ROCKY MOUNTAIN JOURNAL OF MATHEMATICS Volume 31, Number 3, Fall 2001

SYMPLECTIC GEOMETRY OF VECTOR BUNDLE MAPS OF TANGENT BUNDLES

PO-HSUN HSIEH

ABSTRACT. If (M,g) is a Riemannian manifold, then TM has a canonical almost Kähler structure. The derivative of a map of Riemannian manifolds rarely preserves the Kähler forms of the tangent bundles, even up to conformality. Thus we define a weakening of symplectomorphism, called H-isotropic map and study the H-isotropy of vector bundle maps.

1. Introduction and notation. If L is a submanifold of an almost Hermitian manifold (N, J, g, ω) , $\omega = g(J, \cdot, \cdot)$, then the normal bundle L^{\perp} of L also possesses an almost Hermitian structure $(\hat{J}, \hat{g}, \hat{\omega})$. Here $\hat{\omega}$ is called the canonical almost symplectic structure of L^{\perp} (cf. [4]). An interesting problem in symplectic geometry is: when are ω and $\hat{\omega}$ isomorphic? (Cf. [6], [4].) A job relevant to this problem is to study vector bundle maps between two such bundles L_1^{\perp} and L_2^{\perp} (e.g., [4, Theorem 4.1]). The tangent bundle of a Riemannian manifold can be thought of as a special case of a normal bundle of an almost Hermitian manifold [4]. Moreover, the almost symplectic form on TM is in fact just a pull-back of the canonical symplectic form on T^*M . Thus we are motivated to study the symplectic geometry of vector bundle maps of tangent bundles of Riemannian manifolds.

Suppose (M, g) is a Riemannian manifold. Then TM is equipped with Sasaki metric \hat{g} [8], [2]. If $X \in \Gamma(TM)$, then we use X^H and X^V to denote its horizontal and vertical lifts to TM, respectively. An almost complex structure J for TM compatible with \hat{g} is defined as follows: $J(X_{\xi}^H + Y_{\xi}^V) = X_{\xi}^V - Y_{\xi}^H$ [2]. The 2-form $\omega := \hat{g}(J \cdot, \cdot)$ is exactly $D^*(\omega_c)$ where $D : TM \to T^*M$ is the dual map induced by g and ω_c is the canonical symplectic form on T^*M [2]. Thus we call (J, \hat{g}, ω) the canonical almost Kähler structure of TM. While \hat{g} has been studied extensively, little seems to have been done about ω .

This research was done when the author was at the University of Maryland, College Park.

Research partially supported by NSF grant DMS-9205139. Received by the editors on October 15, 1998.

Copyright ©2001 Rocky Mountain Mathematics Consortium

Given a map $f : (N_1, \omega_1) \to (N_2, \omega_2)$ of symplectic manifolds, we say that f is symplectically conformal, respectively symplectically homothetic, symplectic, if c exists, a nonvanishing real-valued function, respectively nonzero real constant, c = 1, on N_1 such that $f^*(\omega_2) = c\omega_1$. Conformal, homothetic, and isometric maps between Riemannian manifolds are similarly defined. (Notice that we do not assume the dimensions of N_1 and N_2 coincide.)

There is a \hat{g} -orthogonal decomposition $TTM = \mathcal{H} \oplus \mathcal{V}$ of TTMinto the horizontal subbundles $\mathcal{H} = \mathcal{H}TM$ and vertical subbundle $\mathcal{V} = \mathcal{V}TM$ of TTM, where \mathcal{H} , respectively \mathcal{V} , is the collection of all the X_{ξ}^{H} , respectively X_{ξ}^{V} . If (M,g), respectively (M',g'), is a Riemannian manifold, then we always use (J, \hat{g}, ω) , respectively J', \hat{g}', ω' , to denote the canonical almost Kähler structure of TM, respectively, TM'. For $f: (M,g) \to (M',g')$, we frequently write \hat{f} for f_* to emphasize that it is a map from $(TM, J\hat{g}, \omega)$ to $(TM', J', \hat{g}', \omega')$ and to avoid awkwardness of certain notations such as $(f_*)^*$. \hat{f} is rarely symplectically conformal (cf. Proposition 2.4 and (ii) of Theorem 4.1). Thus we are content if \hat{f} has some weaker symplectic properties. Since $\hat{f}_*(\mathcal{V}_{\xi})$ is always isotropic, with respect to ω' , for all $\xi \in TM$, $\mathcal{V}_{\xi} = (\mathcal{V}TM)_{\xi}$, we are naturally led to the following

Definition 1.1. Suppose $F : (TM, J, \hat{g}, \omega) \to (TM', J', \hat{g}', \omega')$ is a map between two tangent bundles of Riemannian manifolds equipped with their canonical almost Kähler structures. Then we say F is *H*-isotropic if $F_*(\mathcal{H}_{\xi})$ is an isotropic subspace of $T_{F(\xi)}TM'$, with respect to ω' for all $\xi \in TM$, where $H_{\xi} = (\mathcal{H}TM)_{\xi}$.

We usually abbreviate "vector bundle map" to VBM. This paper deals with the *H*-isotropy of an arbitrary VBM $F: TM \to TM'$ over an arbitrary C^{∞} map $f: (M, g) \to (M', g')$ of Riemannian manifolds. In Section 2 we introduce some basic tools such as the covariant derivative B^F of F and use the expression of F_* by B^F to derive some basic properties of *H*-isotropic VBMs. In Section 3 we obtain some sufficient conditions (Theorems 3.2 and 3.4) and some restriction (Proposition 3.5) for generating *H*-isotropic VBMs. In Section 4 we derive a rigidity result of induced *H*-isotropic maps (Theorem 4.1) and a sufficient condition for induced *H*-isotropy (Theorem 4.2). Examples are given when appropriate in most sections and especially in Section 5.

Given manifolds and maps are assumed to be C^{∞} , and given manifolds are assumed to be connected. If M is an open subset of \mathbf{R}^n , unless otherwise indicated, we will assume M carries the metric induced from the usual metric on \mathbf{R}^n and use the usual natural coordinate system $\{x, y, z, ...\}$ for M and the corresponding frame field $\{(\partial/\partial x), (\partial/\partial y), (\partial/\partial z), ...\}$ for TM. We also usually write x^1 for xand x^2 for y, etc., without explicit mention. The summation convention will be used, although sometimes we still write \sum explicitly for clarity.

2. Preliminaries and basic properties of *H*-isotopic VBMs. Suppose $F : TM \to TM'$ is a VBM over $f : (M,g) \to (M',g')$. *F* can be canonically viewed as a section of $T^*M \otimes f^{-1}TM'$, which is equipped with the connection $D_1 \otimes D_2$. Here D_1 is the connection on T^*M induced by the Levi-Civita connection ∇^M of (M,g), and D_2 is the pullback of the Levi-Civita connection $\nabla^{M'}$ of (M',g') to the pullback bundle $f^{-1}TM$. (When there is no risk of confusion, we just use the symbol ∇ to denote $D_1 \otimes D_2$.) The covariant derivative of F will be denoted by B^F , i.e.,

$$B^F(X,Y) = (\nabla_X F)(Y) = \nabla^f_X(F(Y)) - F(\nabla^M_X Y)$$

for all $X, Y \in \Gamma(TM)$. F is called *parallel* if $B^F = 0$. The torsion T^F of F is defined by

$$T^F(X,Y) = B^F(X,Y) - B^F(Y,X)$$

for all $X, Y \in \Gamma(TM)$. F is called *torsionless* if $T^F = 0$. A covariant 3-tensor field A^F on M is defined by

$$A^F(X, Y, Z) = g'(f_*X, B^F(Y, Z))$$

for all $X, Y, Z \in \Gamma(TM)$. We also use the symbols $\beta^f := B^{\hat{f}}$ and $\alpha^f := A^{\hat{f}}$. Notice that β^f is just the second fundamental form of f, and \hat{f} is always torsionless.

If $\{e_i\}$ and $\{E_r\}$ are local frame fields of TM and TM', respectively, and Γ_{ij}^k and $\overline{\Gamma}_{rs}^t$ denote the corresponding Christoffel symbols, then we usually write B_{ij}^F for $B^F(e_i, e_j)$ and A_{kij}^F for $A^F(e_k, e_i, e_j)$, and an easy calculation yields

(1)
$$B_{ij}^F = (e_i F_{rj} + \hat{f}_{si} F_{tj} \overline{\Gamma}_{st}^r - F_{rk} \Gamma_{ij}^k) E_{rs}$$

where F_{rj} and \hat{f}_{rj} are (and will be through out this paper) respectively defined by $F(e_j) = F_{rj}E_r$ and $\hat{f}(e_j) = \hat{f}_{rj}E_r$. In particular, if $\{x^i\}$, respectively, $\{y^r\}$, is a local coordinate system for M, respectively M', then

(2)
$$B^{F}\left(\frac{\partial}{\partial x^{i}}, \frac{\partial}{\partial x^{j}}\right) = \left(\frac{\partial F_{rj}}{\partial x^{i}} + \frac{\partial f^{s}}{\partial x^{i}}F_{tj}\overline{\Gamma}_{st}^{r} - F_{rk}\Gamma_{ij}^{k}\right)\frac{\partial}{\partial y^{r}}$$

Hence, if $\overline{\Gamma}_{st}^r(f(p)) = \Gamma_{ij}^k(p) = 0$ for all r, s, t, k, i, j and some p, then

(3)
$$T^{F}\left(\frac{\partial}{\partial x^{i}}, \frac{\partial}{\partial x^{j}}\right)\Big|_{p} = \left(\frac{\partial F_{rj}}{\partial x^{i}} - \frac{\partial F_{ri}}{\partial x^{j}}\right)\frac{\partial}{\partial y^{r}}\Big|_{p}$$

If $G:TM'\to TM''$ is another VBM of tangent bundles of Riemannian manifolds, then we can easily show

(4)
$$B^{G \circ F} = B^G(F \cdot, F \cdot) + G \circ B^F.$$

We refer the reader to [3], [9] for the derivative of the formulas similar to (1), (2) and (4).

Lemma 2.1. Let $F : TM \to TM'$ be a VBM over $f : (M,g) \to (M',g')$. Then

(5)
$$F_*(X^V) = F(X)^V, F_*(X^H_{\xi}) = (f_*X)^H_{F(\xi)} + B^F(X,\xi)^V_{F(\xi)}$$

for all $X, \xi \in \Gamma(TM)$. In particular, we have the formula in [7]:

(6)
$$\hat{f}_*(X^V_{\xi}) = (f_*X)^V_{\hat{f}(\xi)}, \hat{f}_*(X^H_{\xi}) = (f_*X)^H_{\hat{f}(\xi)} + \beta^f(X,\xi)^V_{\hat{f}(\xi)}.$$

Proof. The proof is straightforward and we only sketch it. The first equation of (5) is trivial. Suppose $\xi, X \in T_p M$ and $\gamma : [0,1] \to M$ is a curve such that $\gamma'(0) = X$. Let $\{e_i\}$ be a parallel orthonormal frame field of TM along γ and $\{e^i\}$ its dual. Let $\{E_r\}$ be a parallel orthonormal frame field of TM' along $f \circ \gamma$. Let P_t , respectively Q_t , be the parallel translation from $\gamma(0)$ to $\gamma(t)$ along Γ , respectively from $f \circ \gamma(0)$ to $f \circ \gamma(t)$ along $f \circ \gamma$. Without loss of generality, we assume $\xi = e_1(0)$.

Suppose $F|T_{\gamma(t)}M = \sum F_{ri}(t)E_r \otimes e^i$. Then

$$B^{F}(X,\xi) = \frac{d}{dt}\Big|_{0} ((Q_{t}^{-1} \circ F \circ P_{t})(\xi))$$
$$= \frac{d}{dt}\Big|_{0} \left(Q^{-1}\left(\sum F_{r1}(t)E_{r}\right)\right) = \sum F_{r1}'(0)E_{r}(0),$$

and thus

$$F_*(X_{\xi}^H) = \frac{d}{dt} \Big|_0 (F(e_1)) = \frac{d}{dt} \Big|_0 \left(\sum F_{r_1}(t) E_r(t) \right)$$
$$= (f_*X)_{F(\xi)}^H + \sum F'_{r_1}(0) E_r(0)^V = (f_*X)_{F(\xi)}^H + B^F(X,\xi)_{F(\xi)}^V.$$

This proves the second equation of (5). \Box

Remark 2.2. This lemma implies (i) F is almost complex if and only if $F = \hat{f}$ and f is totally geodesic; (ii) F is isometric if and only if F is fiberwise isometric (i.e., g'(F(X), F(X)) = g(X, X) for all $X \in \Gamma(TM)$) and parallel, and f is isometric; (iii) in particular, \hat{f} is isometric $\Leftrightarrow f$ is isometric and totally geodesic $\Leftrightarrow \hat{f}$ is isometric and almost complex.

For convenience, we usually write $X \oplus_{\xi} Y$ for $(X^H + Y^V)_{\xi}$ for all $X, Y, \xi \in \Gamma(TM)$. As a corollary of Lemma 2.1, we easily see

(7)
$$F^*\omega'(X \oplus_{\xi} X', Y \oplus_{\xi} Y') = A^F(X, Y, \xi) - A^F(Y, X, \xi) + g'(f_*X, F(Y')) - g'(f_*X', F(Y))$$

for all $X, X', Y, Y', \xi \in \Gamma(TM)$. In particular, we have the following characterization of *H*-isotropy:

Proposition 2.3. Let $F : TM \to TM'$ be a VBM over $f : (M,g) \to (M',g')$. Then

(i) F is H-isotropic if and only if A^F is symmetric in the first two slots.

(ii) Suppose $g'(f_*X, F(Y)) = g'(f_*(Y), F(X))$ for all $X, Y \in \Gamma(TM)$. Then F is H-isotropic \Leftrightarrow if $\xi \in TM$ and Q is a subspace of $T_{\xi}TM$.

Then $\hat{f}_*(Q)$ is isotropic if and only if $\hat{f}_*(JQ)$ is $\Leftrightarrow \hat{f}^*\omega'$ is a (1,1) -form on TM (i.e., $\hat{f}^*\omega'(J, J) = \hat{f}^*\omega'$).

Proof. Part (i) follows directly from (7). Part (ii) follows from (7) and the fact that $\hat{f}_*(\mathcal{V}_{\xi})$ is isotropic and $J\mathcal{V}_{\xi} = H_{\xi}$. \Box

Let W^f be the covariant 2-tensor field on TM defined by $W^f = (\hat{f}^*\omega')(\cdot, J\cdot)$. We easily see by the proposition that if \hat{f} is H-isotropic, then W^f is symmetric and positive semi-definite, and $W^f = W^f(J\cdot, J\cdot)$. In fact, if f is isometric and totally geodesic, then $W^f = \hat{f}^*\hat{g}' = \hat{g}$.

The following important fact will be used several times.

Proposition 2.4. For $f : (M,g) \to (M',g')$, f is isometric if and only if \hat{f} is symplectic.

Proof. The backward direction of the proposition is trivial because of (6). Thus we assume now f is isometric. By the elementary theory of harmonic maps, $\alpha^f = 0$. Thus, by (7) and Proposition 2.3,

$$\begin{split} \omega(X \oplus_{\xi} X', Y \oplus_{\xi} Y') &= g(X, Y') - g(X', Y) \\ &= g'(f_*X, f_*Y') - g'(f_*X', f_*Y) \\ &= \hat{f}^* \omega'(X \oplus_{\xi} X', Y \oplus_{\xi} Y') \end{split}$$

for all $X, X', Y, Y', \xi \in \Gamma(TM)$.

Notice that this proposition can also be proved by the technique of Liouville vector fields as used in [4].

Corollary 2.5. (i) Suppose $F : TM \to TM'$ is an *H*-isotropic VBM over a submersion $f : (M,g) \to (M',g')$. Then for all $\xi \in TM$, $\dim (F_*(\mathcal{H}_{\xi})) = \operatorname{rank} f$.

(ii) Suppose $f : (M,g) \to (M',g')$ has constant rank, and \hat{f} is Hisotropic. Then for every $\xi \in TM$, dim $(\hat{f}_*(\mathcal{H}_{\xi})) = \operatorname{rank} f$.

Proof. By (i) of Proposition 2.3, $B^F(X,\xi) = 0$ whenever $\xi \in T_x M$, $X \in \text{kernel}(F_x)$ and $x \in M$. Part (i) then follows from the second equation of (5). Part (ii) follows from part (i), Proposition 2.4, and the fact that locally f maps M to a rank (f)-dimensional submanifold of M'. \Box

The following example illustrates several cases in which dim $(F_*(\mathcal{H}_{\xi}))$ may not equal rank f_x for $\xi \in T_x M$.

Example 2.6. (i) (Equip \mathbf{R}^2 with the usual natural coordinates $\{x, y\}$.) Let $M = (0, \infty) \times (0, \infty)$, $M' = \mathbf{R}^2$, $f : M \to M'$ be defined by f(x, y) = x, and VBM $F : TM \to TM'$ over f defined by

$$F = \begin{pmatrix} x, 1\\ 0, (y-1)^2 \end{pmatrix}$$

(with respect to the frame field $\{(\partial/\partial x), (\partial/\partial y)\}$). By (2), (3) and (i) of Proposition 2.3, we can easily check that F is torsionless and H-isotropic, $F|T_xM : T_xM \to T_{f(x)}M'$ is bijective for all $x \in M$, and f has constant rank 1. An easy calculation yields $B^F[(\partial/\partial y), (\partial/\partial x)] = 0$ and $B^F[(\partial/\partial y), (\partial/\partial y)] = 2(y-1)[(\partial/\partial y)]$. Thus, by (5), dim $(F_*(\mathcal{H}_{\xi})) = 1$ if $\xi \in T_{(x,1)}M$; for $y \neq 1$, dim $(F_*(\mathcal{H}_{\xi})) = 1$ if $\xi = (\partial/\partial x)_{(x,y)}$ and dim $(F_*(\mathcal{H}_{\xi})) = 2$ if $\xi = (\partial/\partial y)_{(x,y)}$.

(ii) Let $f : \mathbf{R} \to \mathbf{R}$ be defined by $f(x) = x^2$. By (2), $\beta^f[(\partial/\partial x), (\partial/\partial x)] = 2(\partial/\partial x)$. Thus, by (6), dim $(\hat{f}_*(\mathcal{H}_{\xi})) = 1$ if $\xi = (\partial/\partial x)_0$. But rank $f_*(0) = 0$.

(iii) Let $M = (0,1) \times (0,1)$. Let $f : M \to \mathbf{R}$ be defined by f(x,y) = xy + y. We easily see that f has constant rank 1 and, by Proposition 2.3 and (2), \hat{f} is not \hat{H} -isotropic. Since every 0- or 1-dimensional subspace of a symplectic vector space is isotropic, there exists a $\xi \in TM$ such that dim $(\hat{f}_*(\mathcal{H}_{\mathcal{E}})) = 2$.

3. Conditions and restrictions for obtaining *H*-isotropic maps. In this section we obtain some sufficient conditions for *H*-isotropic VBMs and see how an *H*-isotropic VBM prevents us from getting another one.

The following lemma is interesting itself:

Lemma 3.1. Let $F : TM \to TM'$ be a torsionless, fiberwise isometric VBM over a map $f : (M,g) \to (M',g')$. Suppose dim $M = \dim M'$. Then F is parallel.

Proof. Fix $p \in M$ and q = f(p). Choose local orthonormal frame fields $\{e_i\}$ and $\{E_i\}$ around p and f(p), respectively, such that $\nabla_{e_i}^M e_j|_p = \nabla M'_{E_i} E_j|_q = 0$ for all i, j. Without loss of generality, we assume $F_{ij}|_p = \delta_{ij}$. By (1), $B^F(e_i, e_j)|_p = (e_i F_{kj}) E_k|_p$. Thus, $e_i F_{kj}|_p = e_j F_{ki}|_p$. But we also have $e_k F_{ij}|_p = -e_k F_{ji}|_p$ since $F_{rj} F_{ri} = \delta_{ij}$. Hence $e_i F_{kj}|_p = 0$ for all i, j, k, and thus $B^F = 0$.

The following theorem is the first of our three theorems for obtaining H-isotropic maps:

Theorem 3.2. Let $F : TM \to TM'$ be a torsionless, fiberwise isometric VBM over $f: (M,g) \to (M',g')$. Suppose there exists a dim(M)-dimensional submanifold M'' of M' such that $F(TM) \subset$ TM''. Then F is H-isotropic.

Proof. Locally F can be written as $F = G \circ H$ where H is the map F with codomain changed to TM'', and G is the derivative of the isometric immersion from M'' to M'. By (4), $B^F(X,Y) = B^G(H(X), H(Y)) + (G \circ B^H)(X, Y)$ for all $X, Y \in \Gamma(TM)$. Thus, H is torsionless. Thus, H is parallel by Lemma 3.1. The theorem then follows from Propositions 2.3 and 2.4. \Box

Compare the following example with the previous theorem.

Example 3.3. Let $M = \{(x, y) \in \mathbf{R}^2 : (x + y)^2 < (1/2)\}, M' = \mathbf{R}^3, f: M \to M'$ defined by f(x, y) = (x, 0, 0) and $F: TM \to TM'$ defined by

$$F = \begin{pmatrix} x+y, x+y\\ \sqrt{(1/2) - (x+y)^2}, \sqrt{(1/2) - (x+y)^2}\\ (1/\sqrt{2}), -(1/\sqrt{2}) \end{pmatrix}.$$

By (3), we easily see that F is torsionless and fiberwise isometric. But an easy calculation yields $A_{121}^F (= A^F((\partial/\partial x), (\partial/\partial y), (\partial/\partial x))) = 1$ and $A_{211}^F = 0$. Thus F is not H-isotropic by Proposition 2.3.

The following theorem provides another condition for *H*-isotropy.

Theorem 3.4. Suppose dim $M \ge 2$ and $f: (M,g) \to (M',g')$ is a map of Riemannian manifolds. Suppose there exists a positively-valued function c on M such that $f^*g' = cg$. Let $F = (c'/c)\hat{f}$ for some real-valued function c' on M. Then F is H-isotropic if and only if c' is a constant. In particular, for every nonzero constant c'', $(c''/c)\hat{f}$ is symplectically homothetic.

Proof. By Proposition 2.4, we can assume without loss of generality that M = M' and f = Id, (but $g \neq g'$ in general). Fix $p \in M$. Let $\{x^i\}$ be local normal coordinates of (M, g) around p. As before, we use Γ_{ij}^k and $\overline{\Gamma}_{ij}^k$ to denote the corresponding Christoffel symbols for (M, g) and (M, g'), respectively. By (2),

$$A_{kij}^{F}|_{p} = c \left(\frac{\partial F_{kj}}{\partial x^{i}} + \frac{c'}{c} \overline{\Gamma}_{ij}^{k} \right) \Big|_{p}.$$

Thus F is H-isotropic if and only if

(8)
$$\frac{\partial F_{kj}}{\partial x^i} + \frac{c'}{c} \overline{\Gamma}^k_{ij} \Big|_p = \frac{\partial F_{ij}}{\partial x^k} + \frac{c'}{c} \overline{\Gamma}^k_{kj} \Big|_p$$

for all i, j, k, p.

By the usual formulas for the Christoffel symbols

$$\Gamma_{ij}^{k} = \frac{1}{2} \sum_{m} g^{km} \bigg(\frac{\partial g_{jm}}{\partial w_i} + \frac{\partial g_{im}}{\partial w_j} - \frac{\partial g_{ij}}{\partial w_m} \bigg),$$

we obtain

$$\overline{\Gamma}_{ij}^k(p) = \frac{1}{2c} \left(\frac{\partial c}{\partial x^i} \delta_{jk} + \frac{\partial c}{\partial x^j} \delta_{ik} - \frac{\partial c}{\partial x^k} \delta_{ij} \right) \Big|_p.$$

In particular, if $k \neq i \neq j$, then $\overline{\Gamma}_{ij}^k(p) = (1/2c)(\partial c/\partial x^i)\delta_{jk}|_p$; if $i \neq j$, then $\overline{\Gamma}_{ij}^j(p) = (1/2c)(\partial c/\partial x^i)|_p$ (no summation) and $\overline{\Gamma}_{jj}^i(p) = -(1/2c)(\partial c/\partial x^i)|_p$ (no summation). Therefore, we can consider the following three cases:

- (i) Suppose $k \neq i, i \neq j, j \neq k$. Then (8) is trivially true.
- (ii) Suppose $k \neq i, i \neq j, j = k$. Then (8) can be rewritten as

(9)
$$\left(\frac{\partial}{\partial x^{i}}\frac{c'}{c} + \frac{c'}{2c^{2}}\frac{\partial}{\partial x^{i}}\right)\Big|_{p} = -\frac{c'}{2c^{2}}\frac{\partial}{\partial x^{i}}\Big|_{p}$$

(iii) Suppose $k \neq i, i = j$. Then (8) can be rewritten as

$$-\frac{c'}{2c^2} \left. \frac{\partial}{\partial x^k} \right|_p = \left(\frac{\partial}{\partial x^k} \frac{c'}{c} + \frac{c'}{2c^2} \left. \frac{\partial}{\partial x^k} \right) \right|_p$$

Hence, F is *H*-isotropic if and only if (9) is true for all i and p. The latter is clearly equivalent to $(\partial c'/\partial x^i)|_p = 0$ for all i and p. This proves the first conclusion of the theorem. The second conclusion of the theorem then follows directly from (7).

From the previous theorem, we suspect that if F is an H-isotropic VBM, then cF is probably not H-isotropic unless c is a constant. The following proposition essentially confirms this suspicion and thus puts some restriction on getting an H-isotropic map from a known one.

Proposition 3.5. Let $F: TM \to TM'$ be an *H*-isotropic VBM over $f: (M, g) \to (M', g')$. Suppose dim $(F(T_xM) \cap f_*(T_xM)) \ge 2$ for all $x \in M$, and *c* is a real-valued function on *M*. Then *cF* is *H*-isotropic if and only if *c* is a constant.

Proof. The backward direction of this proposition is trivial by Proposition 2.3. Suppose cF is H-isotropic. By (1) we easily derive $B^{cF}(Y,Z) = (Yc)F(Z) + cB^F(Y,Z)$ for all $Y,Z \in \Gamma(T_pM)$. Thus $g'(f_*X,(Yc)F(Z)) = g'(f_*Y,(Xc)F(Z))$ for all $X,Y,Z \in \Gamma(TM)$. Now fix a $p \in M$. Suppose $Y \in T_pM$. We can choose $X, Z \in T_pM$ such that $f_*Y \perp F(Z)$ and $g'(f_*X,F(Z)) = 1$. Then

$$Yc = g'(f_*X, (Yc)F(Z)) = g'(f_*Y, (Xc)F(Z)) = 0.$$

If $F^*\omega' = G^*\omega'$ for $F, G: TM \to TM'$, then F is H-isotropic if and only if G is. Thus, the following observation, which follows directly from (7) and Proposition 2.3, can also be viewed as a restriction of getting an H-isotropic map from a known one. Suppose $F, G: TM \to TM'$ are VBMs over $f: (M, g) \to (M', g'), F(TM), G(TM) \subset f_*(TM)$ and F is H-isotropic. If $F^*\omega' = G^*\omega'$, then F = G.

4. Induced maps of tangent bundles. In this section we obtain a rigidity result of induced *H*-isotropic maps and obtain a sufficient condition for obtaining induced *H*-isotropic maps.

If $f: (M,g) \to (M',g')$ is an immersion and dim M = 1, then \hat{f} is symplectically conformal. When dim $M \ge 2$, the story is quite different. This can be seen from the following rigidity result of *H*-isotropic induced maps of tangent bundles.

Theorem 4.1. Suppose $f: (M, g) \to (M', g')$ and dim $M \ge 2$. Then

(i) If \hat{f} is *H*-isotropic, and, for every $x \in M$, there exist $\xi(x) \in T_x M$ and $c(x) \in \mathbf{R} - \{0\}$ such that $\hat{f}^*(\omega'_{\hat{f}(\xi(x))}) = c(x)\omega_{\xi(x)}$, then \hat{f} is symplectically homothetic.

(ii) \hat{f} is symplectically conformal $\Leftrightarrow \hat{f}$ is symplectically homothetic $\Leftrightarrow f$ is homothetic $\Leftrightarrow f$ is conformal and \hat{f} is H-isotropic.

Proof. Suppose the assumption of part (i) holds. By (7) we have

$$g(X,Y') = \omega(X_{\xi(x)}^{H}, (Y')_{\xi(x)}^{v}) = f^{*}\omega'(X_{f_{*}(\xi(x))}^{H}, (Y')_{f_{*}(\xi(x))}^{v}))$$
$$= g'(f_{*}X, f_{*}Y')$$

for all $X, Y' \in \Gamma(T_x M)$ and $x \in M$. Hence, f is conformal. By Theorem 3.4, we then easily see that f is homothetic. Hence $\beta^f = 0$, and thus \hat{f} is symplectically homothetic by (7). This concludes the proof of part (i).

If f is homothetic, then $\alpha^f = 0$ by the elementary theory of harmonic maps. Thus part (ii) follows directly from the conclusion and proof of part (i). \Box

The following theorem provides a handy sufficient condition for induced H-isotropic maps.

Theorem 4.2. Suppose $f : (M,g) \to (M',g')$ is a diffeomorphism such that f preserves geodesics up to parameterization. Then \hat{f} is *H*-isotropic.

Proof. We can assume that M = M' and f = Id (but $g \neq g'$ in general). Fix $p \in M$. Let (x^1, \ldots, x^n) be a normal coordinate system around p for (M, g) and $(u^1, \ldots, u^n; v^1, \ldots, v^n)$ the associated coordinates for TM. (That is, the element $\sum v^i(\partial/\partial x^i)|_{x^1,\ldots,x^n}$ in TM is represented by $(u^1, \ldots, u^n; v^1, \ldots, v^n)$, where $u^i = x^i$.) Notice that span $\{(\partial/\partial u^1)|_{\xi}, \ldots, (\partial/\partial u^n)|_{\xi}\}$ is \mathcal{H}_{ξ} with respect to (TM, \hat{g}) for all $\xi \in T_pM$.

For any i = 1, ..., n, there exists an **R**-valued function c_i defined on some interval $(-\varepsilon, \varepsilon)$ such that the curve γ defined by

 $\gamma(t) = (0, \dots, 0, t, 0, \dots, 0; 0, \dots, 0, c_i(t), 0, \dots, 0)$

is a horizontal curve in (TM, \hat{g}') , where on the right side of the equation t and $c_i(t)$ occur at the *i*th and (n + i)th places, respectively. Thus $(\partial/\partial x^i)^{H'} = (\partial/\partial u^i) + (\partial c_i/\partial x_i)(\partial/\partial v^i)$ (no summation), where H' denotes the horizontal lift with respect to g'. An easy calculation then yields that span $\{(\partial/\partial u^1)|_{\xi}, \ldots, (\partial/\partial u^n)|_{\xi}\}$ is isotropic with respect to ω' if $\xi \in T_pM$.

By Theorems 4.1 and 4.2, we have

Corollary 4.3. Suppose dim $M \ge 2$ and $f : (M,g) \to (M',g')$ is a diffeomorphism such that f preserves geodesics up to parameterization and angles. Then f is homothetic.

5. Examples. Since the concept of *H*-isotropic maps is introduced in this very paper, we would like to see some more examples and counterexamples.

It is easy to construct a VBM which is symplectically conformal but not symplectically homothetic (cf. Theorem 4.1):

Example 5.1. Let $M = \{(x, y) \in \mathbf{R}^2 : (x - 1)^2 + (y - 1)^2 < 1\},$ $M' = \mathbf{R}^2, f : M \to M'$ be defined by $f(x, y) = [x, (-x^2 + y^2/2)]$ and

 $F: TM \to TM'$ be represented by $F = \begin{pmatrix} y, x \\ 0, 1 \end{pmatrix}$. We can easily verify that A^F is symmetric in the first two slots and $y\langle X, Y \rangle = \langle f_*X, F(Y) \rangle$ for all $X, Y \in T_{(x,y)}M$, $(x, y) \in M$. Thus, by (7), F is symplectically conformal but not symplectically homothetic. \Box

The following example is a straightforward application of our developed theory to the case of real hyperbolic spaces.

Example 5.2. Suppose $n \geq 2$. Let (B^n, g) be the usual unit ball with flat metric and (B^n, g_1) , respectively (B^n, g_2) , the Poincaré, respectively Klein, disk model for the real hyperbolic space $\mathbb{R}H^n$ (e.g. [5]). The identity map $\mathrm{Id}_1 : (B^n, g) \to (B^n, g_1)$ is conformal but not homothetic. Thus Id_1 is not *H*-isotropic by (ii) of Theorem 4.1. The identity map $\mathrm{Id}_2 : (B^n, g) \to (B^N, g_2)$ preserves geodesics up to parameterization. Hence, Id_2 is *H*-isotropic by Theorem 4.2. But Id_2 is not symplectically conformal by (ii) of Theorem 4.1.

Theorem 4.1 implies that if $f: M \to M'$ is a biholomorphism between Kähler manifolds of real dimension 2, then \hat{f} is *H*-isotropic $\Leftrightarrow \hat{f}^{-1}$ is *H*isotropic $\Leftrightarrow \hat{f}$ is symplectically conformal. The following example deals with the case when f is a diffeomorphism but not a biholomorphism.

Example 5.3. Let M and M' be open subsets \mathbf{R}^2 and x^1, x^2 the usual natural coordinates of \mathbf{R}^2 . Fix a map $f: M \to M'$. By (2) we have $\alpha^f[(\partial/\partial x^k), (\partial/\partial x^i), (\partial/\partial x^j)] = \sum (\partial f^m/\partial x^k)(\partial^2 f^m/\partial x^i \partial x^j)$. Thus, by Proposition 2.3, \hat{f} is H-isotropic if and only if the following two equations hold:

$$\frac{\partial f^1}{\partial x^1} \frac{\partial^2 f^1}{\partial x^2 \partial x^2} + \frac{\partial f^2}{\partial x^1} \frac{\partial^2 f^2}{\partial x^2 \partial x^2} = \frac{\partial f^1}{\partial x^2} \frac{\partial^2 f^1}{\partial x^1 \partial x^2} + \frac{\partial f^2}{\partial x^2} \frac{\partial^2 f^2}{\partial x^1 \partial x^2},$$
$$\frac{\partial f^1}{\partial x^1} \frac{\partial^2 f^1}{\partial x^2 \partial x^1} + \frac{\partial f^2}{\partial x^1} \frac{\partial^2 f^2}{\partial x^2 \partial x^1} = \frac{\partial f^1}{\partial x^2} \frac{\partial^2 f^1}{\partial x^1 \partial x^1} + \frac{\partial f^2}{\partial x^2} \frac{\partial^2 f^2}{\partial x^1 \partial x^1}.$$

Therefore, we can easily check that each of the following two claims is true for suitable M and M':

(a) Suppose $f(x,y) = (x + 2y, (x + y)^2)$ and thus $f^{-1}(x,y) = (-x + 2\sqrt{y}, x - \sqrt{y})$. Then \hat{f} is *H*-isotropic, but \hat{f}^{-1} is not *H*-isotropic.

(b) Suppose $f(x, y) = (x, y^2)$ and thus $f^{-1}(x, y) = (x, \sqrt{y})$. Then both \hat{f} and \hat{f}^{-1} are *H*-isotropic, but neither \hat{f} nor \hat{f}^{-1} is symplectically conformal.

Example 5.4. Let $f: M \to M'$ be a Riemannian submersion. Then \hat{f} is *H*-isotropic if and only if *f* is totally geodesic.

The backward direction of the claim follows from Proposition 2.3. Now suppose \hat{f} is *H*-isotropic. We will use [3, Lemma 1.5]. Let $\beta = \beta^f$ and $T^H(M)$, respectively $T^V(M)$, denote the horizontal, respectively vertical, distribution on *M* associated with *f*. We have $\beta | T^H(M) \times T^H(M) = 0$. But α^f is totally symmetric by Proposition 2.3. Hence $\beta | T^V(M) \times T^V(M) = \beta | T^H(M) \times T^V(M) = \beta | T^V(M) \times T^H(M) = 0$. This equation implies that *f* is totally geodesic and the distribution $T^H(M)$ is integrable.

In particular, if f is the canonical projection from TN to a Riemannian manifold N, or if f is the canonical projection from the normal bundle L^{\perp} to a submanifold L of a Riemannian manifold, L^{\perp} is equipped with the Sasaki metric [1], then \hat{f} is *H*-isotropic if and only if N, respectively the normal connection on L^{\perp} , is flat. \Box

By (4) and (i) of Proposition 2.3, if $F : TM \to TM'$ is a parallel VBM and $G : TM' \to TM''$ is an *H*-isotropic VBM, then $G \circ F$ is *H*-isotropic. We can use this to construct many other examples of *H*-isotropic VBMs.

Acknowledgments. The author would like to thank Professor William Goldman for continuous support.

REFERENCES

1. A.A. Borisenko and A.L. Yampol'skii, On the Sasaki metric of the normal bundle of a submanifold in a Riemannian space, Math. USSR Sbornik 62 (1989), 157–175.

P. Dombrowski, On the geometry of the tangent bundle, J. Reine Angew. Math.
(1962), 73–88.

3. J. Eells and A. Ratto, *Harmonic maps and minimal immersions with symmetries*, Ann. of Math. Stud. **130**, Princeton Univ. Press, Princeton, 1993.

4. P.H. Hsieh, Canonical almost Hermitian structures of normal bundles and application to Kähler forms, Pacific J. Math. 184 (1998), 257–277.

5. B. Iversen, *Hyperbolic geometry*, London Math. Soc. Stud. Texts **25**, Cambridge Univ. Press, Cambridge, 1992.

6. D. McDuff, The symplectic structure of Kähler manifolds of non-positive curvature, J. Differential Geometry 28 (1988), 467–475.

7. A. Sanini, Applicationi armoniche tra i fibrati tangenti di varietà riemanniane (Harmonic maps between the tangent bundles of Riemannian manifolds), Boll. Un. Mat. Ital. A **2** (1983), 55–63.

8. S. Sasaki, On the differential geometry of tangent bundles of Riemannian manifolds, Tôhoku Math. J. $10~(1958),\,338{-}354.$

9. Y.L. Xin, *Geometry of harmonic maps*, Prog. Nonlinear Differential Equations Appl. 23, Birkhäuser, Boston, 1996.

DEPARTMENT OF MATHEMATICS, NATIONAL CHUNG CHENG UNIVERSITY, MINH-SIUNG, CHIAYI 621, TAIWAN

E-mail address: phhsieh@math.ccu.edu.tw