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SYMPLECTIC GEOMETRY OF VECTOR BUNDLE
MAPS OF TANGENT BUNDLES

PO-HSUN HSIEH

ABSTRACT. If (M, g) is a Riemannian manifold, then
TM has a canonical almost Kähler structure. The deriva-
tive of a map of Riemannian manifolds rarely preserves the
Kähler forms of the tangent bundles, even up to conformal-
ity. Thus we define a weakening of symplectomorphism, called
H-isotropic map and study the H-isotropy of vector bundle
maps.

1. Introduction and notation. If L is a submanifold of an almost
Hermitian manifold (N, J, g, ω), ω = g(J ·, ·), then the normal bundle
L⊥ of L also possesses an almost Hermitian structure (Ĵ , ĝ, ω̂). Here
ω̂ is called the canonical almost symplectic structure of L⊥ (cf. [4]).
An interesting problem in symplectic geometry is: when are ω and ω̂
isomorphic? (Cf. [6], [4].) A job relevant to this problem is to study
vector bundle maps between two such bundles L⊥

1 and L⊥
2 (e.g., [4,

Theorem 4.1]). The tangent bundle of a Riemannian manifold can be
thought of as a special case of a normal bundle of an almost Hermitian
manifold [4]. Moreover, the almost symplectic form on TM is in fact
just a pull-back of the canonical symplectic form on T ∗M . Thus we
are motivated to study the symplectic geometry of vector bundle maps
of tangent bundles of Riemannian manifolds.

Suppose (M, g) is a Riemannian manifold. Then TM is equipped
with Sasaki metric ĝ [8], [2]. If X ∈ Γ(TM), then we use XH and
XV to denote its horizontal and vertical lifts to TM , respectively. An
almost complex structure J for TM compatible with ĝ is defined as
follows: J(XH

ξ + Y V
ξ ) = XV

ξ − Y H
ξ [2]. The 2-form ω := ĝ(J ·, ·) is

exactly D∗(ωc) where D : TM → T ∗M is the dual map induced by
g and ωc is the canonical symplectic form on T ∗M [2]. Thus we call
(J, ĝ, ω) the canonical almost Kähler structure of TM . While ĝ has
been studied extensively, little seems to have been done about ω.
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Given a map f : (N1, ω1) → (N2, ω2) of symplectic manifolds,
we say that f is symplectically conformal, respectively symplectically
homothetic, symplectic, if c exists, a nonvanishing real-valued function,
respectively nonzero real constant, c = 1, on N1 such that f∗(ω2) =
cω1. Conformal, homothetic, and isometric maps between Riemannian
manifolds are similarly defined. (Notice that we do not assume the
dimensions of N1 and N2 coincide.)

There is a ĝ-orthogonal decomposition TTM = H ⊕ V of TTM
into the horizontal subbundles H = HTM and vertical subbundle
V = VTM of TTM , where H, respectively V , is the collection of
all the XH

ξ , respectively XV
ξ . If (M, g), respectively (M ′, g′), is

a Riemannian manifold, then we always use (J, ĝ, ω), respectively
J ′, ĝ′, ω′, to denote the canonical almost Kähler structure of TM ,
respectively, TM ′. For f : (M, g)→ (M ′, g′), we frequently write f̂ for
f∗ to emphasize that it is a map from (TM, Jĝ, ω) to (TM ′, J ′, ĝ′, ω′)
and to avoid awkwardness of certain notations such as (f∗)∗. f̂ is rarely
symplectically conformal (cf. Proposition 2.4 and (ii) of Theorem 4.1).
Thus we are content if f̂ has some weaker symplectic properties.
Since f̂∗(Vξ) is always isotropic, with respect to ω′, for all ξ ∈ TM ,
Vξ = (VTM)ξ, we are naturally led to the following

Definition 1.1. Suppose F : (TM, J, ĝ, ω) → (TM ′, J ′, ĝ′, ω′) is a
map between two tangent bundles of Riemannian manifolds equipped
with their canonical almost Kähler structures. Then we say F is H-
isotropic if F∗(Hξ) is an isotropic subspace of TF (ξ)TM ′, with respect
to ω′ for all ξ ∈ TM , where Hξ = (HTM)ξ.

We usually abbreviate “vector bundle map” to VBM. This paper
deals with the H-isotropy of an arbitrary VBM F : TM → TM ′ over
an arbitrary C∞ map f : (M, g) → (M ′, g′) of Riemannian manifolds.
In Section 2 we introduce some basic tools such as the covariant
derivative BF of F and use the expression of F∗ by BF to derive
some basic properties of H-isotropic VBMs. In Section 3 we obtain
some sufficient conditions (Theorems 3.2 and 3.4) and some restriction
(Proposition 3.5) for generating H-isotropic VBMs. In Section 4 we
derive a rigidity result of induced H-isotropic maps (Theorem 4.1) and
a sufficient condition for induced H-isotropy (Theorem 4.2). Examples
are given when appropriate in most sections and especially in Section 5.
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Given manifolds and maps are assumed to be C∞, and given man-
ifolds are assumed to be connected. If M is an open subset of Rn,
unless otherwise indicated, we will assume M carries the metric in-
duced from the usual metric on Rn and use the usual natural coor-
dinate system {x, y, z, . . . } for M and the corresponding frame field
{(∂/∂x), (∂/∂y), (∂/∂z), . . . } for TM . We also usually write x1 for x
and x2 for y, etc., without explicit mention. The summation conven-
tion will be used, although sometimes we still write

∑
explicitly for

clarity.

2. Preliminaries and basic properties of H-isotopic VBMs.
Suppose F : TM → TM ′ is a VBM over f : (M, g) → (M ′, g′). F
can be canonically viewed as a section of T ∗M ⊗ f−1TM ′, which is
equipped with the connection D1 ⊗D2. Here D1 is the connection on
T ∗M induced by the Levi-Civita connection ∇M of (M, g), and D2

is the pullback of the Levi-Civita connection ∇M ′
of (M ′, g′) to the

pullback bundle f−1TM . (When there is no risk of confusion, we just
use the symbol ∇ to denote D1 ⊗ D2.) The covariant derivative of F
will be denoted by BF , i.e.,

BF (X,Y ) = (∇XF )(Y ) = ∇f
X(F (Y ))− F (∇M

X Y )

for all X,Y ∈ Γ(TM). F is called parallel if BF = 0. The torsion TF

of F is defined by

TF (X,Y ) = BF (X,Y )−BF (Y,X)

for all X,Y ∈ Γ(TM). F is called torsionless if TF = 0. A covariant
3-tensor field AF on M is defined by

AF (X,Y, Z) = g′(f∗X,BF (Y, Z))

for all X,Y, Z ∈ Γ(TM). We also use the symbols βf := Bf̂ and
αf := Af̂ . Notice that βf is just the second fundamental form of f ,
and f̂ is always torsionless.

If {ei} and {Er} are local frame fields of TM and TM ′, respectively,
and Γk

ij and Γ
t

rs denote the corresponding Christoffel symbols, then we
usually write BF

ij for B
F (ei, ej) and AF

kij for A
F (ek, ei, ej), and an easy

calculation yields

(1) BF
ij = (eiFrj + f̂siFtjΓ

r

st − FrkΓk
ij)Er,
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where Frj and f̂rj are (and will be through out this paper) respectively
defined by F (ej) = FrjEr and f̂(ej) = f̂rjEr. In particular, if {xi},
respectively, {yr}, is a local coordinate system for M , respectively M ′,
then

(2) BF

(
∂

∂xi
,

∂

∂xj

)
=

(
∂Frj

∂xi
+

∂fs

∂xi
FtjΓ

r

st − FrkΓk
ij

)
∂

∂yr
.

Hence, if Γ
r

st(f(p)) = Γk
ij(p) = 0 for all r, s, t, k, i, j and some p, then

(3) TF

(
∂

∂xi
,

∂

∂xj

)∣∣∣∣
p

=
(
∂Frj

∂xi
− ∂Fri

∂xj

)
∂

∂yr

∣∣∣∣
p

.

If G : TM ′ → TM ′′ is another VBM of tangent bundles of Riemannian
manifolds, then we can easily show

(4) BG◦F = BG(F ·, F ·) +G ◦BF .

We refer the reader to [3], [9] for the derivative of the formulas similar
to (1), (2) and (4).

Lemma 2.1. Let F : TM → TM ′ be a VBM over f : (M, g) →
(M ′, g′). Then

(5) F∗(XV ) = F (X)V , F∗(XH
ξ ) = (f∗X)

H
F (ξ) +BF (X, ξ)VF (ξ)

for all X, ξ ∈ Γ(TM). In particular, we have the formula in [7]:

(6) f̂∗(XV
ξ ) = (f∗X)

V
f̂(ξ)

, f̂∗(XH
ξ ) = (f∗X)

H
f̂(ξ)

+ βf (X, ξ)V
f̂(ξ)

.

Proof. The proof is straightforward and we only sketch it. The first
equation of (5) is trivial. Suppose ξ,X ∈ TpM and γ : [0, 1] → M
is a curve such that γ′(0) = X. Let {ei} be a parallel orthonormal
frame field of TM along γ and {ei} its dual. Let {Er} be a parallel
orthonormal frame field of TM ′ along f ◦ γ. Let Pt, respectively Qt,
be the parallel translation from γ(0) to γ(t) along Γ, respectively from
f ◦ γ(0) to f ◦ γ(t) along f ◦ γ. Without loss of generality, we assume
ξ = e1(0).
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Suppose F |Tγ(t)M =
∑

Fri(t)Er ⊗ ei. Then

BF (X, ξ) =
d

dt

∣∣∣∣
0

((Q−1
t ◦ F ◦ Pt)(ξ))

=
d

dt

∣∣∣∣
0

(
Q−1

( ∑
Fr1(t)Er

))
=

∑
F ′

r1(0)Er(0),

and thus

F∗(XH
ξ ) =

d

dt

∣∣∣∣
0

(F (e1)) =
d

dt

∣∣∣∣
0

( ∑
Fr1(t)Er(t)

)

= (f∗X)HF (ξ) +
∑

F ′
r1(0)Er(0)V = (f∗X)HF (ξ) +BF (X, ξ)VF (ξ).

This proves the second equation of (5).

Remark 2.2. This lemma implies (i) F is almost complex if and
only if F = f̂ and f is totally geodesic; (ii) F is isometric if and
only if F is fiberwise isometric (i.e., g′(F (X), F (X)) = g(X,X) for all
X ∈ Γ(TM)) and parallel, and f is isometric; (iii) in particular, f̂ is
isometric ⇔ f is isometric and totally geodesic ⇔ f̂ is isometric and
almost complex.

For convenience, we usually write X ⊕ξ Y for (XH + Y V )ξ for all
X,Y, ξ ∈ Γ(TM). As a corollary of Lemma 2.1, we easily see

(7)
F ∗ω′(X ⊕ξ X ′, Y ⊕ξ Y ′) = AF (X,Y, ξ)−AF (Y,X, ξ)

+ g′(f∗X,F (Y ′))− g′(f∗X ′, F (Y ))

for all X,X ′, Y, Y ′, ξ ∈ Γ(TM). In particular, we have the following
characterization of H-isotropy:

Proposition 2.3. Let F : TM → TM ′ be a VBM over f : (M, g)→
(M ′, g′). Then

(i) F is H-isotropic if and only if AF is symmetric in the first two
slots.

(ii) Suppose g′(f∗X,F (Y )) = g′(f∗(Y ), F (X)) for all X,Y ∈ Γ(TM).
Then F is H-isotropic ⇔ if ξ ∈ TM and Q is a subspace of TξTM .
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Then f̂∗(Q) is isotropic if and only if f̂∗(JQ) is ⇔ f̂∗ω′ is a (1, 1)
-form on TM (i.e., f̂∗ω′(J ·, J ·) = f̂∗ω′).

Proof. Part (i) follows directly from (7). Part (ii) follows from (7)
and the fact that f̂∗(Vξ) is isotropic and JVξ = Hξ.

Let W f be the covariant 2-tensor field on TM defined by W f =
(f̂∗ω′)(·, J ·). We easily see by the proposition that if f̂ is H-
isotropic, then W f is symmetric and positive semi-definite, and W f =
W f (J ·, J ·). In fact, if f is isometric and totally geodesic, then
W f = f̂∗ĝ′ = ĝ.

The following important fact will be used several times.

Proposition 2.4. For f : (M, g) → (M ′, g′), f is isometric if and
only if f̂ is symplectic.

Proof. The backward direction of the proposition is trivial because
of (6). Thus we assume now f is isometric. By the elementary theory
of harmonic maps, αf = 0. Thus, by (7) and Proposition 2.3,

ω(X ⊕ξ X ′, Y ⊕ξ Y ′) = g(X,Y ′)− g(X ′, Y )
= g′(f∗X, f∗Y ′)− g′(f∗X ′, f∗Y )

= f̂∗ω′(X ⊕ξ X ′, Y ⊕ξ Y ′)

for all X,X ′, Y, Y ′, ξ ∈ Γ(TM).

Notice that this proposition can also be proved by the technique of
Liouville vector fields as used in [4].

Corollary 2.5. (i) Suppose F : TM → TM ′ is an H-isotropic
VBM over a submersion f : (M, g)→ (M ′, g′). Then for all ξ ∈ TM ,
dim (F∗(Hξ)) = rank f .

(ii) Suppose f : (M, g) → (M ′, g′) has constant rank, and f̂ is H-
isotropic. Then for every ξ ∈ TM , dim (f̂∗(Hξ)) = rank f .
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Proof. By (i) of Proposition 2.3, BF (X, ξ) = 0 whenever ξ ∈ TxM ,
X ∈ kernel (Fx) and x ∈ M . Part (i) then follows from the second
equation of (5). Part (ii) follows from part (i), Proposition 2.4, and the
fact that locally f maps M to a rank (f)-dimensional submanifold of
M ′.

The following example illustrates several cases in which dim (F∗(Hξ))
may not equal rank fx for ξ ∈ TxM .

Example 2.6. (i) (Equip R2 with the usual natural coordinates
{x, y}.) Let M = (0,∞) × (0,∞), M ′ = R2, f : M → M ′ be defined
by f(x, y) = x, and VBM F : TM → TM ′ over f defined by

F =
(

x, 1
0, (y − 1)2

)

(with respect to the frame field {(∂/∂x), (∂/∂y)}). By (2), (3)
and (i) of Proposition 2.3, we can easily check that F is torsion-
less and H-isotropic, F |TxM : TxM → Tf(x)M

′ is bijective for all
x ∈ M , and f has constant rank 1. An easy calculation yields
BF [(∂/∂y), (∂/∂x)] = 0 and BF [(∂/∂y), (∂/∂y)] = 2(y − 1)[(∂/∂y)].
Thus, by (5), dim (F∗(Hξ)) = 1 if ξ ∈ T(x,1)M ; for y �= 1,
dim (F∗(Hξ)) = 1 if ξ = (∂/∂x)(x,y) and dim (F∗(Hξ)) = 2 if ξ =
(∂/∂y)(x,y).

(ii) Let f : R → R be defined by f(x) = x2. By (2), βf [(∂/∂x),
(∂/∂x)] = 2(∂/∂x). Thus, by (6), dim (f̂∗(Hξ)) = 1 if ξ = (∂/∂x)0.
But rank f∗(0) = 0.

(iii) Let M = (0, 1) × (0, 1). Let f : M → R be defined by
f(x, y) = xy + y. We easily see that f has constant rank 1 and,
by Proposition 2.3 and (2), f̂ is not Ĥ-isotropic. Since every 0- or
1-dimensional subspace of a symplectic vector space is isotropic, there
exists a ξ ∈ TM such that dim (f̂∗(Hξ)) = 2.

3. Conditions and restrictions for obtaining H-isotropic
maps. In this section we obtain some sufficient conditions for H-
isotropic VBMs and see how an H-isotropic VBM prevents us from
getting another one.
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The following lemma is interesting itself:

Lemma 3.1. Let F : TM → TM ′ be a torsionless, fiberwise
isometric VBM over a map f : (M, g) → (M ′, g′). Suppose dimM =
dimM ′. Then F is parallel.

Proof. Fix p ∈ M and q = f(p). Choose local orthonormal
frame fields {ei} and {Ei} around p and f(p), respectively, such that
∇M

ei
ej |p = ∇M ′

Ei
Ej |q = 0 for all i, j. Without loss of generality,

we assume Fij |p = δij . By (1), BF (ei, ej)|p = (eiFkj)Ek|p. Thus,
eiFkj |p = ejFki|p. But we also have ekFij |p = −ekFji|p since FrjFri =
δij . Hence eiFkj |p = 0 for all i, j, k, and thus BF = 0.

The following theorem is the first of our three theorems for obtaining
H-isotropic maps:

Theorem 3.2. Let F : TM → TM ′ be a torsionless, fiberwise
isometric VBM over f : (M, g) → (M ′, g′). Suppose there exists
a dim (M)-dimensional submanifold M ′′ of M ′ such that F (TM) ⊂
TM ′′. Then F is H-isotropic.

Proof. Locally F can be written as F = G ◦ H where H is the
map F with codomain changed to TM ′′, and G is the derivative
of the isometric immersion from M ′′ to M ′. By (4), BF (X,Y ) =
BG(H(X), H(Y )) + (G ◦ BH)(X,Y ) for all X,Y ∈ Γ(TM). Thus, H
is torsionless. Thus, H is parallel by Lemma 3.1. The theorem then
follows from Propositions 2.3 and 2.4.

Compare the following example with the previous theorem.

Example 3.3. Let M = {(x, y) ∈ R2 : (x+ y)2 < (1/2)}, M ′ = R3,
f :M → M ′ defined by f(x, y) = (x, 0, 0) and F : TM → TM ′ defined
by

F =




x+ y, x+ y√
(1/2)− (x+ y)2,

√
(1/2)− (x+ y)2

(1/
√
2),−(1/√2)


 .
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By (3), we easily see that F is torsionless and fiberwise isometric. But
an easy calculation yields AF

121(= AF ((∂/∂x), (∂/∂y), (∂/∂x))) = 1 and
AF

211 = 0. Thus F is not H-isotropic by Proposition 2.3.

The following theorem provides another condition for H-isotropy.

Theorem 3.4. Suppose dimM ≥ 2 and f : (M, g) → (M ′, g′) is a
map of Riemannian manifolds. Suppose there exists a positively-valued
function c on M such that f∗g′ = cg. Let F = (c′/c)f̂ for some real-
valued function c′ on M . Then F is H-isotropic if and only if c′ is
a constant. In particular, for every nonzero constant c′′, (c′′/c)f̂ is
symplectically homothetic.

Proof. By Proposition 2.4, we can assume without loss of generality
that M = M ′ and f = Id, (but g �= g′ in general). Fix p ∈ M . Let
{xi} be local normal coordinates of (M, g) around p. As before, we use
Γk

ij and Γ
k

ij to denote the corresponding Christoffel symbols for (M, g)
and (M, g′), respectively. By (2),

AF
kij|p = c

(
∂Fkj

∂xi
+

c′

c
Γ

k

ij

)∣∣∣∣
p

.

Thus F is H-isotropic if and only if

(8)
∂Fkj

∂xi
+

c′

c
Γ

k

ij

∣∣∣∣
p

=
∂Fij

∂xk
+

c′

c
Γ

i

kj

∣∣∣∣
p

for all i, j, k, p.

By the usual formulas for the Christoffel symbols

Γk
ij =

1
2

∑
m

gkm

(
∂gjm

∂wi
+

∂gim

∂wj
− ∂gij

∂wm

)
,

we obtain

Γ
k

ij(p) =
1
2c

(
∂c

∂xi
δjk +

∂c

∂xj
δik − ∂c

∂xk
δij

)∣∣∣∣
p

.
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In particular, if k �= i �= j, then Γ
k

ij(p) = (1/2c)(∂c/∂xi)δjk|p; if
i �= j, then Γ

j

ij(p) = (1/2c)(∂c/∂xi)|p (no summation) and Γi

jj(p) =
−(1/2c)(∂c/∂xi)|p (no summation). Therefore, we can consider the
following three cases:

(i) Suppose k �= i, i �= j, j �= k. Then (8) is trivially true.

(ii) Suppose k �= i, i �= j, j = k. Then (8) can be rewritten as

(9)
(

∂

∂xi

c′

c
+

c′

2c2
∂

∂xi

)∣∣∣∣
p

= − c′

2c2
∂

∂xi

∣∣∣∣
p

.

(iii) Suppose k �= i, i = j. Then (8) can be rewritten as

− c′

2c2
∂

∂xk

∣∣∣∣
p

=
(

∂

∂xk

c′

c
+

c′

2c2
∂

∂xk

)∣∣∣∣
p

.

Hence, F is H-isotropic if and only if (9) is true for all i and p. The
latter is clearly equivalent to (∂c′/∂xi)|p = 0 for all i and p. This
proves the first conclusion of the theorem. The second conclusion of
the theorem then follows directly from (7).

From the previous theorem, we suspect that if F is an H-isotropic
VBM, then cF is probably not H-isotropic unless c is a constant. The
following proposition essentially confirms this suspicion and thus puts
some restriction on getting an H-isotropic map from a known one.

Proposition 3.5. Let F : TM → TM ′ be an H-isotropic VBM over
f : (M, g) → (M ′, g′). Suppose dim (F (TxM) ∩ f∗(TxM)) ≥ 2 for all
x ∈ M , and c is a real-valued function on M . Then cF is H-isotropic
if and only if c is a constant.

Proof. The backward direction of this proposition is trivial by
Proposition 2.3. Suppose cF is H-isotropic. By (1) we easily derive
BcF (Y, Z) = (Y c)F (Z) + cBF (Y, Z) for all Y, Z ∈ Γ(TpM). Thus
g′(f∗X, (Y c)F (Z)) = g′(f∗Y, (Xc)F (Z)) for all X,Y, Z ∈ Γ(TM). Now
fix a p ∈ M . Suppose Y ∈ TpM . We can choose X,Z ∈ TpM such that
f∗Y ⊥ F (Z) and g′(f∗X,F (Z)) = 1. Then

Y c = g′(f∗X, (Y c)F (Z)) = g′(f∗Y, (Xc)F (Z)) = 0.
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If F ∗ω′ = G∗ω′ for F,G : TM → TM ′, then F is H-isotropic if and
only ifG is. Thus, the following observation, which follows directly from
(7) and Proposition 2.3, can also be viewed as a restriction of getting
an H-isotropic map from a known one. Suppose F,G : TM → TM ′

are VBMs over f : (M, g)→ (M ′, g′), F (TM), G(TM) ⊂ f∗(TM) and
F is H-isotropic. If F ∗ω′ = G∗ω′, then F = G.

4. Induced maps of tangent bundles. In this section we obtain
a rigidity result of induced H-isotropic maps and obtain a sufficient
condition for obtaining induced H-isotropic maps.

If f : (M, g) → (M ′, g′) is an immersion and dimM = 1, then f̂
is symplectically conformal. When dimM ≥ 2, the story is quite
different. This can be seen from the following rigidity result of H-
isotropic induced maps of tangent bundles.

Theorem 4.1. Suppose f : (M, g)→ (M ′, g′) and dimM ≥ 2. Then

(i) If f̂ is H-isotropic, and, for every x ∈ M , there exist ξ(x) ∈ TxM

and c(x) ∈ R − {0} such that f̂∗(ω′
f̂(ξ(x))

) = c(x)ωξ(x), then f̂ is
symplectically homothetic.

(ii) f̂ is symplectically conformal ⇔ f̂ is symplectically homothetic
⇔ f is homothetic ⇔ f is conformal and f̂ is H-isotropic.

Proof. Suppose the assumption of part (i) holds. By (7) we have

g(X,Y ′) = ω(XH
ξ(x), (Y

′)Vξ(x)) = f̂∗ω′(XH
f∗(ξ(x)), (Y

′)Vf∗(ξ(x)))

= g′(f∗X, f∗Y ′)
for all X,Y ′ ∈ Γ(TxM) and x ∈ M . Hence, f is conformal. By
Theorem 3.4, we then easily see that f is homothetic. Hence βf = 0,
and thus f̂ is symplectically homothetic by (7). This concludes the
proof of part (i).

If f is homothetic, then αf = 0 by the elementary theory of harmonic
maps. Thus part (ii) follows directly from the conclusion and proof of
part (i).

The following theorem provides a handy sufficient condition for in-
duced H-isotropic maps.
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Theorem 4.2. Suppose f : (M, g) → (M ′, g′) is a diffeomorphism
such that f preserves geodesics up to parameterization. Then f̂ is H-
isotropic.

Proof. We can assume that M = M ′ and f = Id (but g �= g′

in general). Fix p ∈ M . Let (x1, . . . , xn) be a normal coordinate
system around p for (M, g) and (u1, . . . , un; v1, . . . , vn) the associated
coordinates for TM . (That is, the element

∑
vi(∂/∂xi)|x1,... ,xn) in TM

is represented by (u1, . . . , un; v1, . . . , vn), where ui = xi.) Notice that
span {(∂/∂u1)|ξ, . . . , (∂/∂un)|ξ} is Hξ with respect to (TM, ĝ) for all
ξ ∈ TpM .

For any i = 1, . . . , n, there exists an R-valued function ci defined on
some interval (−ε, ε) such that the curve γ defined by

γ(t) = (0, . . . , 0, t, 0, . . . , 0; 0, . . . , 0, ci(t), 0, . . . , 0)

is a horizontal curve in (TM, ĝ′), where on the right side of the equation
t and ci(t) occur at the ith and (n + i)th places, respectively. Thus
(∂/∂xi)H

′
= (∂/∂ui) + (∂ci/∂xi)(∂/∂vi) (no summation), where H ′

denotes the horizontal lift with respect to g′. An easy calculation then
yields that span {(∂/∂u1)|ξ, . . . , (∂/∂un)|ξ} is isotropic with respect to
ω′ if ξ ∈ TpM .

By Theorems 4.1 and 4.2, we have

Corollary 4.3. Suppose dimM ≥ 2 and f : (M, g) → (M ′, g′) is a
diffeomorphism such that f preserves geodesics up to parameterization
and angles. Then f is homothetic.

5. Examples. Since the concept of H-isotropic maps is introduced
in this very paper, we would like to see some more examples and
counterexamples.

It is easy to construct a VBM which is symplectically conformal but
not symplectically homothetic (cf. Theorem 4.1):

Example 5.1. Let M = {(x, y) ∈ R2 : (x − 1)2 + (y − 1)2 < 1},
M ′ = R2, f : M → M ′ be defined by f(x, y) = [x, (−x2 + y2/2)] and
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F : TM → TM ′ be represented by F =
(

y,x

0,1

)
. We can easily verify

that AF is symmetric in the first two slots and y〈X,Y 〉 = 〈f∗X,F (Y )〉
for all X,Y ∈ T(x,y)M , (x, y) ∈ M . Thus, by (7), F is symplectically
conformal but not symplectically homothetic.

The following example is a straightforward application of our devel-
oped theory to the case of real hyperbolic spaces.

Example 5.2. Suppose n ≥ 2. Let (Bn, g) be the usual unit
ball with flat metric and (Bn, g1), respectively (Bn, g2), the Poincaré,
respectively Klein, disk model for the real hyperbolic space RHn (e.g.
[5]). The identity map Id1 : (Bn, g) → (Bn, g1) is conformal but
not homothetic. Thus Îd1 is not H-isotropic by (ii) of Theorem 4.1.
The identity map Id2 : (Bn, g) → (BN , g2) preserves geodesics up to
parameterization. Hence, Îd2 is H-isotropic by Theorem 4.2. But Îd2

is not symplectically conformal by (ii) of Theorem 4.1.

Theorem 4.1 implies that if f :M → M ′ is a biholomorphism between
Kähler manifolds of real dimension 2, then f̂ isH-isotropic⇔ f̂−1 isH-
isotropic⇔ f̂ is symplectically conformal. The following example deals
with the case when f is a diffeomorphsm but not a biholomorphism.

Example 5.3. Let M and M ′ be open subsets R2 and x1, x2 the
usual natural coordinates of R2. Fix a map f : M → M ′. By (2) we
have αf [(∂/∂xk), (∂/∂xi), (∂/∂xj)] =

∑
(∂fm/∂xk)(∂2fm/∂xi∂xj).

Thus, by Proposition 2.3, f̂ is H-isotropic if and only if the follow-
ing two equations hold:

∂f1

∂x1

∂2f1

∂x2∂x2
+

∂f2

∂x1

∂2f2

∂x2∂x2
=

∂f1

∂x2

∂2f1

∂x1∂x2
+

∂f2

∂x2

∂2f2

∂x1∂x2
,

∂f1

∂x1

∂2f1

∂x2∂x1
+

∂f2

∂x1

∂2f2

∂x2∂x1
=

∂f1

∂x2

∂2f1

∂x1∂x1
+

∂f2

∂x2

∂2f2

∂x1∂x1
.

Therefore, we can easily check that each of the following two claims is
true for suitable M and M ′:

(a) Suppose f(x, y) = (x + 2y, (x + y)2) and thus f−1(x, y) =
(−x+2

√
y, x−√

y). Then f̂ is H-isotropic, but f̂−1 is not H-isotropic.
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(b) Suppose f(x, y) = (x, y2) and thus f−1(x, y) = (x,
√
y). Then

both f̂ and f̂−1 are H-isotropic, but neither f̂ nor f̂−1 is symplectically
conformal.

Example 5.4. Let f :M → M ′ be a Riemannian submersion. Then
f̂ is H-isotropic if and only if f is totally geodesic.

The backward direction of the claim follows from Proposition 2.3.
Now suppose f̂ is H-isotropic. We will use [3, Lemma 1.5]. Let β = βf

and TH(M), respectively TV (M), denote the horizontal, respectively
vertical, distribution on M associated with f . We have β|TH(M) ×
TH(M) = 0. But αf is totally symmetric by Proposition 2.3. Hence
β|TV (M)× TV (M) = β|TH(M)× TV (M) = β|TV (M)× TH(M) = 0.
This equation implies that f is totally geodesic and the distribution
TH(M) is integrable.

In particular, if f is the canonical projection from TN to a Rie-
mannian manifold N , or if f is the canonical projection from the nor-
mal bundle L⊥ to a submanifold L of a Riemannian manifold, L⊥ is
equipped with the Sasaki metric [1], then f̂ is H-isotropic if and only
if N , respectively the normal connection on L⊥, is flat.

By (4) and (i) of Proposition 2.3, if F : TM → TM ′ is a parallel
VBM and G : TM ′ → TM ′′ is an H-isotropic VBM, then G ◦ F is
H-isotropic. We can use this to construct many other examples of
H-isotropic VBMs.
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