 < t/2 < s2 < t. Hence we have obtained the explicit
formulas that we sought.

Our final corollary gives the full consequences for operators of Propo-
sition 2.7 and the multivariate version of Theorems 3.3 and 3.4.
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Corollary 3.6. Let H(x) =
∫ t

a
θ(s, x(s)) dµ(s) where θ ∈ L∞1:µ(a, t),

and let Rj be the restriction map from Ca,t to Crj−1,rj , where j =
1, 2, . . . , h, r0 = a, rh = t. Then for the function Fj on Crj−1,rj

given by Fj(xj) =
∫ rj

rj−1
θ(s, xj(s)) dµ(s), j = 1, . . . , h, we have that

exp(F1 � · · · � Fh) and exp(F1) ∗ · · · ∗ exp(Fh) are in Ac
a,t, and for all

λ ∈ C̃+, we obtain

(1) Ka,t
λ [exp(F1 � · · · � Fh)] = Ka,r1

λ (exp(F1)) · · ·Krh−1,t
λ (exp(Fh)).

(2) Ka,t
λ [(F1 � · · · � Fh)n]

=
∑

q1+···+qh=n

n!
q1! · · · qh!

Ka,r1
λ (F q1

1 ) · · ·Krh−1,t
λ (F qh

h ).

Proof. (1) We will show this by induction. First for h = 2, we are
already done by Theorem 3.3. We assume that the property holds for
h = k − 1. Then

Ka,t
λ

(
[ exp(F1 � · · · � Fk)]

)
= Ka,t

λ (exp[(F1 � · · · � Fk−1) � Fk])

= Ka,t
λ [exp(F1 � · · · � Fk−1) ∗ exp(Fk)]

= K
a,rk−1
λ (exp(F1 � · · · � Fk−1))K

rk−1,t
λ (exp(Fk))

= Ka,r1
λ (exp(F1)) · · ·Krk−2,rk−1

λ (exp(Fk−1))K
rk−1,t
λ (exp(Fk)).

(2) By (2) of Proposition 2.7 and Theorem 3.1,

Ka,t
λ (F1 � · · · � Fh)n

= Ka,t
λ

( ∑
q1+···+qh=n

n!
q1! · · · qh!

F q1
1 ∗ · · · ∗ F qh

h

)

=
∑

q1+···+qh=n

n!
q1! · · · qh!

Ka,r1
λ (F q1

1 ) · · ·Krh−1,t
λ (F qh

h ).

Theorem 3.7. Let H(x) =
∫ t

a
θ(s, x(s)) dµ(s) where θ ∈ L∞1:µ(a, t)

is given. Let g(z) =
∑∞

n=0 anz
n be an analytic function with
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radius of convergence strictly greater than ‖θ‖∞1:µ. Let I(x) :=
g(

∫ t

a
θ(s, x(s)) dµ(s)) with g as above. Then Ka,t

λ (I) exists for all
λ ∈ C̃+. Further,

(1) For F and G as in (2.8) and (2.9), respectively, we have

Ka,t
λ (I) =

∞∑
n=0

anK
a,t
λ ((F � G)n)

=
∞∑

n=0

an

∑
p+q=n

n!
p!q!

Ka,r
λ (F p)Kr,t

λ (Gq).

(2) For the function Fj on Crj−1,rj given by

Fj(xj) =
∫ rj

rj−1

θ(s, xj(s)) dµ(s), j = 1, . . . , h,

we have

Ka,t
λ (I) =

∞∑
n=0

an

∑
q1+···+qh=n

n!
q1! · · · qh!

Ka,r1
λ (F q1

1 ) · · ·Krh−1,t
λ (F qh

h ).

Proof. Clearly I ∈ Ac
a,t and so Ka,t

λ (I) exists for all λ ∈ C̃+ and
is given by Ka,t

λ (I) =
∑∞

n=0 anK
a,t
λ (Hn) (see [4]). (1) follows from

Theorem 3.4 and (2) results from Corollary 3.6.

Next we give the time-ordered decomposition of operators Ka,t
λ (H)

that comes from our earlier decomposition result, Theorem 2.10, for
arbitrary functionals H in the disentangling algebra Ac

a,t. The proof
of Theorem 3.8 below is easy, but this theorem and Theorem 2.10 are
our main results.

Theorem 3.8. Let H be in Ac
a,t, and let σ be any partition of [a, t]

such that σ : a = r0 < r1 < · · · < rh = t. Let Rj be the restriction
map from Ca,t to Crj−1,rj where j = 1, . . . , h, r0 = a, rh = t. Then
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Ka,t
λ (H) exists for all λ ∈ C̃+ and is given by

Ka,t
λ (H) =

∞∑
n=0

h∑
i1=1

· · ·
h∑

imn=1

Ka,r1
λ

( mn∏
u=1

F
δ(iu,1)
nu1

)
· · ·Krh−1,rh

λ

( mn∏
u=1

F
δ(iu,h)
nuh

)

where H is given by the formula in Theorem 2.10.

Proof. By Theorem 2.5, Ka,t
λ (H) exists for all λ ∈ C̃+. So, by

Theorem 2.10 and Theorem 3.1, we have the result.

We could now give a variety of examples illustrating the use of
Theorems 2.10 and 3.8. For example, if θj and µj satisfy the usual
conditions for j = 1, . . . , n, a = r0 < r1 < · · · < rh = t is a partition of
[a, t], and if g is an entire function of n complex variables, our results
yield a decomposition of the operator Ka,t

λ (H), for λ ∈ C̃+, where

H(x) := g

( ∫ t

a

θ1(s, x(s)) dµ1(s), . . . ,
∫ t

a

θn(s, x(s)) dµn(s)
)
,

x ∈ Ca,t.

We now give an example which is different from our earlier explicit
example but is a very simple special case of the situation just described
above.

Example 3.9. Let

H(x) =
(∫ t

0

θ1(r, x(r)) dµ1(r)
)( ∫ t

0

θ2(s, x(s)) dµ2(s)
)

where µj is a continuous measure and θj ∈ L∞1:µj
, j = 1, 2. We de-

fine F11(x) :=
∫ t/2

0
θ1(r, x(r)) dµ1(r), F12(x) :=

∫ t

t/2
θ1(r, x(r)) dµ1(r),

F21(x) :=
∫ t/2

0
θ2(s, x(s)) dµ2(s) and F22(x) :=

∫ t

t/2
θ2(s, x(s)) dµ2(s).

Then, by Lemma 2.8,

H = F 1
11F

1
21 ∗ F ◦

12F
◦
22 + F11 ∗ F22 + F21 ∗ F12 + F ◦

11F
◦
21 ∗ F 1

12F
1
22.
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Hence, by Theorem 3.8, we see that

K0,t
λ (H) = K

0,t/2
λ (F 1

11F
1
21)K

t/2,t
λ (F ◦

12F
◦
22) + K

0,t/2
λ (F11)K

t/2,t
λ (F22)

+ K
0,t/2
λ (F21)K

t/2,t
λ (F12) + K

0,t/2
λ (F ◦

11F
◦
21)K

t/2,t
λ (F 1

12F
1
22).

We finish this example by giving explicit expressions for all of the
operators involved in the last equality. By Example 3.7 in [4], we
obtain

K0,t
λ (H)

=
∫ t

0

∫ r

0

e−s(H◦/λ) θ2(s) e−(r−s)H◦/λ θ1(r) e−(t−r)H◦/λ dµ2(s) dµ1(r)

+
∫ t

0

∫ s

0

e−r(H◦/λ) θ1(r) e−(s−r)H◦/λ θ2(s) e−(t−s)H◦/λ dµ1(r) dµ2(s).

Similarly, we can also calculate K
0,t/2
λ (F 1

11F
1
21), K

t/2,t
λ (F ◦

12F
◦
22),

K
t/2,t
λ (F 1

12F
1
22), K

0,t/2
λ (F ◦

11F
◦
21). By the semigroup property of

e−s(H◦/λ), we have

K
0,t/2
λ (F 1

11F
1
21)K

t/2,t
λ (F ◦

12F
◦
22)

=
∫ t/2

0

∫ r

0

e−s(H◦/λ) θ2(s) e−(r−s)H◦/λ θ1(r) e−(t−r)H◦/λ dµ2(s) dµ1(r)

+
∫ t/2

0

∫ s

0

e−r(H◦/λ) θ1(r) e−(s−r)H◦/λ θ2(s) e−(t−s)H◦/λ dµ1(r) dµ2(s).

Similarly, we have

K
0,t/2
λ (F ◦

11F
◦
21)K

t/2,t
λ (F 1

12F
1
22)

=
∫ t

t/2

∫ r

0

e−s(H◦/λ) θ2(s)e−(r−s)H◦/λ θ1(r) e−(t−r)H◦/λ dµ2(s) dµ1(r)

+
∫ t

t/2

∫ s

0

e−r(H◦/λ) θ1(r)e−(s−r)H◦/λ θ2(s) e−(t−s)H◦/λ dµ1(r) dµ2(s).

Also,

K
0,t/2
λ (F11)K

t/2,t
λ (F22)

=
∫ t/2

0

∫ t

t/2

e−r(H◦/λ) θ1(r)e−(s−r)H◦/λ θ2(s) e−(t−s)H◦/λ dµ2(s) dµ1(r).
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where 0 < r < t/2 < s < t. Similarly,

K
0,t/2
λ (F21)K

t/2,t
λ (F12)

=
∫ t/2

0

∫ t

t/2

e−s(H◦/λ) θ2(s)e−(r−s)H◦/λ θ1(r) e−(t−r)H◦/λ dµ1(r) dµ2(s),

where 0 < s < t/2 < r < t.

Remark. The initial motivation for the main results considered in
this paper, Theorems 2.10 and 3.8, came from a desire to begin to
understand in a mathematically rigorous sense some of the recent
influential heuristic work using the ‘Feynman integral.’ The hope is
that understanding what is going on in related settings such as the
present one, where rigorous path integrals are available, will yield some
insight into that work. One of the recurring ideas in the heuristic
work begins by expressing (at least locally) a manifold of interest in
the form T × M where T is the unit circle or R or some subinterval
of R. Then, by partitioning T , the manifold T × M can be cut into
arbitrarily small pieces, and the ‘integral’ over ‘paths’ in T × M can
be correspondingly decomposed. An operation of concatenation on
the ‘paths’ and functions of the ‘paths’ plays a crucial role. This
concatenation is akin to the operations ∗ and � which have been
used throughout this paper. For us, the role of T is played by the
interval [a, t], and M becomes Rd. The path integrals for us are Wiener
integrals for λ > 0 and Feynman integrals for λ purely imaginary.
We should mention that the ‘paths’ in the heuristic work are not
truly paths. They can be, for example, equivalence classes of gauge
fields on T × M . A brief exposition of the recent heuristic work and
its relationship to the Feynman integral and Feynman’s operational
calculus for noncommuting operators along with many references can
be found in Chapter 20 of the book [7]. Edward Witten has played a
prominent role in the heuristic developments; the papers [11], [12] are
among the many relevant references to his work.
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