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ONE-SIDED TAUBERIAN THEOREMS FOR
DIRICHLET SERIES METHODS OF SUMMABILITY

DAVID BORWEIN, WERNER KRATZ AND ULRICH STADTMÜLLER

ABSTRACT. We extend recently established two-sided
or O-Tauberian results concerning the summability method
Dλ,a based on the Dirichlet series

∑
ane−λnx to one-sided

Tauberian results. More precisely, we formulate one-sided
Tauberian conditions, under which Dλ,a-summability implies
convergence. Our theorems contain various known results on
power series methods of summability and, in the so-called high
index case we even obtain a new result for such methods. Our
method of proof uses asymptotic properties of the Dirichlet
series subject to the assumption that an and λn can be
interpolated by smooth functions. In addition we develop
refined Vijayaraghavan-type results which enable us to infer
the boundedness of sequences from the boundedness of their
Dλ,a-means and the one-sided Tauberian conditions.

1. Introduction and main results. Suppose throughout that
{λn} is an unbounded and strictly increasing sequence of positive
numbers, that {an} is a sequence of nonnegative numbers, and that
the Dirichlet series

a(x) :=
∞∑
n=1

ane
−λnx

has abscissa of convergence σ ∈ [−∞,∞). Let {sn} be a sequence of
real numbers. The Dirichlet series summability method Dλ,a is defined
as follows:

sn → s (Dλ,a)
{
or sn = O(1)(Dλ,a)

}

if
∞∑
n=1

ansne
−λnx is convergent for x > σ, and

σ(x) :=
1

a(x)

∞∑
n=1

ansne
−λnx → s

{
or σ(x) = O(1)

}
as x → σ+
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through real values. It is well known (and easy to verify) that if
a(x) → ∞ as x → σ+ and if an �= 0 for infinitely many n, then Dλ,a

is regular (which will always be the case in our results), i.e., sn → s
implies sn → s (Dλ,a).

Let the real functions g and λ satisfy the following conditions:
(C)


g, λ ∈ C2[x0,∞) for some x0 ∈ N,

λ(x0) > 0 and λ(x)→ ∞ as x → ∞,

λ′(x) > 0 and
(
g′(x)
λ′(x)

)′
> 0 on [x0,∞),

λ′(x)
λ(x)

is nonincreasing, and
xλ′(x)
λ(x)

is nondecreasing on [x0,∞).

We define functions which play a crucial role in the asymptotic analysis
(cf. [1]):

L(x) := λ′(x)
(
g′(x)
λ′(x)

)′
, G(x) :=

(
λ(x)
λ′(x)

)2

L(x),

l(x) :=
1√
L(x)

.

Suppose in addition that

an ∼ e−g(n) as n → ∞, and λn = λ(n) for n ≥ x0 ∈ N.

Our primary purpose is to prove three theorems concerning one-
sided Tauberian conditions on {sn} under which sn → s (Dλ,a) implies
sn → s. These theorems generalize two-sided or O-Tauberian results
proved in [1].

By [1, Lemma 3] we have that σ := − limx→∞(g′(x)/λ′(x)) is the
abscissa of convergence of a(x) and that limx→σ+ a(x) =∞. (As noted
in the Remark after Lemma 3 in [1] the proof of that lemma does not
require L or G to be monotonic. There is a misprint in the proof of
that lemma. On page 161, line 3 of [1] it should be eβh2(k,x) instead of
e−βh2(k,x) ).

The following three theorems are our main results:
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Theorem 1. Assume (C), and suppose that

λ′(x)
λ(x)

→ 0 and G(x)→ δ ∈ (0,∞) as x → ∞,

and that sn → s (Dλ,a) and

(1) lim
ε→0+

lim inf
n→∞ min

n≤m≤n+εl(n)
(sm+1 − sn) ≥ 0.

Then sn → s.

Theorem 2. Assume (C), and suppose that L(x) is nonincreasing
and G(x) is nondecreasing on [x0,∞) with L(x) → 0 and G(x) → ∞
as x → ∞, and that sn → s (Dλ,a) and (1) holds. Then sn → s.

Theorem 3. Let An := min(eαn , eβn) for n > x0, where

αn : = g(n)− g(n− 1)− (
λ(n)− λ(n− 1)) g′(n− 1)

λ′(n− 1) ,

and

βn : = g(n− 1)− g(n) +
(
λ(n)− λ(n− 1)) g′(n)

λ′(n)
.

Assume (C), and suppose that L(x) ≥ δ > 0 on [x0,∞), and that
sn → s (Dλ,a) and

(2) sn − sn−1 ≥ −cAn for n > x0,

where c is a positive constant. Then sn → s.

Remarks. Theorem 2 with the more restrictive O-Tauberian condi-
tion

(1′) lim
ε→0+

lim sup
n→∞

max
n≤m≤n+εl(n)

|sm+1 − sn| = 0
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in place of (1) is proved as Theorem 1 in [1]; and Theorem 3 with the
O-Tauberian condition

(2′) sn − sn−1 = O(An),

in place of (2) is proved as Theorem 2 in [1]. There is no counterpart
to Theorem 1 in [1].

The three theorems deal with rates of increase, respectively decrease,
of the sequence of weights {an} with respect to the “gap-sequence”
{λn}. Though the same Tauberian condition is used in Theorems 1
and 2, the methods of proof are different in the two cases. Theorem 1
deals essentially with the situation where σ = 0, and the function
S(t) :=

∑
λk≤t ak is regularly varying with index larger than 1 (for the

notation see, e.g., [2]); whereas Theorem 2 handles the cases where S(t)
increases more rapidly, or S(∞)−S(t) decreases more rapidly than any
power of t, but where we are not yet in the so-called high index case
which is finally considered in Theorem 3.

In order to get some insight into the results and to compare them with
results in the literature we shall now discuss some special gap-sequences
{λn}.
(a) λn = n. In this case we have L(x) = g′′(x), l(x) = 1/

√
g′′(x),

G(x) = x2g′′(x), and the Dirichlet series summability method reduces
to the power series method, that is, a(x) =

∑∞
k=1 akt

k with t = e−x.
Without loss of generality we may assume the radius of convergence
of the power series is either R = 1 (i.e., −σ = limx→∞ g′(x) = 0)
or R = ∞ (i.e., −σ = limx→∞ g′(x) = ∞). When R = 1 we get
Abel-type summability methods, and when R = ∞ we get Borel-
type methods. Tauberian theorems for these methods, in particular
the Abel and Borel methods, have a long history beginning a century
ago with Tauber’s result on the Abel method followed by Hardy’s and
Littlewood’s results on that method. Oscillation conditions as used in
Theorems 1 and 2 were introduced by Landau [20] and Schmidt [21],
[22]. General power series methods with regularly varying weights {an}
were studied by Jakimovski, Tietz and Trautner [11], [25], and our
Theorem 1 under slightly different assumptions applies to their results.
More general classes of weights are discussed in Kales [13] and in
[16] [18]. The latter results use two-sided conditions, while in [14], [15]
the corresponding one-sided results are proved. Our Theorems 1 and 2
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cover these results. Actually, also for power series methods the case of
regularly varying weights needs a different treatment from that for other
weights. A high-indices theorem for power series methods is given in [5];
however, only two-sided conditions are used, i.e., sn − sn−1 = O(An),
while our Theorem 3 deals with the corresponding one-sided Tauberian
condition for this case.

Some results on Dirichlet methods can be found, e.g., in [3], [4], [23].

(b) λn = nα with α > 0. As above, we consider the cases σ = 0 and
σ = −∞ separately.

(b1) σ = 0. In this case we have g′(x)x1−α → 0 as x → ∞, e.g.,
g′(x) = −xα−β−1 with β > 0. If β = α, then L(x) = αx−2 and
Theorem 1 applies with l(n) � n. If β < α < β + 2, then Theorem 2
applies with l(n) � n1−(α−β)/2, and finally if α ≥ β+2, then Theorem 3
applies with logAn ∼ (β/2)nα−β−2.

(b2) σ = −∞. Here we have g′(x)x1−α → ∞ as x → ∞, e.g.,
g′(x) = xα+β−1 with β > 0. Now Theorem 1 does not apply. If
α + β < 2, then Theorem 2 applies with l(n) � n1−(α+β)/2, and if
α+ β ≥ 2, then Theorem 3 applies with logAn ∼ (β/2)nα+β−2.

(c) λn = e
√
n. Again we consider the cases σ = 0 and σ = −∞

separately.

(c1) σ = 0. In this case we have g′(x)
√
xe−

√
x → 0 as x → ∞, e.g.,

g′(x) = −xα, so that L(x) ∼ (1/2)xα−(1/2) as x → ∞. If α = −1/2,
then Theorem 1 applies with l(n) � √

n. If −1/2 < α < 1/2, then
Theorem 2 applies with l(n) � n(1/4)−(1/2)α, and finally, if α ≥ 1/2,
then Theorem 3 applies with logAn ∼ (1/4)nα−(1/2).

(c2) σ = −∞. Here we have g′(x)
√
xe−

√
x → ∞ as x → ∞, e.g.,

g′(x) = xα−(1/2) e
√
x with α > 1/2, so that L(x) ∼ αxα−(3/2)e

√
x as

x → ∞, and Theorem 3 applies with logAn ∼ (α/2)nα−(3/2)e
√
n.

(d) λn = en. Now 1 = (λ′(x)/λ(x)) �→ 0, G(x) = L(x), so that
neither Theorem 1 nor Theorem 2 is applicable. For g(x) = −αx with
α > 0, we have L(x) = α, and we can apply Theorem 3 with An � 1.

Note that we always need growth conditions on sn−sn−1, so we do not
get a high indices theorem without such conditions, in contrast to what
has been shown for the Abel method by Hardy and Littlewood [9], for
the Borel method by Gaier [7], for the logarithmic method by Krishnan
[19], and for a somewhat larger class of methods by Jakimovski, Meyer-
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König and Zeller [12].

(e) λn = log(n + 1). This gap-sequence is not in the range of our
theorems because x(λ′(x)/λ(x)) ↘ 0 as x → ∞, and this violates one
of the conditions in (C).

2. Proofs of the main results. Our main tool in the proof of
Theorem 1 is the following result due to Borwein [4, Theorem 6]:

Lemma 1. Suppose that the abscissa σ = 0, that

An :=
n∑

k=1

ak → ∞, λn+1 ∼ λn,

Am

An
→ 1 when

λm
λn

→ 1, m > n → ∞,

lim inf(sm − sn) ≥ 0 when
Am

An
→ 1, m > n → ∞,

and that sn → s (Dλ,a). Then sn → s.

Proof of Theorem 1. Assume the hypotheses of Theorem 1. Then,
for x ≥ x0,

g′(x)
λ′(x)

− g′(x0)
λ′(x0)

=
∫ x

x0

G(t)
λ′(t)
λ2(t)

dt ≤ sup
x≥x0

G(x)
∫ ∞

x0

λ′(t)
λ2(t)

dt < ∞,

so that σ = − limx→∞(g′(x)/λ′(x)) is finite. Moreover, for x ≥ x0,

− g′(x)
λ′(x)

− σ =
∫ ∞

x

G(t)
λ′(t)
λ2(t)

dt :=
δ1(x)
λ(x)

,

where δ1(x)→ δ as x → ∞. Hence, for x ≥ x0,

−g(x) + g(x0) = −
∫ x

x0

λ′(t)
g′(t)
λ′(t)

dt =
∫ x

x0

(
σλ′(t) + δ1(t)

λ′(t)
λ(t)

)
dt

=: σλ(x) + δ(x) logλ(x),

where δ(x)→ δ as x → ∞. Consequently,
ak ∼ e−g(k) = e−g(x0)eσλ(k)(λ(k))δ(k) as k → ∞,
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and

a(x) =
∞∑
k=1

ake
−λkx ∼ e−g(x0)

∞∑
k=x0

eλ(k)(σ−x)(λ(k))δ(k) as x → σ + .

Thus we may assume, without loss of generality, that σ = 0 and
g(x0) = 0, so that

ak ∼ (λ(k))δ(k) as k → ∞,

and
−g(x) = δ(x) logλ(x) ∈ C2[x0,∞),

where δ(x) → δ as x → ∞. Consequently ak = f(λ(k)) with some
regularly varying function f . We then have:

(i)

λn+1

λn
= exp

{∫ n+1

n

λ′(t)
λ(t)

dt

}
→ 1 as n → ∞;

(ii)

An :=
n∑

k=1

ak ∼
n∑

k=x0

(λ(k))δ(k) → ∞ as n → ∞.

Suppose now that

(3) m > n → ∞ with
λm
λn

→ 1.

Then
(m− n)

λ′(m)
λ(m)

≤
∫ m

n

λ′(t)
λ(t)

dt = log
λm
λn

→ 0.

Hence

0 < ε(m,n) :=
m− n

l(n)
= (m− n)

λ′(n)
λ(n)

· λ(n)
l(n)λ′(n)

→ 0,

since

l(n)
λ′(n)
λ(n)

=
1√
G(n)

→ 1√
δ
.
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Thus, subject to (3),

m = n+ ε(m,n)l(n) with ε(m,n)→ 0.

Further

0 ≤ Am −An =
m∑

k=n+1

ak ∼
m∑

k=n+1

e−g(k) ∼
∫ m

n

e−g(t) dt,

because

− g′(t) = λ′(t)
∫ ∞

t

G(u)
λ′(u)
λ2(u)

du = δ1(t)
λ′(t)
λ(t)

> 0 on [x0,∞)

with δ1(t)→ δ as t → ∞, so that

e−g(k+1)

e−g(k)
= exp

(
−

∫ k+1

k

g′(t) dt
)

= exp
(∫ k+1

k

δ1(t)
λ′(t)
λ(t)

dt

)
→ 1 as k → ∞.

Also, ∫ m

n

e−g(t) dt ∼ (m− n)e−g(n) ∼ ε(m,n)l(n)an,

since
e−g(m)

e−g(n)
= exp

(
−

∫ m

n

g′(t) dt
)

= exp
( ∫ m

n

δ1(t)
λ′(t)
λ(t)

dt

)
∼

(
λm
λn

)δ

→ 1.

Next, since
l(n)
n

∼ 1√
δ

λ(n)
nλ′(n)

≤ 1√
δ

λ(x0)
x0λ′(x0)

,

we have that, for a sufficiently small positive constant c,

An ∼
n∑

k=x0

e−g(k) ≥
∫ n

n−cl(n)

e−g(t) dt ∼ cl(n)e−g(n),
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and so, subject to (3),

0 ≤ Am −An ∼ ε(m,n)l(n)e−g(n) = o(An), whence
Am

An
→ 1.

We have thus shown:

(iii) If m > n → ∞ with (λm/λn) → 1, then m = n + ε(m,n)l(n)
where ε(m,n)→ 0, and (Am/An)→ 1.

Observe now that:

(iv) If m > n → ∞ with (Am/An)→ 1, then

An ∼ −
∫ n

x0

e−g(t) g′(t)λ(t)
δλ′(t)

dt ≤ − λ(n)
δλ′(n)

∫ n

x0

e−g(t)g′(t) dt

∼ 1√
δ
l(n)e−g(n),

and
Am −An ∼

∫ m

n

e−g(t) dt ≥ (m− n)e−g(n),

so that, for a sufficiently large positive constant c,

0 < ε(m,n) :=
m−n

l(n)
=

m−n

An
e−g(n) · An

l(n)
eg(n) ≤ c

Am −An

An
→ 0,

i.e., m = n+ ε(m,n)l(n), where ε(m,n)→ 0.

It follows from (iv) and condition (1) that:

(v) lim inf(sm − sn) ≥ 0 when m > n → ∞ with (Am/An)→ 1. By
virtue of (i), (ii), (iii) and (v) we have, by Lemma 1, that sn → s (Dλ,a)
implies sn → s.

Proof of Theorem 2. Suppose that sn → s (Dλ,a) and that (1) holds.
Then, by Theorem 4 below, sn = O(1). Therefore, by [1, Proposition]

(4) lim
n→∞ fn(α) = s for all α > 0,

where

fn(α) :=
1

ãα(τn(α))

∞∑
k=x0

ske
−αg(k) e−λ(k)τn(α),

ãα(x) :=
∞∑

k=x0

e−αg(k) e−λ(k)x
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and

τn(α) := −α
g′(n)
λ′(n)

.

Next, our assumptions imply that, as x → ∞,

(5) l(x) =
1√
L(x)

↗ ∞ and
l(x)
x

=
λ(x)
xλ′(x)

1√
G(x)

↘ 0.

We may assume that s = 0, so that we have to show that sn → 0.
We proceed as in [15, Section 3], [14, Section 3.4]. Suppose, in
contradiction to what we wish to prove, that smk

≥ ζ for some ζ > 0
and a sequence of integers {mk} with 1 ≤ m1 < m2 < · · · . By (1)
there exists ε > 0 such that

lim inf
n→∞ min

n≤m≤n+4εl(n)
(sm+1 − sn) ≥ − 1

3
ζ,

so that, for sufficiently large N ,

sm+1 − sn ≥ − 1
2
ζ

whenever N ≤ n ≤ m ≤ n+ 4εl(n). Hence

sm+1 = sm+1 − smk
+ smk

≥ 1
2
ζ

for N ≤ mk ≤ m ≤ mk + 4ε l(mk).

Define nk := mk + [2εl(mk)]. If nk − εl(nk) ≤ m ≤ nk + εl(nk)
and if k is sufficiently large, then it follows (in view of (5) and since
1 ≤ (l(nk)/l(mk)) ≤ (nk/mk) → 1) that m ≤ mk + 4εl(mk), and that
m − 1 ≥ mk so that sm ≥ ζ/2. Since sn = O(1), it follows from [1,
Theorem A and Lemmas 4, 5, 7, 9 and 11] that for all α > 0,

lim
n→∞

∣∣∣∣fn(α)−
√

α

2π
1

l(n)

∫ n+δ(n)

n−δ(n)

e−αL(n)(t−n)2/2s(t) dt
∣∣∣∣ = 0,
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where s(t) := sk for k ≤ t < k + 1, δ(x) := (γ/10)(λ(x)/λ′(x)), and
γ := min(1, (x0λ

′(x0)/λ(x0))). Substituting v = (t − n)
√

αL(n), we
get that

∫ n−εl(n)

n−δ(n)

e−αL(n)(t−n)2/2 dt ≤ l(n)√
α

∫ −ε
√
α

−∞
e−v2/2 dv.

Hence, for some constant c > 0 which does not depend on α and n = nk,

lim sup
n→∞

fn(α)

≥ lim sup
n→∞

√
α

2π
1

l(n)

∫ n+εl(n)

n−εl(n)

e−(1/2)αL(n)(t−n)2s(t) dt−c

∫ ∞

ε
√
α

e−(1/2)v2
dv

≥ lim sup
n→∞

ζ

2

√
α

2π
1

l(n)

∫ n+εl(n)

n−εl(n)

e−(1/2)αL(n)(t−n)2 dt−c

∫ ∞

ε
√
α

e−(1/2)v2
dv

=
ζ

2
1√
2π

∫ ε
√
α

−ε
√
α

e−(1/2)v2
dv−c

∫ ∞

ε
√
α

e−(1/2)v2
dv → ζ

2
> 0 as α → ∞,

which contradicts (4) with s = 0. This establishes the desired result.

Proof of Theorem 3. Suppose that sn → s (Dλ,a) and that (2) holds.
Then, by Theorem 5 below, sn = O(1). Since An > 1 for all n > x0,
it follows that sn − sn−1 = O(An). Hence, by [1, Theorem 2], sn → s,
and this completes the proof.

3. Vijayaraghavan-type results. In this section we prove two
theorems. The proof of the first of these uses Vijayaraghavan’s theorem
[8], [26], [27] directly, and the proof of the second is based on the
method of proof of Vijayaraghavan’s theorem in [8].

Theorem 4. Assume (C), and suppose that L(x) is nonincreasing
and G(x) is nondecreasing on [x0,∞) with L(x) → 0 and G(x) → ∞
as x → ∞, that sn = O(1) (Dλ,a), and that

(1∗) lim inf
n→∞ min

n≤m≤n+l(n)
(sm+1 − sn) > −∞.
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Then sn = O(1).

The main tool required for the proof of Theorem 4 is the following
variant of a result originally given by Vijayaraghavan [26], [27]. It is
stated in [14] and [15] and can be established by slightly modifying the
proof of Theorem 238 in [8].

Lemma 2. Let s(t) := sn for n ≤ t < n + 1, n = 1, 2, . . . , and
suppose that cn(t) and φ(t) are functions on [t0,∞) for some t0 > 0
satisfying :

(i) for n = 1, 2, . . . , cn(t) ≥ 0 on [t0,∞), cn(t)→ 0,
∑∞

k=1 ck(t)→ 1
as t → ∞;
(ii) φ(t) is positive, strictly increasing and unbounded and φ(t+1)−

φ(t) ≤ 2 on [t0,∞);
(iii)

∑M
k=1 ck(t)→ 0 when φ(t)− φ(M)→ ∞, t > M → ∞;

(iv)
∑∞

k=N ck(t){φ(k) − φ(N)} → 0 when φ(N) − φ(t) → ∞, N >
t → ∞;
(v) s(u)− s(t) > −a{φ(u)− φ(t)} − b for u ≥ t > t0, where a, b are

positive constants.

Suppose also that
∑∞

k=1 ck(t)sk is convergent and its sum is bounded
for t ≥ t0. Then sn = O(1).

We also need the following result:

Lemma 3. Under the assumptions of Theorem 2 or Theorem 4,

∆n := inf
x>σ

a(x)eλnx ∼
√
2π anl(n),

and ∞∑
k=1

ak
∆k

=∞.

Moreover, for large n,

∆n = a(xn)eλnxn , xn = − g′(tn)
λ′(tn)

,
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where the sequence {xn} is ultimately nonincreasing with xn → σ,

σ = lim
t→∞

(
− g′(t)

λ′(t)

)
,

and {tn} is ultimately nondecreasing with
√

L(n) |n− tn| → 0.

Proof. First, choose n0 such that an > 0 for all n ≥ n0 − 1.
Then, for n ≥ n0, we have that a(x)eλnx ≥ an−1e

(λn−λn−1)x → ∞
as x → ∞. Also, if σ > −∞, then a(x)eλnx ≥ a(x)eλnσ → ∞
as x → σ+, since a(x) → ∞ as x → σ+; and if σ = −∞, then
a(x)eλnx ≥ an+1e

(λn−λn+1)x → ∞ as x → σ+. Hence, for every
n ≥ n0, there exists a finite xn > σ such that ∆n = a(xn)eλnxn .
Next, for m,n ≥ n0, we have that ∆m ≤ a(xn)eλmxn = ∆ne

(λm−λn)xn ,
whence, by symmetry,

e(λm−λn)xm ≤ ∆m

∆n
≤ e(λm−λn)xn .

It follows that, if n > m ≥ n0, then xm > xn, i.e., the sequence {xn}
is ultimately nonincreasing and so tends to a limit ρ ≥ σ. Assume, if
possible, that ρ > σ. Then xn0 ≥ xn ≥ ρ for all n ≥ n0, and ρ− ε > σ
for some ε > 0. Hence, by the definition of xn,

1 ≥ a(xn)eλnxn

a(ρ− ε)eλn(ρ−ε)
≥ a(xn)

a(ρ− ε)
eελn ∼ a(ρ)

a(ρ− ε)
eελn → ∞

as n → ∞,

which is a contradiction. Thus xn → ρ = σ as n → ∞ (cf., [16] [18]).
Observe also that, by [1, Lemma 3], σ = limt→∞(−(g′(t)/λ′(t))).

Assume throughout the rest of the proof that n is large. By (C),
we now get that xn = −(g′(tn)/λ′(tn)), where {tn} is nondecreasing
and unbounded. Let ã(x) :=

∑∞
k=x0

e−g(k)e−λ(k)x. Since an ∼ e−g(n)

and tn ↗ ∞, it follows from the regularity of the Dλ,a method and [1,
Theorem A] that

(6)

∆n

an
=

a(xn)
an

eλnxn ∼ ã

(
− g′(tn)

λ′(tn)

)
exp

(
g(n)− λ(n)

g′(tn)
λ′(tn)

)

∼ √
2π l(tn)e−h1(tn,n)
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where, for all t, x ≥ x0,

h1(t, x) := g(t)− g(x) +
(
λ(x)− λ(t)

) g′(t)
λ′(t)

= −
∫ x

t

∫ x

u

λ′(v)
λ′(u)

L(u) dv du ≤ 0.

Let δ̃ = δ̃(x) := γ̃(λ(x)/λ′(x)) with 0 < γ̃ ≤ (γ/10) = (1/10)
min(1, x0(λ(x0)/λ′(x0))), and let x0 ≤ t ≤ x − δ̃, x0 ≤ u ≤ x − (δ̃/4).
Then, by [1, (17) and (19)],

h1(t, x) ≤ h1(x− δ̃, x) ≤ − δ̃2

4
L(x) = − γ̃2

4
G(x),

λ(x)
λ(u)

≥ exp
(∫ x

x−(δ̃/4)

λ′(v)
λ(v)

dv

)
≥ exp

(
γ̃

4
λ(x)
λ′(x)

λ′(x)
λ(x)

)
≥ 1 +

γ̃

4
,

log
λ(x)

λ(x− (δ̃/4)) =
∫ x

x−(δ̃/4)

λ′(v)
λ(v)

dv ≤ xλ′(x)
λ(x)

(δ̃/4)
x− (δ̃/4)

≤ δ̃

2
λ′(x)
λ(x)

≤ 1
2

∫ x

x−δ̃

λ′(v)
λ(v)

dv =
1
2
log

λ(x)
λ(x− δ̃)

.

Hence

−h1(t, x) =
∫ x

t

L(v)
λ(x)− λ(v)

λ′(v)
dv

≥ γ̃

4

∫ x−(δ̃/4)

t

L(v)
λ(v)
λ′(v)

dv ≥ γ̃

4
G(t)

∫ x−(δ̃/4)

t

λ′(v)
λ(v)

dv

=
γ̃

4
G(t)

(
log

λ(x)
λ(t)

− log λ(x)
λ(x− (δ̃/4))

)

≥ γ̃

4
G(t)

(
log

λ(x)
λ(t)

− 1
2
log

λ(x)
λ(x− δ̃)

)
≥ γ̃

8
G(t) log

λ(x)
λ(t)

.

In addition,

log
λ(x)
λ(t)

=
∫ x

t

1
v

vλ′(v)
λ(v)

dv ≥ γ

∫ x

t

1
v
dv = γ log

x

t
.
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Because G(t) → ∞ as t → ∞, we now obtain, for sufficiently large t
and x ≥ t+ δ̃, that

l(t)
l(x)

e−h1(t,x) = exp
(
− h1(t, x) + log

xλ′(x)λ(t)
t λ′(t)λ(x)

− log x

t
+
1
2
log

G(x)
G(t)

)

≥ exp
(
γ̃2

8
G(x) +

γ̃

16
G(t) log

λ(x)
λ(t)

− log x

t

)

≥ exp
(
γ̃2

8
G(x)

)
→ ∞ as x → ∞.

It follows that (l(τn)/l(n))e−h1(τn,n) → ∞ for any sequence {τn} with
τn → ∞ and τn ≤ n − γ̃(λ(n)/λ′(n)). Moreover, if |t − x| ≥ cl(x) for
some c > 0, then, as above, by [1, (17) and (19)],

−h1(t, x) ≥ 1
4
L(x)(cl(x))2 =

c2

4
> 0.

Suppose now that

τn → ∞ and lim sup
n→∞

|τn − n|
√

L(n) > 0,

so that |τn − n| ≥ cl(n) for some c > 0 and infinitely many n, and
hence,

−h1(τn, n) ≥ c2

4
for all such n.

We consider three cases for these n.

(a) τn ≥ n infinitely often. Then

lim sup
n→∞

l(τn)
l(n)

e−h1(τn,n) ≥ lim sup
n→∞

e−h1(τn,n) ≥ ec
2/4 > 1.

(b) τn ≤ n − γ̃(λ(n)/λ′(n)) infinitely often for some γ̃ > 0. In this
case we have, as shown above, that

lim sup
n→∞

l(τn)
l(n)

e−h1(τn,n) =∞.



812 D. BORWEIN, W. KRATZ AND U. STADTMÜLLER

(c) n−ε(λ(n)/λ′(n)) ≤ τn ≤ n infinitely often for an arbitrary ε > 0.
Then

l(n) ≥ l(τn) =
λ(τn)τn√

G(τn)λ′(τn)τn
≥ λ(n)√

G(n)λ′(n)n
τn

≥ l(n)
n− ελ(n)/λ′(n)

n
≥ l(n)

(
1− λ(x0)

x0λ′(x0)
ε

)
.

Hence,

lim sup
n→∞

l(τn)
l(n)

e−h1(τn,n) ≥
(
1− λ(x0)

x0λ′(x0)
ε

)
lim sup
n→∞

e−h1(τn,n)

≥
(
1− λ(x0)

x0λ′(x0)
ε

)
e(1/4)c2 > 1,

provided ε is sufficiently small. We have thus shown that

lim sup
n→∞

l(τn)
l(n)

e−h1(τn,n) > 1,

if τn → ∞ and lim supn→∞ |τn − n|√L(n) > 0.

Finally, let x̃n := −(g′(n)/λ′(n)). Then, by [1, Theorem A], the
definition of ∆n, and (6), we have that

√
2πl(n) ∼ a(x̃n)

an
eλnx̃n ≥ a(xn)

an
eλnxn =

∆n

an

∼
√
2π l(tn)e−h1(tn,n).

Hence
lim sup
n→∞

l(tn)
l(n)

e−h1(tn,n) ≤ 1.

Since tn → ∞ it follows that we must have

lim
n→∞ |tn − n|

√
L(n) = 0.

Next, we have, by [1, (17) and (19)] that, for some ξ, ζ lying between
tn and n,

|h1(tn, n)| = 1
2
λ′(ξ)
λ′(ζ)

L(ζ)(tn − n)2 ≤ 3
4
L(n)(tn − n)2 → 0.
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Also, for x ≥ x0, ε > 0,

l(x) ≤ l
(
x+ εl(x)

) ≤ x+ εl(x)
x

l(x) ∼ l(x) as x → ∞
because (l(x)/x)↘ 0 by (5).

It follows that l(tn) ∼ l(n) and, since h1(tn, n)→ 0, that (∆n/an) ∼√
2π l(n), and hence that

∑∞
k=1(ak/∆k) = ∞. This completes the

proof.

Proof of Theorem 4. We proceed as in [14, p. 52], [15, p. 486] using
the notation introduced in Lemma 3. Suppose that N0 is a large
positive integer, and choose a nondecreasing function h : [N0,∞) →
(−∞,−σ) such that xn = −h(n) for n ≥ N0. Observe that, by
Lemma 3, −h(t)↘ σ as t → ∞. Let

cn(t) :=
ane

λnh(t)

a(−h(t))
.

Then cn(t) ≥ 0 and
∑∞

k=1 ck(t) ≡ 1 on [N0,∞). Also, cn(t) → 0
as t → ∞, because a(x) → ∞ as x → σ+ if σ > −∞, and
a(x)eλnx ≥ an+1e

(λn−λn+1)x → ∞ as x → σ = −∞. Next, let
φ(t) :=

∑[t]
k=N0

(ak/∆k). Then, by Lemma 3,

φ(t+ 1)− φ(t) ∼
√

L(t)√
2π

→ 0

and

φ(t) ∼ 1√
2π

∫ t

N0

√
L(v) dv → ∞ as t → ∞.

Hence conditions (i) and (ii) of Lemma 2 are satisfied.

Since h(t) is nondecreasing, and since ∆n ≤ a(xk)eλnxk =
∆ke

(λk−λn)h(k) for k, n ≥ N0 by the definition of ∆n, we obtain, for
t ≥ M ≥ N0, that

φ(t)− φ(M) =
[t]∑

k=M+1

ak
∆k

≤ 1
∆M

[t]∑
k=M+1

ake
(λk−λM )h(k)

≤ 1
∆M

[t]∑
k=M+1

ake
(λk−λM )h(t) =

e−λMh(t)

∆M

[t]∑
k=M+1

ake
λkh(t).
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Hence, if t > M → ∞ with φ(t) − φ(M) → ∞, we get, since
h(t) ≥ h(M), λk ≤ λM , that

M∑
k=1

ck(t) =
M∑
k=1

ake
λkh(t)

a(−h(t))
=

1
a(−h(t))

M∑
k=1

ake
λk(h(M)+h(t)−h(M))

≤ eλM (h(t)−h(M))

a(−h(t))

M∑
k=1

ake
λkh(M)

=
e−λMh(M)

a(−h(t))e−λMh(t)

M∑
k=1

ake
λkh(M)

≤ ∆M

e−λMh(t)
∑[t]

k=M+1 ake
λkh(t)

≤ 1
φ(t)− φ(M)

→ 0.

Therefore condition (iii) of Lemma 2 is satisfied.

It follows from Lemma 3 that

an
∆n

≤ 1 for all n ∈ N, and
∞∑
k=1

ak
∆k

=∞.

Hence there exists l̃(n) ∈ N such that

n+l̃(n)−1∑
k=n+1

ak
∆k

< 1 ≤
n+l̃(n)∑
k=n+1

ak
∆k

< 2 for n ≥ N0.

In addition, by Lemma 3, we have that l̃(n) ∼ √
2π l(n). For N >

t → ∞, we put n0 = [t], nν+1 = nν + l̃(nν) for ν = 0, 1, 2, . . . , and
α = α(t,N) such that nα+1 > N ≥ nα. Then

φ(N)− φ(t) =
N∑

[t]+1

ak
∆k

≤
α∑

ν=0

nν+1∑
k=nν+1

ak
∆k

≤ 2(α+ 1),
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so that α → ∞ whenever φ(N)− φ(t)→ ∞. For s ≥ [t] we have that

∞∑
k=s+1

ak
a(−h(t))

eλkh(t)
k∑

ν=s+1

aν
∆ν

=
∞∑

ν=s+1

aν
∆ν

∞∑
k=ν

ak
a(−h(t))

eλkh(t)

=
1

a(−h(t))

∞∑
ν=s+1

aν
∆ν

eλν(h(t)−h(ν))
∞∑
k=ν

ake
λkh(ν) e(λν−λk)(h(ν)−h(t))︸ ︷︷ ︸

≤1

≤ 1
a(−h(t))

∞∑
ν=s+1

aν
∆ν

eλνh(t) e−λνh(ν) a(−h(ν))

=
∞∑

ν=s+1

aν
a(−h(t))

eλνh(t).

Using this inequality with s = [t], we get that

1 ≥
∞∑

ν=[t]+1

aν
a(−h(t))

eλνh(t) ≥
∞∑

k=s+1

ak
a(−h(t))

eλkh(t)
k∑

ν=s+1

aν
∆ν

=
∞∑
µ=0

nµ+1∑
k=nµ+1

ak
a(−h(t))

eλkh(t)
k∑

ν=n0+1

aν
∆ν

≥
∞∑
µ=0

nµ+1∑
k=nµ+1

ak
a(−h(t))

eλkh(t)

nµ∑
ν=n0+1

aν
∆ν

≥
∞∑
µ=0

µ

nµ+1∑
k=nµ+1

ak
a(−h(t))

eλkh(t).
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These inequalities for s = N yield that

∞∑
k=N

ck(t)(φ(k)− φ(N))

=
∞∑

k=N+1

ak e
λk h(t)

a(−h(t))

k∑
ν=N+1

aν
∆ν

≤
∞∑

ν=N+1

aν
a(−h(t))

eλνh(t)

≤
∞∑

ν=α

nν+1∑
k=nν+1

ak
a(−h(t))

eλkh(t) ≤
∞∑

ν=α

ν

α

nν+1∑
k=nν+1

ak
a(−h(t))

eλkh(t)

≤ 1
α

→ 0 when φ(N)− φ(t)→ ∞.

Thus condition (iv) of Lemma 2 is satisfied.

Finally, assumption (1∗) of Theorem 4 implies that there exists c > 0
such that sm+1 − sn > −c for n ≤ m ≤ n+ l̃(n) for all n ≥ N0, so that
s(u) − s(t) > −c for [t] + 1 ≤ [u] ≤ [t] + 1 + l̃([t]), t ≥ N0, (note that
l̃(n) ∼ √

2πl(n) ). Let n > t ≥ N0, and put t0 = [t], tν+1 = tν+1+ l̃(tν)
for ν = 0, 1, . . . , r + 1, with tr+1 > u ≥ tr. Then

s(u)− s(t) =
r−1∑
ν=0

(
s(tν+1)− s(tν)

)
+ s(u)− s(tr) > −(r + 1)c,

and

r ≤
r−1∑
ν=0

tν+1∑
k=tν+1

ak
∆k

=
r−1∑
ν=0

(
φ(tν+1)−φ(tν)

)
= φ(tr)−φ(t0) = φ(u)−φ(t).

Hence, s(u) − s(t) ≥ −c(φ(u) − φ(t)) − c, which shows that condition
(v) of Lemma 2 is satisfied. Theorem 4 is now a consequence of Lemma
2.

Theorem 5. Assume (C), and suppose that L(x) ≥ δ > 0 on
[x0,∞), that sn = O(1)(Dλ,a), and that condition (2) of Theorem 3
holds with some positive constant c. Then sn = O(1).

The proof is based on the following estimates.
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Lemma 4. Assume (C), and suppose that L(x) ≥ δ > 0 on [x0,∞).
Let

h(k, n) := g(n)− g(k)− (
λ(n)− λ(k)

) g′(n)
λ′(n)

,

αn := −h(n, n− 1), βn := −h(n− 1, n)

as in Theorem 3, and

ck(x) :=
ak
a(x)

e−λkx for x > σ.

Then there exist c1 > 0 and x1 > x0 such that the following estimates
hold for n ∈ N with n ≥ x1:

h(k, n) ≤ −1
2
γδ|k − n| for all k ∈ N, k > x0, where(i)

γ := min
(
1
3
, e−2λ′(x0)/λ(x0)

)
. Also

∞∑
k=x1

eh(k,n) ≤ c1.

1
c1

≤ an
∆n

≤ 1 with ∆n defined as in Lemma 3.(ii)

λ(n+ 1)− λ(n) ≥ 1
2
(
λ(n)− λ(n− 1)), and

(iii)

λ(n− 1)− λ(n− 2) ≥ γ
(
λ(n)− λ(n− 1)).

M−1∑
k=x1

eh(k,n) ≤ c1e
−(1/2)δγ(n−M+1) for M ≤ n+ 1,(iv)

and
∞∑

k=N

k∑
ν=N

eh(k,n)+αν ≤ c1e
−δγ(N−n−1) for N ≥ n+ 1.

ck(x) ≤ c1e
h(k,n) for all k ≥ x1, where x = − g′(n)

λ′(n)
.(v)

ck(x) ≤ c1e
h(k,n)+f(t)−αn if k ≥ n,(vi)

ck(x) ≤ c1e
h(k,n)−(1/2)(αn+βn−f(t)) if k ≥ n+ 1,

ck(x) ≤ c1e
h(k,n−1)−γf(t) if x1 ≤ k ≤ n− 2,
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ck(x) ≤ c1e
h(k,n−1)+αn−f(t) if x1 ≤ k ≤ n− 1,

for x = − g′(t)
λ′(t)

with t ∈ [n− 1, n], and

f(t) :=
(
λ(n)− λ(n− 1))

(
g′(t)
λ′(t)

− g′(n− 1)
λ′(n− 1)

)
.

Proof. The first inequality in assertion (i) holds by [1, (10) and (11)].
Hence

∞∑
k=x1

eh(k,n) ≤
∞∑

k=x1

e−(1/2)γδ|k−n| ≤ 2
∞∑
k=0

e−(1/2)γδk = c1 < ∞,

which is the second inequality in assertion (i). For x > σ, n ∈ N, we
have that a(x)eλnx ≥ ane

λnxe−λnx = an, so that ∆n ≥ an. Moreover,
since an ∼ e−g(n), it follows that

∆n

an
≤

∞∑
k=1

ak
an

e−(λn−λk) (g′(n)/λ′(n)) ∼
∞∑

k=x1

eh(k,n) ≤ c1 < ∞

by (i), and this establishes (ii).

By (C), we have that

λ(n+ 1)− λ(n) =
∫ n

n−1

λ′(u+ 1) du

=
∫ n

n−1

(u+ 1)λ′(u+ 1)
λ(u+ 1)

λ(u+ 1)
u+ 1

du

≥
∫ n

n−1

uλ′(u)
λ(u)

λ(u)
u+ 1

du ≥ n− 1
n

∫ n

n−1

λ′(u) du

≥ 1
2
(
λ(n)− λ(n− 1)),
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and

λ(n−1)− λ(n−2) =
∫ n

n−1

λ′(u− 1) du

≥
∫ n

n−1

λ′(u)
λ(u)

λ(u− 1) du (since
λ′

λ
↘)

=
∫ n

n−1

λ′(u) exp
(
−

∫ u

u−1

λ′(w)
λ(w)

dw

)
du

≥ γ
(
λ(n)− λ(n− 1)),

because ∫ u

u−1

λ′(w)
λ(w)

dw ≤ λ′(x0)
λ(x0)

≤ − log γ.

Hence (iii) holds.

The first inequality in (iv) follows directly from (i). In [1, Proof of
Lemma 1] it is shown that

(7)
h(k, n) + max

n+1≤j≤k

(− h(j, j − 1)) ≤ − δγ(k − n− 1)
for k ≥ n+ 1.

Hence, if N ≥ n+ 1, then

∞∑
k=N

k∑
ν=N

eh(k,n)+αν ≤
∞∑

k=N

(k + 1−N)eh(k,n) max
n+1≤j≤k

e−h(j,j−1)

≤
∞∑

k=N

(k + 1−N)e−δγ(k−n−1)

= e−δγ(N−n−1)
∞∑
k=0

(k + 1)e−γδk,

which yields the second inequality in (iv).

Since an ∼ e−g(n) and a(x) ≥ ane
−λnx, we have that, for x =

−(g′(n)/λ′(n)),

ck(x) ≤ c1e
−g(k)+g(n)−(λ(n)−λ(k))(g′(n)/λ′(n)) = c1e

h(k,n),
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which establishes (v).

By our assumptions and the notation in assertion (vi), we have that
n − 1 ≤ t ≤ n, 0 = f(n − 1) ≤ f(t) ≤ f(n) = αn + βn, because
f ′(τ ) = (g′(τ )/λ′(τ ))′ > 0. Also, a(x) ≥ max(ane−λnx, an−1e

−λn−1x).
It follows that, for all k ≥ x1,

ck(x) ≤ c1 exp
{
− g(k) + λ(k)

g′(t)
λ′(t)

+min
(
g(n)−λ(n)

g′(t)
λ′(t)

, g(n−1)−λ(n−1) g
′(t)

λ′(t)

)}
.(8)

First, if k ≥ n, then

g(n− 1)− g(k) +
(
λ(k)− λ(n− 1)) g′(t)

λ′(t)

= h(k, n) + f(t)− αn +
(
λ(k)− λ(n)

)( g′(t)
λ′(t)

− g′(n)
λ′(n)

)

≤ h(k, n) + f(t)− αn,

which yields the first inequality in (vi) by (8).

Next, if k ≥ n+ 1, then by assertion (iii),

g(n)− g(k) +
(
λ(k)− λ(n)

) g′(t)
λ′(t)

= h(k, n) +
(
λ(n)− λ(k)

)( g′(n)
λ′(n)

− g′(t)
λ′(t)

)

≤ h(k, n) +
(
λ(n)− λ(n+ 1)

)( g′(n)
λ′(n)

− g′(t)
λ′(t)

)

≤ h(k, n)− 1
2

(
λ(n)− λ(n− 1))

(
g′(n)
λ′(n)

− g′(t)
λ′(t)

)

= h(k, n)− 1
2

(
αn + βn − f(t)

)
,

which yields the second inequality in (vi) by (8).
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If x1 ≤ k ≤ n− 2, then by assertion (iii),

g(n− 1)− g(k) +
(
λ(k)− λ(n− 1)) g′(t)

λ′(t)

= h(k, n− 1) + (
λ(k)− λ(n− 1))

(
g′(t)
λ′(t)

− g′(n− 1)
λ′(n− 1)

)

≤ h(k, n− 1) + (
λ(n− 2)− λ(n− 1))

(
g′(t)
λ′(t)

− g′(n− 1)
λ′(n− 1)

)

≤ h(k, n− 1)− γ
(
λ(n)− λ(n− 1))

(
g′(t)
λ′(t)

− g′(n− 1)
λ′(n− 1)

)

= h(k, n− 1)− γf(t),

so that the third inequality in (vi) holds by (8).

Finally, if x1 ≤ k ≤ n− 1, then

g(n)− g(k) +
(
λ(k)− λ(n)

) g′(t)
λ′(t)

= h(k, n−1) + αn −f(t) +
(
λ(k)− λ(n−1))

(
g′(t)
λ′(t)

− g′(n−1)
λ′(n−1)

)

≤ h(k, n) + αn − f(t),

which shows, by (8), that the last inequality in (vi) holds.

Proof of Theorem 5. In this case Vijayaraghavan’s theorem, i.e.,
Lemma 2, cannot be applied directly, but our method of proof is
based essentially on the same techniques as Vijayaraghavan developed.
Using the notation of Lemma 4 we model our proof on the proof of
Theorem 238 in [8, pp. 308 312]. We suppose that sn �= O(1), i.e.,
lim supn→∞ |sn| =∞ and shall prove that this leads to a contradiction.
Since

σ(x) =
∞∑
k=1

skck(x) = O(1) as x → σ+,

the sequence {sn} cannot tend to either +∞ or to −∞. We write

σ1(t) := max
1≤n≤t

sn and σ2(t) := max
1≤n≤t

(−sn).
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Hence σ1(t) and σ2(t) are nondecreasing and σ1(t)→ ∞ or σ2(t)→ ∞
as t → ∞. There are two possibilities: either
(α) σ1(n) ≥ σ2(n) for infinitely many n, or

(β) σ1(n) < σ2(n) for all sufficiently large n.

We consider these two possibilities in turn and show that each leads to
a contradiction.

Case (α). Since condition (α) implies that σ1(n) → ∞ as n → ∞
and, since sn � ∞, so that sn ≤ c̃ < ∞ for infinitely many n and some
c̃ > 0, it follows by our assumptions that there exists H0 > 0 such that
for all H > H0 there is a minimal M =M(H) ∈ N, M ≥ x0, with

(9) sM = σ1(M) > 2H and σ1(M) ≥ σ2(M),

and there is a minimal N = N(H) > M with

(10) sN ≤ 1
2
sM .

Of course, M(H) ↗ ∞ as H → ∞. It follows from (9), (10) and the
Tauberian condition (2) that

sN − sM =
N∑

k=M+1

(sk − sk−1) ≥ − c

N∑
k=M+1

Ak,

and
sN − sM ≤ − 1

2
sM < −H.

Hence

(11)
N∑

k=M+1

Ak ≥ sM
2c

>
H

c
→ ∞ as H → ∞.

For x > σ, let

σ(x) =
(M−1∑

k=1

+
N−1∑
k=M

+
∞∑

k=N

)
skck(x) =: τ1(x) + τ2(x) + τ3(x).
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First, by (9),

τ1(x) =
M−1∑
k=1

skck(x) ≥ −σ2(M)
M−1∑
k=1

ck(x) ≥ −σ1(M)
M−1∑
k=1

ck(x).

Second, since N > M is minimal such that (10) holds, we have that

τ2(x) =
N−1∑
k=M

skck(x) >
1
2
sM

N−1∑
k=M

ck(x).

Third, if k ≥ N, then by (2), and since sN−1 > (1/2)sM by (10), we
have that sk − sN−1 =

∑k
ν=N (sν − sν−1) ≥ − c

∑k
ν=N Aν , so that

τ3(x) =
∞∑

k=N

skck(x) = sN−1

∞∑
k=N

ck(x) +
∞∑

k=N

(sk − sN−1)ck(x)

>
1
2
sM

∞∑
k=N

ck(x)− c

∞∑
k=N

k∑
ν=N

Aνck(x).

Altogether we have shown that

σ(x) ≥ − sM

M−1∑
k=1

ck(x) +
1
2
sM

∞∑
k=M

ck(x)− c

∞∑
k=N

k∑
ν=N

Aνck(x),

that is,

(12) σ(x) ≥ sM

(
1
2
− 3
2

M−1∑
k=1

ck(x)
)
− c

∞∑
k=N

k∑
ν=N

Aνck(x).

We consider two cases.

Case (α1). lim supH→∞(N(H)−M(H)) =∞.
Let n = n(m) := [(N(Hm) + M(Hm))/2] such that N − M =

N(Hm)−M(Hm)→ ∞ as m → ∞. Then N−n → ∞ and n−M → ∞
as m → ∞. Put x = xn := −(g′(n)/λ′(n)). Then, by parts (iv) and
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(v) of Lemma 4 and, using that ck(t) → 0 as t → σ+, we get that, as
m → ∞,

M−1∑
k=1

ck(x) ≤ o(1) + c1

M−1∑
k=x1

eh(k,n) ≤ o(1) + c21e
−δγ(n−M+1)/2 → 0,

and

∞∑
k=N

k∑
ν=N

Aνck(x) ≤ c1

∞∑
k=N

k∑
ν=N

eh(k,n)+αν ≤ c21e
−δγ(N−n−1) → 0.

Therefore, by (12) and (9), σ(x) = σ(xn) → ∞, contradicting our
assumption that σ(x) = O(1).

Case (α2). N(H) − M(H) ≤ c2 < ∞ for all H > H0 and some
c2 > 0.

By (11), there exists n ∈ {M + 1, . . . , N} such that

(11′) An ≥ sM
2cc2

>
H

cc2
→ ∞ as H → ∞.

Now choose t = tn ∈ [n− 1, n] such that

(13)
0 = f(n− 1) ≤ f(t) = min

(
αn,

1
2
log sM

)

≤ αn + βn = f(n),

so that f(tn) → ∞, and put x = xn := −(g′(tn)/λ′(tn)). Then, by
parts (i), (iv) and (vi) of Lemma 4 and (13),

M−1∑
k=1

ck(x) ≤ o(1) +
n−2∑
k=x1

ck(x) ≤ o(1) + c1

n−2∑
k=x1

eh(k,n−1)−γf(t)

≤ o(1) + c21e
−γf(tn) → 0,
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and

∞∑
k=N

k∑
ν=N

Aνck(x)

≤
∞∑
k=n

k∑
ν=n

Aνck(x) = An

∞∑
k=n

ck(x) +
∞∑

k=n+1

k∑
ν=n+1

Aνck(x)

≤ c1

∞∑
k=n

eαn+h(k,n)+f(t)−αn + c1

∞∑
k=n+1

k∑
ν=n+1

eh(k,n)+f(t)−αn+αν

≤ c1e
f(t)

∞∑
k=n

eh(k,n) + c1

∞∑
k=n+1

k∑
ν=n+1

eh(k,n)+αν

≤ c21(
√
sM + 1) = o(sM ).

Therefore, by (12) and (9), σ(x) = σ(xn) → ∞, contradicting the
hypothesis that σ(x) = O(1). Thus case (α) leads to a contradiction.

Case (β). σ1(n) < σ2(n) for all n ≥ N0. This implies that σ2(n)→ ∞
as n → ∞ and, since sn � −∞ so that sn ≥ − c̃ > −∞ for infinitely
many n and some c̃ > 0, it follows, by a similar argument to the one
used in case (α), that there exists H0 > 0 such that for all H > H0

there is a minimal N = N(H) ∈ N with

(14) sN = −σ2(N) < −2H and σ1(n) < σ2(n) for all n ≥ N,

and there is a maximal M =M(H) < N , M ≥ x0, with

(15) sM ≥ − 1
2
σ2(N) =

1
2
sN ,

so that sn < sN/2 for M < n ≤ N , by condition (β). Of course,
N(H)↗ ∞ as H → ∞. It follows from (14), (15), and the Tauberian
condition (2) that

sN − sM =
N∑

k=M+1

(sk − sk−1) ≥ − c

N∑
k=M+1

Ak,
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and
sN − sM ≤ 1

2
sN < −H.

Hence

(16)
N∑

k=M+1

Ak ≥ − sN
2c

>
H

c
→ ∞ as H → ∞.

For x > σ, let

σ(x) =
( M∑

k=1

+
N∑

k=M+1

+
∞∑

k=N+1

)
skck(x) =: τ1(x) + τ2(x) + τ3(x).

First, by (14),

τ1(x) =
M∑
k=1

skck(x) ≤ σ1(N)
M∑
k=1

ck(x) ≤ σ2(N)
M∑
k=1

ck(x).

Second, since M < N is maximal such that (15) holds, we have that

τ2(x) =
N∑

k=M+1

skck(x) ≤ − 1
2
σ2(N)

N∑
k=M+1

ck(x) =
1
2
sN

N∑
k=M+1

ck(x).

Third, if k ≥ N + 1, then by (2) sk − sN ≥ − c
∑k

ν=N+1 Aν , so that

σ2(k) = max
1≤ν≤k

(− sν) ≤ − sN + c
k∑

ν=N+1

Aν ,

because σ2(N) = −sN by (15). Hence, by (14),

τ3(x) =
∞∑

k=N+1

skck(x) ≤
∞∑

k=N+1

σ1(k)ck(x) ≤
∞∑

k=N+1

σ2(k)ck(x)

≤ −sN

∞∑
k=N+1

ck(x) + c

∞∑
k=N+1

k∑
ν=N+1

Aνck(x).
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Altogether we have shown that

σ(x) ≤ − sN

M∑
k=1

ck(x) +
1
2
sN

N∑
k=M+1

ck(x)

− sN

∞∑
k=N+1

ck(x) + c

∞∑
k=N+1

k∑
ν=N+1

Aνck(x),

that is

(17)

σ(x) ≤ sN

(
1
2
− 3
2

M∑
k=1

ck(x)− 3
2

∞∑
k=N+1

ck(x)
)

+ c

∞∑
k=N+1

k∑
ν=N+1

Aνck(x).

Again we consider two cases.

Case (β1). lim supH→∞(N(H)−M(H)) =∞.
Let n = n(m) := [(N(Hm) + M(Hm))/2] such that N − M =

N(Hm)−M(Hm)→ ∞ as m → ∞. Then N−n → ∞ and n−M → ∞
as m → ∞. Put x = xn := −(g′(n)/λ′(n)). Then, by parts (iv) and
(v) of Lemma 4, and using that ck(t) → 0 as t → σ+, we get that, as
m → ∞,

M∑
k=1

ck(x) ≤ o(1) + c1

M∑
k=x1

eh(k,n) ≤ o(1) + c21e
−δγ(n−M)/2 → 0,

and (since Ak ≥ 1 for all k)

∞∑
k=N+1

ck(x) ≤
∞∑

k=N+1

k∑
ν=N+1

Aνck(x) ≤ c1

∞∑
k=N+1

k∑
ν=N+1

eh(k,n)+αν

≤ c21e
−δγ(N−n) → 0.

Therefore, by (17) and (14), σ(x) = σ(xn) → −∞, contradicting our
assumption that σ(x) = O(1).
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Case (β2). N(H) − M(H) ≤ c2 < ∞ for all H > H0 and some
c2 > 0. By (16), there exists n ∈ {M + 1, . . . , N} such that

(16′) An ≥ − sN
2cc2

>
H

cc2
→ ∞ as H → ∞.

Now choose t = tn ∈ [n− 1, n] such that

(18) 0 = f(n− 1) ≤ f(t) = αn +
1
2
βn ≤ αn + βn = f(n),

and put x = xn := −(g′(tn)/λ′(tn)). Then, by parts (iv) and (vi) of
Lemma 4, (18) and (16′),

M∑
k=1

ck(x) ≤ o(1) +
n−1∑
k=x1

ck(x) ≤ o(1) + c1

n−1∑
k=x1

eh(k,n−1)+αn−f(t)

≤ o(1) + c1e
−(βn/2)

n−1∑
k=x1

eh(k,n−1) ≤ o(1) + c21A
−1/2
n → 0,

and

∞∑
k=N+1

ck(x) ≤
∞∑

k=N+1

k∑
ν=N+1

Aνck(x) ≤
∞∑

k=n+1

k∑
ν=n+1

Aνck(x)

≤ c1

∞∑
k=n+1

k∑
ν=n+1

eh(k,n)−(αn+βn−f(t))/2+αν

= c1e
−(βn/4)

∞∑
k=n+1

k∑
ν=n+1

eh(k,n)+αν ≤ c21A
−1/4
n → 0.

Therefore, by (17) and (14), σ(x) = σ(xn) → −∞, contradicting the
hypothesis that σ(x) = O(1). Thus case (β) leads to a contradiction,
and this completes the proof of Theorem 5.
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