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MORITA EQUIVALENCE OF C∗-CROSSED
PRODUCTS BY INVERSE SEMIGROUP

ACTIONS AND PARTIAL ACTIONS

NÁNDOR SIEBEN

ABSTRACT. Morita equivalence of twisted inverse semi-
group actions and discrete twisted partial actions are in-
troduced. Morita equivalent actions have Morita equivalent
crossed products.

1. Introduction. Morita equivalence of group actions on C∗-
algebras was studied by Combes [3], Echterhoff [5], Curto, Muhly
and Williams [4] and Kaliszewski [11]. We adapt this notion for both
Busby-Smith and Green type inverse semigroup actions, introduced in
[18] and [19]. We show that Morita equivalence is an equivalence rela-
tion and that Morita equivalent actions have Morita equivalent crossed
products. The close connection between inverse semigroup actions and
partial actions [18], [9], [19] makes it easy to find the notion of Morita
equivalence for discrete twisted partial actions. In Section 4 we work
out some of the details of discrete twisted partial crossed products, con-
tinuing the work started in [8]. The fact that Morita equivalent twisted
partial actions have Morita equivalent crossed products will then fol-
low from the connection with semigroup actions. In [1] Abadie, Eilers
and Exel introduced Morita equivalence of crossed products by Hilbert
bimodules. We show that this definition is equivalent to our definition
of Morita equivalence on the common special case of partial actions by
Z.

2. Preliminaries. In this section we discuss isomorphisms of Hilbert
bimodules. Note that our Hilbert bimodules are not necessarily full.
Our references for Hilbert modules are [10], [12] and [16].

Definition 2.1. The triple (φA, φ, φB) is called an isomorphism
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662 N. SIEBEN

between the Hilbert bimodules AXB and CYD if φA : A → C and
φB : B → D are C∗-algebra isomorphisms and φ : X → Y is a map
such that for all x, y ∈ X and a ∈ A, b ∈ B we have

(a) φ(x · b) = φ(x) · φB(b);
(b) φB(〈x, y〉B) = 〈φ(x), φ(y)〉D;
(c) φ(a · x) = φA(a) · φ(x);
(d) φA(A〈x, y〉) = C〈φ(x), φ(y)〉;
(e) φ is surjective.

The following lemma shows that we can relax some of these condi-
tions. Note that part (ii) is an improvement of [11, Lemma 1.1.3].

Lemma 2.2. With the notations of Definition 2.1 we have

(i) if φ satisfies (b) then it is a linear isometry;

(ii) if φ satisfies (b) then it also satisfies (a);

(iii) if φ satisfies (b) and (c) and CYD is an imprimitivity bimodule
then φ also satisfies (d) and (e) so that it is an isomorphism between
X and Y .

Proof. An easy calculation using (b) and the linearity of φB shows
that ‖φ(λa+ µb)− λφ(a)− µφ(b)‖2 = 0. It is also an isometry since
‖φ(x)‖2 = ‖〈φ(x), φ(x)〉D‖ = ‖φB(〈x, x〉B)‖ = ‖〈x, x〉B‖ = ‖x‖2 .

Part (ii) follows from the following calculation:

‖φ(x · b)− φ(x) · φB(b)‖2
= ‖〈φ(x · b)− φ(x) · φB(b), φ(x · b)− φ(x) · φB(b)〉D‖
= ‖〈φ(x · b), φ(x · b)〉D − 〈φ(x · b), φ(x) · φB(b)〉D
− 〈φ(x) · φB(b), φ(x · b)〉D + 〈φ(x) · φB(b), φ(x) · φB(b)〉D‖

= ‖φB(〈x · b, x · b〉B)− φB(〈x · b, x〉B)φB(b)
− φB(b∗)φB(〈x, x · b〉B) + φB(b∗)φB(〈x, x〉B)φB(b)‖

= 0 .

To show (iii) let Z = φ(X). Then we have
D = φB(B) = φB(span 〈X,X〉B) ⊂ spanφB(〈X,X〉B)
= span 〈φ(X), φ(X)〉D ⊂ span 〈Z,Z〉D ,
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and so D = span 〈Z,Z〉D. Z is a left C-module since

C · Z = φA(A) · φ(X) ⊂ (φA(A) · φ(X))
= φ(A ·X) = φ(X) = Z .

Z is also a right D-module since

Z ·D ⊂ φ(X) · span 〈φ(X), φ(X)〉D
= span (C〈φ(X), φ(X)〉 · φ(X)) ⊂ Z .

Hence Z is a closed subbimodule of Y with full right inner product, and
so Z = Y by the Rieffel correspondence. This shows that φ(X) = Y
since φ is an isometry between Banach spaces. For x, y, z ∈ X we have

φA(A〈x, y〉)φ(z) = φ(A〈x, y〉 · z) = φ(x · 〈y, z〉B)
= φ(x)φB(〈y, z〉B) = φ(x)〈φ(y), φ(z)〉D
= C〈φ(x), φ(y)〉 · φ(z) ,

which implies condition (d) by a standard Hilbert module argument.

Note that the proof of (iii) shows that if φ satisfies (b) and (c) then φ
is an isomorphism of X onto a C −D Hilbert subbimodule of Y . Also
note that the statements of the lemma remain true if we interchange
condition (b) with (d) and condition (c) with (a).

The proof of the following lemma is an easy application of Lemma
2.2.

Lemma 2.3. (id, φ, id) is an isomorphism between the Hilbert
bimodules AXB and AYB if and only if (id, φ, id) is an isomorphism
between the corresponding imprimitivity bimodules A0XB0 and C0YD0 .

3. Morita equivalent twisted actions. Recall from [17] that if
AXB is an imprimitivity bimodule then there is a bijective correspon-
dence, often called the Rieffel correspondence, between closed subbi-
modules of X and closed ideals of A. If I is a closed ideal of A then
I · X is a closed subbimodule of X. Note that by the Cohen-Hewitt
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factorization theorem we do not have to take the closure of I ·X. Sim-
ilarly X · J is a closed subbimodule of X if J is a closed ideal of B.
On the other hand, if Y is a closed subbimodule of X then IYJ is an
imprimitivity bimodule, where I is the closed span of A〈Y, Y 〉 and J is
the closed span of 〈Y, Y 〉B. We call IYJ an imprimitivity subbimodule
of X.

Definition 3.1. A partial automorphism of the imprimitivity bimod-
ule AXB is an isomorphism between two imprimitivity subbimodules
of X. We denote the set of partial automorphisms by PAut (X).

Let A be a C∗-algebra, and let S be a unital inverse semigroup with
idempotent semilattice E, and unit e. Recall from [19] that a Busby-
Smith twisted action of S on A is a pair (β, v), where for all s ∈ S,
βs : As∗ → As is a partial automorphism, that is, an isomorphism
between closed ideals of A, and for all s, t ∈ S, vs,t is a unitary
multiplier of Ast, such that for all r, s, t ∈ S we have
(a) Ae = A;

(b) βsβt = Ad vs,t ◦ βst;
(c) vs,t = 1M(Ast) if s or t is an idempotent;

(d) βr(avs,t)vr,st = βr(a)vr,svrs,t for all a ∈ Ar∗Ast.
We refer to condition (d) as the cocycle identity.

Also recall that a covariant representation of a Busby-Smith twisted
action (A,S, β, v) is a triple (π, V,H), where π is a nondegenerate
representation of A on the Hilbert space H and Vs is a partial isometry
for all s ∈ S, such that for all r, s ∈ S we have
(a) Vs has initial space π(As∗)H and final space π(As)H;

(b) VrVs = π(vr,s)Vrs;

(c) π(βs(a)) = Vsπ(a)V ∗
s for a ∈ As∗ .

Definition 3.2. The Busby-Smith twisted actions (A,S, α, u) and
(B,S, β, v) are Morita equivalent if there is an imprimitivity bimodule
AXB and a map s 
→ (αs, φs, βs) : S → PAut (X) such that φs : Xs∗ →
Xs where Xs := As ·X = X ·Bs and for all s, t ∈ S we have

φsφt = us,t · φst(·) · v∗s,t .
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We say that (X,φ) is a Morita equivalence between (α, u) and (β, v),
and we write

(A,S, α, u) ∼X,φ (B,S, β, v) .

Note that φsφt and φst have the same range Xst and so Xst ⊂ Xs.

Lemma 3.3. Using the notations of Definition 3.2 we have

(a) φs(Xs∗ ·Bt) = Xst;

(b) φs(As∗ ·Xt) = Xst;

(c) spanαs(A〈Xs∗ , Xt〉) = Ast,

for all s, t ∈ S.

Proof. We know from [19] that βs(Bs∗Bt) = Bst and so we have

φs(Xs∗ ·Bt) = φs(Xs∗ ·Bs∗Bt) = φs(Xs∗) ·βs(Bs∗Bt) = Xs ·Bst = Xst ,

showing (a). A similar calculation shows (b). Finally (c) follows from
the calculation:

spanαs(A〈Xs∗ , Xt〉) = spanαs(A〈As∗ ·Xs∗ , Xt〉)
= spanαs(A〈Xs∗ , As∗ ·Xt〉)
= spanA〈φs(Xs∗), φs(As∗ ·Xt)〉
= spanA〈Xs, Xst〉 = Ast .

Proposition 3.4. Morita equivalence of Busby-Smith twisted actions
is an equivalence relation.

Proof. It is easy to see that (A,S, α, u) ∼A,α (A,S, α, u). It is also
easy to check that if (A,S, α, u) ∼X,φ (B,S, β, v), then (B,S, β, v) ∼X̃,φ̃
(A,S, α, u), where φ̃(x̃) = φ(x)˜. To show transitivity, suppose

(A,S, α, u) ∼X,φ (B,S, β, v) ∼Y,ψ (C, S, γ, w) .
Let Z be the balanced tensor product X ⊗B Y , that is, the Hausdorff
completion of X 
 Y in the C-valued inner product determined by

〈x1 ⊗ y1, x2 ⊗ y2〉C := 〈y1, 〈x1, x2〉B · y2〉C .
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It is well known that Z is an A − B imprimitivity bimodule. We are
going to define a map θ such that (A,S, α, u) ∼Z,θ (C, S, γ, w) . For all
s ∈ S we have

Zs = (X ⊗B Y ) · Cs = X ⊗B (Y · Cs)
= X ⊗B (Bs · Ys) = (X ·Bs)⊗B Ys = Xs ⊗B Ys .

For all s ∈ S the map θ′ : Xs∗×Ys∗ → Zs defined by θ′(x, y) = φs(x)⊗
ψs(y) is bilinear, and so we have a linear map θ′′s : Xs∗ 
 Ys∗ → Zs
satisfying θ′′s∗(x ⊗ y) = θ′(x, y). The following computation suffices to
check that θ′′ is isometric:
〈θ′′s (x1 ⊗ y1), θ′′s (x2 ⊗ y2)〉C = 〈φs(x1)⊗ ψs(y1), φs(x2)⊗ ψs(y2)〉C

= 〈ψs(y1), 〈φs(x1), φs(x2)〉B · ψs(y2)〉C
= 〈ψs(y1), ψs(〈x1, x2〉B · y2)〉C
= γs(〈y1, 〈x1, x2〉B · y2〉C)
= γs(〈x1 ⊗ y1, x2 ⊗ y2〉C) .

So θ′′s extends uniquely to an isometric linear map θs : Zs∗ → Zs. The
above calculation also shows that θs satisfies Definition 2.1(b), and it
is routine to check Definition 2.1(c). Finally for all s, t ∈ S, we have

θsθt = φsφt ⊗ ψsψt = us,t · φst(·) · v∗s,t ⊗ vs,t · ψst(·) · w∗
s,t

= us,t · φst(·)⊗ v∗s,tvs,t · ψst(·) · w∗
s,t = us,t · θst · w∗

s,t .

Recall [2] that two projections p and q in the multipliers of a C∗-
algebra C are called complementary if p+ q = 1. The two corners pCp
and qCq are also called complementary. The projection p is called full if
the corner pCp is full, which means pCp is not contained in any proper
ideal of C or equivalently CpC is dense in C. If the C∗-algebras A and
B are Morita equivalent, then they are isomorphic to complementary
full corners of the linking C∗-algebra

C =
(
A X
X̃ B

)
.

In fact, we can identify A and B with pCp and qCq, respectively, where
p =

(
1 0

0 0

)
and q =

(
0 0

0 1

)
. Here we identified the multiplier algebra

M(C) with (
M(A) M(X)
M(X̃) M(B)

)
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as in [6, Appendix]. On the other hand if two C∗-algebras are
isomorphic to complementary full corners of a C∗-algebra, then they
are Morita equivalent.

Note that if the actions (A,S, α, u) and (B,S, β, w) are Morita equiv-
alent, then the C∗-algebras A and B are also Morita equivalent. We
have a natural action of S on the linking algebra of A and B:

Proposition 3.5. If (A,S, α, u) ∼X,φ (B,S, β, v), then the formulas

γs

(
a x
ỹ b

)
=

(
αs(a) φs(x)
φs(y)˜ βs(b)

)
, ws,t =

(
us,t 0
0 vs,t

)

define a Busby-Smith twisted action (C, S, γ, w) on the linking algebra
C of AXB. Moreover, (Y, γ(·)|Y ) implements a Morita equivalence
between (C, S, γ, w) and (B,S, β, v), where Y =

(
0 X

0 B

)
⊂ C .

Proof. It is well known that CYB is an imprimitivity bimodule
if Y inherits the inner products from the C∗-algebra C, that is,

C〈y1, y2〉 = y1y
∗
2 for all y1, y2 ∈ Y and 〈

(
0 x

0 b

)
,
(

0 z

0 d

)
〉B = 〈x, z〉B+b∗d

for all x, z ∈ X and b, d ∈ B. It is easy to check that

Cs =
(
As Xs

X̃s Bs

)

is the closed ideal of C which is in Rieffel correspondence with Bs via
the imprimitivity bimodule CYB. The calculation

γs

((
a x
ỹ b

) (
c z
w̃ d

))
=

(
αs(ac) + αs(A〈x,w〉) φs(a · z + x · d)
φs(c · y + w · b)˜ βs(〈y, z〉B + bd)

)

=
(
αs(a) φs(x)
φs(y)˜ βs(b)

)(
αs(c) φs(z)
φs(w)˜ βs(d)

)

= γs

(
a x
ỹ b

)
γs

(
c z
w̃ d

)

shows that γs is a homomorphism for all s ∈ S. It is easy to verify that
γs preserves adjoints and is bijective, hence is an isomorphism between
Cs∗ and Cs. We only check the cocycle identity in the definition of
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Busby-Smith twisted actions. It suffices to show that for a ∈ Ar∗Ast,
b ∈ Br∗Bst and x, y ∈ Xr∗ ∩Xst,

γr

((
a x
ỹ b

)
ws,t

)
=

(
αr(aus,t)ur,st φr(x · vs,t)
φr(us,t · y)˜ βr(bvs,t)vr,st

)

and

γr

(
a x
y∗ b

)
wr,swrs,t =

(
αr(a)ur,surs,t φr(x) · vr,svrs,t
φr(y)˜ · ur,surs,t βr(b)vr,svrs,t

)

are the same. The diagonals are clearly equal. We check the upper
right corner. Since x = xr ·ar for some xr ∈ Xr∗ and ar ∈ Ar∗ we have

φr(x · vs,t)vr,st = φr(xr · arvs,t) = φr(xr)βr(arvs,t)
= φr(xr)βr(ar)vr,svrs,t = φr(x)vr,svrs,t .

The equality of the lower left corners follows similarly. For the other
part, the conditions of Definition 3.2 for the pair (Y, γ(·)|Y ) follow from
routine calculations.

A similar proof shows that in the previous theorem (C, S, γ, w) and
(A,S, β, v) are also Morita equivalent. Recall [19] that two Busby-
Smith twisted actions (α, u) and (β,w) of S on A are exterior equivalent
if for all s ∈ S there is a unitary multiplier Vs of Es such that for all
s, t ∈ S
(a) βs = Ad Vs ◦ αs;
(b) ws,t = Vsαs(1M(Es∗ )Vt)us,tV ∗

st.

Theorem 3.6. If the twisted actions (A,S, α, u) and (A,S, β, w) are
exterior equivalent, then they are also Morita equivalent.

Proof. Let V implement an exterior equivalence between (α, u) and
(β,w). We show that (A, φ) implements the Morita equivalence, where
φs : As∗ → As is defined by φs(a) = αs(a)V ∗

s . For a, b, x ∈ As∗ we
have

φs(x · b) = αs(x)αs(b)V ∗
s = αs(x)V ∗

s βs(b) = φs(x) · φB(b)
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verifying Definition 2.1(a). If x, y ∈ Xs∗ = As∗ , then we have

αs(A〈x, y〉) = αs(xy∗) = αs(x)V ∗(αs(y)V ∗)∗ = A〈φs(x), φs(y)〉,

which verifies Condition 2.1(d). By the note after Lemma 2.2, it
remains to observe that if x ∈ X(st)∗ = A(st)∗ then

(φsφt)(x) = αs(αt(x)V ∗
t )V

∗
s

= αs(αt(x))us,tV ∗
stVstu

∗
s,tαs(1M(As∗ )Vt)∗V ∗

s

= us,tφst(x)w∗
s,t .

Recall [17] that if AXB is an imprimitivity bimodule then every
representation π of B on a Hilbert space H induces a representation
πX of A on the Hilbert space HX defined by πX(a)(x⊗ ξ) = (a ·x)⊗ ξ,
where HX is the Hausdorff completion X ⊗B H of the algebraic tensor
product X 
H in the seminorm generated by the semi-inner product

(x⊗ ξ | y ⊗ η) := (π(〈y, x〉B)ξ | η)H = (ξ | π(〈x, y〉B)η))H .

Note that (x · b)⊗ ξ = x⊗ π(b)ξ for all x ∈ X, b ∈ B and ξ ∈ H. The
following is the semigroup version of [3, Section 2].

Theorem 3.7. If (A,S, α, u) ∼X,φ (B,S, β, v), then every covariant
representation (π, V,H) of (β, v) induces a covariant representation
(πX , V X , HX) of (α, u) on the Hilbert space HX = X ⊗B H, where
πX is as above and

V X
s (x⊗ ξ) = φs(x)⊗ Vs(ξ)

for all elementary tensors x⊗ ξ ∈ HX
s∗ = Xs∗ ⊗B H.

Proof. First note that if x ∈ Xs and ξ ∈ H then x = y · b for some
y ∈ Xs and b ∈ Bs; hence, x ⊗ ξ = (y · b) ⊗ ξ = y ⊗ π(b)ξ. So HX

s =
Xs ⊗B Hs where Hs = π(Bs)H = VsH. To show the existence of V X

s ,
define T : Xs∗ ×H → Xs⊗B Hs by T (x, ξ) = φs(x)⊗ Vsξ. T is clearly
bilinear so there is a unique linear map T ′ : Xs∗ 
Hs∗ → Xs∗ ⊗B Hs∗
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such that T ′(x ⊗ ξ) = T (x, ξ). We check that T ′ is isometric. For
x, y ∈ Xs∗ and ξ, η ∈ Hs we have

(T ′(x⊗ ξ) | T ′(y ⊗ η))HX = (φs(x)⊗ Vsξ | φs(y)⊗ Vsη)HX

= (π(〈φs(y), φs(x)〉B)Vsξ | Vsη)H
= (π(βs(〈y, x〉B))Vsξ | Vsη)H
= (Vsπ(〈y, x〉B)ξ | Vsη)H
= (π(〈y, x〉B)ξ | η)H = (x⊗ ξ | y ⊗ η)HX .

So T ′ determines an isometry T ′′ from HX
s∗ to HX

s . If we define V X
s

to be T ′′ on HX
s∗ and 0 on (HX

s∗)⊥ then V X
s is a partial isometry with

initial space HX
s∗ = (As∗ ·X)⊗B H = πX(As∗)HX . It follows that the

final space of V X
s is πX(As)HX .

We can check the covariance condition for elementary tensors. Let
a ∈ As∗ and x ⊗ ξ ∈ X 
 H. Since H = Hs ⊕ H⊥

s , we only need to
consider the two cases ξ ∈ Hs and ξ ∈ H⊥

s . If ξ ∈ Hs then ξ = π(ab)η
for some a, b ∈ As and η ∈ H. Hence x ⊗ ξ = x · a ⊗ π(b)η and so we
can assume that x ∈ Xs. Thus,

V X
s πX(a)(V X

s )
∗(x⊗ ξ) = φs(a · φ−1

s (x))⊗ VsV
∗
s (ξ)

= (αs(a) · x)⊗ ξ = πX(αs(a))(x⊗ ξ) .

On the other hand if ξ ∈ (Hs)⊥ then for all y ∈ Xs and η ∈ H we have

(x⊗ ξ | y ⊗B η)H = (ξ | π(〈x, y〉B)η)H = 0
and so x⊗ ξ ∈ (HX

s )⊥. This means (V X
s )∗(x⊗ ξ) = 0. Since αs(a) · x

is in Xs it is of the form y · b for some y ∈ X and b ∈ Bs. Thus,
πX(αs(a))(x⊗ ξ) = (αs(a) · x)⊗ ξ = y ⊗ π(b)ξ = 0

as well.

Of course the inducing process works the other way too, that is, every
covariant representation of α induces a covariant representation of β.

Recall [19] that the crossed product A ×α,u S of a Busby-Smith
twisted action (A,S, α, u) is the Hausdorff completion of the Banach
∗-algebra

Lα = {x ∈ l1(S,A) : x(s) ∈ As for all s ∈ S}
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with operations

(x ∗ y)(s) =
∑
rt=s

αr(α−1
r (x(r))y(t))ur,t

and
x∗(s) = us,s∗αs(x(s∗)∗)

in the C∗-seminorm ‖ · ‖α defined by

‖x‖α = sup{‖(π × V )(x)‖ : (π, V ) is a covariant
representation of (A,S, α, u)}.

Alternatively, generalizing Paterson’s approach [14] to the twisted case,
we could define

‖x‖α = sup{‖φ(x)‖ : φ is a coherent representation of Lα}

where a representation φ of Lα is coherent if it satisfies φ(aχss∗) =
φ(aχe) for all s ∈ S. So if Iα is the closed ideal generated by elements of
the form aχss∗−aχe, then the crossed product A×αS is the enveloping
C∗-algebra of Lα/Iα.

If χs denotes the characteristic function of {s}, then aχs is an element
of Lα for all a ∈ As. The canonical image of aχs in A ×α,u S will be
denoted by aδs. Then A×α,u S is the closed span of {aδs : a ∈ As, s ∈
S}. Note that we have the following formulas:

asδs ∗ atδt = αs(α−1
s (as)at)us,tδst

(aδs)∗ = α−1
s (a

∗)u∗s∗,sδs∗ .

The idea of the proof of the following theorem comes from [3, 4] and
[11].

Theorem 3.8. If (A,S, α, u) and (B,S, β, v) are Morita equivalent
actions, then the crossed products A×α,uS and B×β,vS are also Morita
equivalent.

Proof. Let (X,φ) be a Morita equivalence, and let (γ, w) be the
Busby-Smith twisted action of S on the linking algebra C of AXB as
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in Proposition 3.5. It suffices to show that A×α,u S and B ×β,v S are
complementary full corners of C ×γ,w S. Let

p =
(
1M(A) 0
0 0

)
and q =

(
0 0
0 1M(B)

)
.

It is clear that pδe and qδe are complementary projections inM(C×γ,w
S). We show that qδe is a full projection. If

c =
(
as xs
ỹs bs

)
∈ Cs and d =

(
at xt
ỹt bt

)
∈ Ct

then

cδs ∗ qδe ∗ dδt =
(
us,tαs(A〈φ−1

s (xs), yt〉) φs(φ−1
s (xs) · bt) · vs,t

φs(β−1
s (bs) · yt)˜ · us,t βs(β−1

s (bs)bt)vs,t

)
δst .

We can check fullness on the four corners, and this can be done easily
using Lemma 3.3. A similar calculation shows that pδe is also full.

Now we show that B ×β,v S = qδe ∗ (C ×γ,w S) ∗ qδe. We use the
fact that B ×β,v S is the Hausdorff completion Lβ

‖·‖β of Lβ in the
greatest C∗-seminorm ‖ · ‖β coming from covariant representations of

(β, v), while C ×γ,w S is the Hausdorff completion Lγ
‖·‖γ of Lγ in the

greatest C∗-seminorm ‖ · ‖γ coming from covariant representations of
(γ, w). Since

qδe(C ×γ,w S)qδe = qδe(Lγ
‖·‖γ )qδe = qχe ∗ Lγ ∗ qχe ‖·‖γ = Lβ

‖·‖γ
,

it suffices to show that the seminorms ‖ · ‖β and ‖ · ‖γ are the same on
Lβ , where we regard Lβ as a subspace of Lγ . If (π, V ) is a covariant
representation of (γ, w) then (π|B, π(q)V ) is a covariant representation
of (β, v) and so ‖ · ‖γ ≤ ‖ · ‖β on Lβ. On the other hand, a covariant
representation (π, V,H) of (β, v) induces a covariant representation
(πY , V Y , HY ) of (γ, w), where Y =

(
0 X

0 B

)
, HY = Y ⊗B H and

πY
(
a x
ỹ b

) ((
0 z
0 d

)
⊗ ξ

)
=

(
0 a · z + x · d
0 〈y, z〉B + bd

)
⊗ ξ ,

V Y
s

((
0 z
0 d

)
⊗ ξ

)
=

(
0 φs(z)
0 βs(d)

)
⊗ Vsξ .
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The image of
(

0 0

0 b

)
χs ∈ Lβ under πY ×V Y evaluated at an elementary

tensor
(

0 z

0 d

)
⊗ ξ of HY is

πY
(
0 0
0 b

)
V Y
s

((
0 z
0 d

)
⊗ ξ

)
=

(
0 0
0 bβs(d)

)
⊗ Vsξ

=
(
0 0
0 b

)
⊗ π(βs(d))Vsξ

=
(
0 0
0 b

)
⊗ Vsπ(d)ξ .

If d ∈ B and ξ ∈ H, then
∥∥∥∥

(
0 0
0 d

)
⊗ ξ

∥∥∥∥
2

HY

=
( (

0 0
0 d

)
⊗ ξ |

(
0 0
0 d

)
⊗ ξ

)
HY

=
(
π

(〈(
0 0
0 d

)
,

(
0 0
0 d

)〉
B

)
ξ | ξ

)
H

= (π(d∗d)ξ | ξ)H = (π(d)ξ | π(d)ξ)H
= ‖π(d)ξ‖2H .

Hence, if bi ∈ Bsi
for all i = 1, . . . , n and f =

∑n
i=1 biχsi

∈ Lβ , then
∥∥∥∥πY × V Y (f)

((
0 0
0 d

)
⊗ ξ

)∥∥∥∥
HY

= ‖π × V (f)π(d)ξ‖H .

On the other hand,

‖π × V (f)‖ = sup
{‖π × V (f)π(d)ξ‖H

‖π(d)ξ‖H : d ∈ B, ξ ∈ H
}

= sup



‖πY × V Y (f)

((
0 0
0 d

)
⊗ ξ

)
‖HY

∥∥∥∥
(
0 0
0 d

)
⊗ ξ

∥∥∥∥
HY

: d ∈ B, ξ ∈ H




≤ ‖πY × V Y (f)‖

which implies that ‖ ·‖γ ≥ ‖·‖β on Lβ. A similar argument shows that
A×α,u S = pδe ∗ (C ×γ,w S) ∗ pδe.
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The proof also shows that if we use the notation X ×u,φ,v S :=
pδe(C ×γ,w S)qδe or simply X × S, then

A×α,u S ∼X×S B ×β,v S .

We now have two different ways to induce representations of A×α S
from representations of B ×β S. The next result shows that they are
essentially the same. For simplicity we only state the untwisted version
of the result because that is all we need later. The proof closely follows
that of similar results in [5] and [11], and goes back ultimately to [3].

Proposition 3.9. If (A,S, α) ∼X,φ (B,S, β) and π × V is a
representation of B ×β S on H, then the induced representations
πX × V X and (π × V )X×φS are unitarily equivalent.

Proof. Let Y = X ×φ S. The map

T ′ : X ×H −→ HY

defined by

T ′(x, ξ) =
(
0 x
0 0

)
δe ⊗ ξ

is bilinear and so there is a unique linear map T ′′ : X 
H → HY such
that T ′′(x⊗ ξ) = T ′(x, ξ). We check that T ′′ is isometric. For x, y ∈ X
and ξ, η ∈ H we have

(T ′′(x⊗ ξ) | T ′′(y ⊗ η))HY

=
((

0 x
0 0

)
δe ⊗ ξ |

(
0 y
0 0

)
δe ⊗ η

)
HY

=
(
(π × V )

(〈(
0 y
0 0

)
δe,

(
0 x
0 0

)
δe

〉
B×βS

)
ξ | η

)
H

=
((
π × V

)
(〈y, x〉Bδe)ξ | η

)
H
=

(
π(〈y, x, 〉B)ξ | η

)
H

= (x⊗ ξ | y ⊗ η)HX .

So we have an isometry T : HX → HY such that T (x ⊗ ξ) =(
0 x

0 0

)
δe ⊗ ξ. T is onto since if xs ∈ Xs and ξ ∈ H then there are
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x ∈ X and b ∈ Bs such that xs = x · b and so
(
0 xs
0 0

)
δs ⊗ ξ =

(
0 x
0 0

)
δe

(
0 0
0 b

)
δs ⊗ ξ

=
( (

0 x
0 0

)
δe · bδs

)
⊗ ξ

=
(
0 x
0 0

)
δe ⊗ π × V (bδs)ξ

= T (x⊗ π(b)Vsξ) .

Carrying the above calculation a little further, we have
(
0 xs
0 0

)
δs ⊗ ξ = T ((x · b)⊗ Vsξ) =

(
0 xs
0 0

)
δe ⊗ Vsξ ,

and we need this fact in the verification that T intertwines πX × V X

and (π × V )Y : for a ∈ As and x⊗ ξ ∈ X 
H we have

(π × V )Y (aδs)T (x⊗ ξ) =
(
aδs ·

(
0 x
0 0

)
δe

)
⊗ ξ

=
( (

a 0
0 0

)
δs

(
0 x
0 0

)
δe

)
⊗ ξ

= γs

(
γ−1
s

(
a 0
0 0

) (
0 x
0 0

) )
δs ⊗ ξ

=
(
0 φs(α−1

s (a) · x)
0 0

)
δs ⊗ ξ

=
(
0 φs(α−1

s (a) · x)
0 0

)
δe ⊗ Vsξ

= T (φs(α−1
s (a) · x)⊗ Vsξ)

= TV X
s πX(α−1

s (a))(x⊗ ξ)
= TπX(a)V X

s (x⊗ ξ)
= T (πX × V X)(aδs)(x⊗ ξ) .

Let A be a C∗-algebra, let S be a unital inverse semigroup with
idempotent semilattice E and let N be a normal Clifford subsemigroup
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of S. Recall from [19] that a subsemigroup N of S is a normal Clifford
subsemigroup if it is normal, that is, E ⊂ N and sNs∗ ⊂ N , and it is
also Clifford, that is, n∗n = nn∗ for all n ∈ N . Also recall from [19]
that a Green twisted action of (S,N) on A is a pair (γ, τ), where γ is an
inverse semigroup action of S on A (that is, a semigroup homomorphism
s 
→ (γs, As∗ , As) : S → PAut (A) with Ae = A) and τn is a unitary
multiplier of An for all n ∈ N , such that for all n, l ∈ N we have

(a) γn = Ad τn;

(b) γs(τn) = τsns∗ for all s ∈ S with n∗n ≤ s∗s;

(c) τnτl = τnl.

The following is the semigroup version of [5, Definition 1].

Definition 3.10. The Green twisted actions (A,S,N, α, τ) and
(B,S,N, β, ρ) are Morita equivalent if there is a Morita equivalence
(X,φ) between the untwisted actions (A,S, α) and (B,S, β) such that
τn · x = φn(x) · ρn for all n ∈ N and x ∈ Xn. We say that (X,φ) is a
Morita equivalence between (A,S,N, α, τ) and (B,S,N, β, ρ), and we
write (A,S,N, α, τ) ∼X,φ (A,S,N, β, ρ).

The proof of the following theorem is modeled on Echterhoff’s proof
[5] in the group case.

Theorem 3.11. If (A,S,N, α, τ) and (B,S,N, β, ρ) are Morita
equivalent Green twisted actions, then the crossed products A ×α,τ S
and A×β,ρ S are also Morita equivalent.

Proof. Let (X,φ) be a Morita equivalence. Suppose (π, V,H) is
a covariant representation of β which preserves the twist, that is,
π(ρn) = Vn for all n ∈ N . The induced representation (πX , V X , HX)
of α also preserves the twist, since if x, y ∈ Xn and ξ, η ∈ Hn then

(πX(τn)(x⊗ ξ) | y ⊗ η)HX = (τn · x⊗ ξ | y ⊗ η)HX

= (π(〈y, τn · x〉B)ξ | η)H
= (π(〈y, φn(x)〉Bρn)ξ | η)H
= (π(〈y, φn(x)〉B)Vnξ | η)H
= (V X

n (x⊗ ξ) | y ⊗ η)HX
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and so πX(τn) = V X
n . A similar calculation shows that if (πX , V X)

preserves the twist then so does (π, V ). By [17, Proposition 3.3] the
kernels of π × V and (π × V )X×φS are in Rieffel correspondence. By
Proposition 3.9, πX × V X and (π × V )X×φS have the same kernel.
Hence the twisting ideals of Iτ and Iρ are in Rieffel correspondence
and so the quotients are Morita equivalent by [17, Corollary 3.2].

4. Connection with twisted partial actions. The close con-
nection between partial actions and inverse semigroup actions [18], [9],
[19] makes it possible to get quick results about the Morita equivalence
of crossed products of twisted partial actions. First recall the definition
of a twisted partial action from [8].

Definition 4.1. A (discrete) twisted partial action of a group G on
a C∗-algebra A is a pair (α, u), where for all s ∈ G, αs : As−1 → As
is a partial automorphism of A, and for all r, s ∈ G, ur,s is a unitary
multiplier of ArArs, such that for all r, s, t ∈ G we have

(a) Ae = A, and αe is the identity automorphism of A;

(b) αr(Ar−1As) = ArArs;

(c) αr(αs(a)) = ur,sαrs(a)u∗r,s for all a ∈ As−1As−1r−1 ;

(d) ue,t = ut,e = 1M(A);

(e) αr(aus,t)ur,st = αr(a)ur,surs,t for all a ∈ Ar−1AsAst.

Definition 4.2. The twisted partial actions (A,G, α, u) and
(B,G, µ,w) are Morita equivalent if there is an imprimitivity bimod-
ule AXB and a map s 
→ (αs, φs, µs) : G → PAut (X), such that
φs : Xs∗ → Xs where Xs = As · X = X · Bs and for all s, t ∈ G and
x ∈ X ·Bt−1s−1Bt−1 , we have

φsφt(x) = us,t · φst(x) · w∗
s,t .

We say that (X,φ) is a Morita equivalence between (A,G, α, u) and
(B,G, θ, w), and we write

(A,G, α, u) ∼X,φ (B,G, µ,w) .

Recall from [9] that, for a group G, the associated inverse semigroup
S(G) has elements written in canonical form [g1][g−1

1 ] · · · [gm][g−1
m ][s],
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where g1, . . . , gn, s ∈ G, and the order of the [gi][g−1
i ] terms is irrelevant.

Multiplication and inverses are defined by

[g1][g−1
1 ] · · · [gm][g−1

m ][s] · [h1][h−1
1 ] · · · [hm][h−1

m ][t]
= [g1][g−1

1 ] · · · [gm][g−1
m ][s][s−1][sh1][(sh1)−1] · · · [shm][(shm)−1][st]

and

([g1][g−1
1 ] · · · [gm][g−1

m ][s])∗

= [s−1gm][(s−1gm)−1] · · · [s−1g1][(s−1g1)−1][s−1] .

Thus [e] is an identity element for S(G) if e is the identity of G,
so we can write [g1][g−1

1 ] · · · [gm][g−1
m ] for [g1][g−1

1 ] · · · [gm][g−1
m ][e], and

these are the idempotents of S(G). Recall from [19, Section 4] that if
(A,G, α, u) is a twisted partial action, then the corresponding Busby-
Smith twisted action (A,S(G), β, v) is defined by

Ap = Ag1 · · ·Agm
As

βp = αg1α
−1
g1 · · ·αgm

α−1
gm
αs

vp,q = 1M(Apq)us,t ,

where

p = [g1][g−1
1 ] · · · [gm][g−1

m ][s], q = [h1][h−1
1 ] · · · [hn][h−1

n ][t] .

Theorem 4.3. The twisted partial actions (A,G, α, u) and (B,G, µ,w)
are Morita equivalent if and only if the corresponding Busby-Smith
twisted actions (A,S(G), β, v) and (B,S(G), ν, z) are Morita equiva-
lent.

Proof. Suppose (A,S(G), β, v) ∼X,φ (A,S(G), ν, z). If we identify the
element s ∈ G with [s] ∈ S(G), then φ : G → PAut (X). For s, t ∈ G
and x ∈ X ·Bt−1s−1Bt−1 , we have

φsφt(x) = φ[s]φ[t](x) = v[s],[t] · φ[s][t](x) · z∗[s],[t]
= v[s],[t] · φ[st][t−1][t](x) · z∗[s],[t]
= v[s],[t]v

∗
[st],[t−1][t] · φ[st]φ[t−1][t](x) · z[st],[t−1][t]z

∗
[s],[t]

= us,t · φ[st](x) · w∗
s,t since, e.g., v[st],[t−1][t] = 1M(A[s][t])

= us,t · φst(x) · w∗
s,t .
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Now suppose (A,G, α, u) ∼X,φ (B,G, µ,w). We can extend φ to S(G)
by defining

φp = φg1φ
−1
g1 · · ·φgm

φg−1
m
φs

for p = [g1][g−1
1 ] · · · [gm][g−1

m ][s] ∈ S(G). We verify Definition 2.1(d). If
x, y ∈ Xp∗ = X ·Bp∗ = BsBg−1

m
Bg−1

m g−1
m−1
· · ·Bg−1

m ···g−1
1

,

then

βp(A〈x, y〉) = αg1α
−1
g1
· · ·αgm

α−1
gm
αs(A〈x, y〉)

= A〈φg1φ−1
g1 · · ·φgm

φ−1
gm
φs(x), φg1φ

−1
g1 · · ·φgm

φ−1
gm
φs(y)〉

= A〈φp(x), φp(y)〉 .
Similar calculations show that Definition 2.1(a) is also satisfied, which
is enough by Lemma 2.2.

Starting with a twisted partial action (A,G, α, u), Exel [9] builds a
semidirect product C∗-algebraic bundle B over G in the sense of Fell.
He defines [9] the crossed product A×α,uG as the enveloping C∗-algebra
of the cross sectional algebra L1(B). We show that the corresponding
Busby-Smith twisted action has an isomorphic crossed product:

Proposition 4.4. If the Busby-Smith twisted action (A,S(G), β, w)
corresponds to the twisted partial action (A,G, α, u), then the crossed
products A×α,u G and A×β,w S(G) are isomorphic.

Proof. We are going to show that the Banach ∗-algebras Lβ/Iβ and
L1(B) are isomorphic, which suffices since the crossed products are the
enveloping C∗-algebras. The formula

φ′(aχ[g1]···[g−1
n ][s]) := aχs

defines a bounded ∗-homomorphism φ′ : Lβ → L1(B). Since

φ′(aχ[g1]···[g−1
n ][e] − aχ[e]) = aχe − aχe = 0 ,

φ′ takes Iβ to 0 and hence determines a bounded ∗-homomorphism
φ : Lβ/Iβ → L1(B). Going the other way, the formula

ψ(aχs) := aχ[s] + Iβ
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defines a bounded ∗-homomorphism ψ : L1(B) → Lβ . It is clear that
ψ ◦ φ is the identity map. To show that ψ ◦ φ is also the identity map,
consider ψ◦φ(aχ[g1]···[g−1

n ][s]+Iβ) = aχ[s]+Iβ. We can choose elements
b, c ∈ A[g1]···[g−1

n ][s] such that a = bc. Hence

aχ[g1]···[g−1
n ][s] − aχ[s] = (bχ[g1]···[g−1

n ] − bχ[e]) ∗ cχ[s] ∈ Iβ .

Using Theorems 3.8 and 4.3 we now have:

Corollary 4.5. Morita equivalent twisted partial actions have Morita
equivalent crossed products.

We now develop the basic theory of covariant representations for
twisted partial actions, generalizing [13, Proposition 2.8] and [15,
Section 3].

Definition 4.6. A covariant representation of a twisted partial
action (A,G, α, u) is a triple (π, U,H), where π is a nondegenerate
representation of A on the Hilbert space H and for all s ∈ G, Us is a
partial isometry on H such that

(a) Us has initial space π(As−1)H and final space π(As)H;

(b) UsUt = π(us,t)Ust for all s, t ∈ G;
(c) π(αs(a)) = Usπ(a)U∗

s for all a ∈ As−1 .

Note that we have Us∗ = π(us∗,s)U∗
s for all s ∈ G. Every covariant

representation gives a representation of the cross-sectional algebra.

Definition 4.7. The integrated form π × U : L1(B)→ B(H) of the
covariant representation (π, U) is defined by

(π × U)(x) =
∑
s∈G

π(x(s))Us ,

where the series converges in norm.

The proof of the following proposition is essentially the same as that
of [19, Proposition 3.5].
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Proposition 4.8. π×U is a nondegenerate representation of L1(B).

Lemma 4.9. Let (A,S(G), β, v) be a Busby-Smith twisted action
corresponding to the twisted partial action (A,G, α, u). If (π, V ) is a
covariant representation of (β, v) then (π, U) is a covariant represen-
tation of (α, u), where Us := V[s] for all s ∈ G. Conversely, if (π, U) is
a covariant representation of (α,U), then (π, V ) is a covariant repre-
sentation of (β, v), where

V[g1][g
−1
1 ]···[gn][g−1

n ][s] := Pg1 · · ·Pgn
Us

and Pt denotes π(1M(At)) for all t ∈ G. Moreover, this correspondence
between covariant representations of (α, u) and (β, v) is bijective.

Proof. The only nontrivial condition to check for the first part is
Definition 4.6(b):

UsUt = V[s]V[t] = π(v[s],[t])V[s][s−1][st]

= π(1M(A[s][s−1][t])
us,t)V[s][s−1][st]

= π(us,t)π(1M(A[s][s−1][t])
)V[s][s−1][st]

= π(us,t)π(v[s][s−1],[st])V[s][s−1]V[st]

= π(us,t)V[s][s−1]V[st] = π(us,t)Ust .

To show the second part, first notice that the Pt’s commute since
the 1M(At)’s are central projections in the double dual of A. There-
fore V[g1]···[g−1

n ][s] is well defined since Pg1 · · ·Pgn
does not depend on

the order of the idempotents [g1][g−1
1 ], . . . , [gn][g−1

n ]. It is clear that
V[g1]···[g−1

n ][s] is a partial isometry. This partial isometry has the re-
quired final space since

π(V[g1]···[g−1
n ][s])H = Pg1 · · ·Pgn

UsH = Pg1 · · ·Pgn
π(As)H

= Pg1 · · ·Pgn
PsH = π(Ag1 · · ·Agn

As)H
= π(A[g1]···[g−1

n ][s])H .

We can show that it also has the required initial space by taking
conjugates. To check multiplicativity, let p = [g1] · · · [g−1

m ][s] and
q = [h1] · · · [h−1

n ][t]. Then we have

VpVq = Pg1 · · ·Pgm
UsPh1 · · ·Phn

Ut .
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We first simplify a piece of this expression:

UsPh1

= UsU
∗
sUsUh1U

∗
h1

= Psπ(us,h1)Ush1U
∗
h1

= Psπ(us,h1)Psh1Ush1Uh−1
1
π(uh1,h

−1
1
)∗

= PsPsh1π(us,h1)π(ush1,h
−1
1
)Usπ(uh1,h

−1
1
)∗

= PsPsh1π(us,h1)UsU
∗
s π(ush1,h

−1
1
)Usπ(uh1,h

−1
1
)∗

= lim
λ
PsPsh1π(us,h1)Usπ(α

−1
s (eλush1,h

−1
1
))π(uh1,h

−1
1
)∗ ,

where eλ is an approximate identity for AsAsh1

= lim
λ
PsPsh1π(us,h1)Usπ(u

∗
s−1,sαs−1(eλush1,h

−1
1
)us−1,s)π(uh1,h

−1
1
)∗

= lim
λ
PsPsh1π(us,h1)Usπ(u

∗
s−1,sαs−1(eλ)us−1,sh1uh1,h

−1
1
)π(uh1,h

−1
1
)∗

= PsPsh1π(us,h1)Usπ(u
∗
s−1,sus−1,sh1)

= lim
µ
PsPsh1UsU

∗
s π(eµus,h1)Usπ(u

∗
s−1,sus−1,sh1)

= lim
µ
PsPsh1Usπ(α

−1
s (eµus,h1))π(u

∗
s−1,sus−1,sh1)

= lim
µ
PsPsh1Usπ(u

∗
s−1,sαs−1(eµus,h1)us−1,s)π(u∗s−1,sus−1,sh1)

= lim
µ
PsPsh1Usπ(u

∗
s−1,sαs−1(eµ)us−1,sue,h1u

∗
s−1,sh1

)π(us−1,sh1)

= PsPsh1Us .

Repeating this calculation n− 1 times we have

VpVq = Pg1 · · ·Pgm
PsPsh1Psh2 · · ·Pshn

UsUt

= Pg1 · · ·Pgm
PsPsh1 · · ·Pshm

π(us,t)Ust
= π(vp,q)V[g1]···[g−1

m ][s][s−1][sh1]···[sh−1
m ][st]

= π(vp,q)Vpq .

Finally we check the covariance condition. If p = [g1] · · · [g−1
m ][s] and

a ∈ Ap∗ , then

π(βp(a)) = π(αs(a))
= π(αg1α

−1
g1 · · ·αgn

α−1
gn
αs(a))
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= Ug1π(u
∗
g−1
1 ,g1

αg−1
1
· · ·αgn

α−1
gn
αs(a)ug−1

1 ,g1
)U∗

g1

= Ug1π(u
∗
g−1
1 ,g1

)Ug−1
1
π(αg2 · · ·αgn

α−1
gn
αs(a))U∗

g−1
1
π(ug−1

1 ,g1
)U∗

g1

= Ug1U
∗
g1π(αg2 · · ·αgn

α−1
gn
αs(a))U∗

g−1
1
Ug−1

1

= · · ·
= Pg1 · · ·Pgn

Usπ(a)U∗
sP

∗
gn
· · ·P ∗

g1

= Vpπ(a)V ∗
p .

It is clear from the construction that the correspondence is bijective.

Proposition 4.10. If (A,G, α, u) is a twisted partial action then
(π, U) 
→ π × U is a bijective correspondence between covariant repre-
sentations of (α, u) and nondegenerate representations of the crossed
product A×α,u G.

Proof. We know that there is an isomorphism φ between A×β,v S(G)
and A ×α,u G where (A,S(G), β, v) is the corresponding semigroup
action. We also know that there is a bijective correspondence Ψ 
→
(πΨ, V Ψ) between nondegenerate representations of A ×β,v S(G) and
covariant representations of (β, v) such that Ψ = πΨ × V Ψ. We
define a bijective correspondence Φ 
→ (πΦ, UΦ) between nondegenerate
representations of A ×α,u G and covariant representations of (α, u)
satisfying Φ = πΦ × UΦ using the following diagram:

Rep (A×α,u G) ←→ Rep (A×β,v S(G)) Φ ←→ Ψ=Φ ◦ φ
� �

CovRep (α, u) ←→ CovRep (β, v) (πΦ, UΦ) ←→ (πΨ, V Ψ)

If Φ is a nondegenerate representation of A×α,uG, then Ψ = Φ◦φ is
a nondegenerate representation of A ×β,v S(G) and so Ψ = πΨ × V Ψ.
Let (πΦ, UΦ) be the covariant representation of (α, u) corresponding to
(πΨ, V Ψ) as in Lemma 4.9. If a ∈ As then

πΦ × UΦ(aδs) = πΦ(a)UΦ
s = πΨ(a)V Ψ

[s] = Ψ(aδ[s]) = Φ(aδs)

and so πΦ × UΦ = Φ.
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5. Connection with crossed products by Hilbert bimodules.
Recall from [1] that the crossed product A ×α Z of the partial action
(A,Z, α) is isomorphic to the crossed product A ×X Z of A by the
Hilbert bimodule AXA, where X is the vector space A1 with module
structure

a · j := aj, j · a := α1(α−1
1 (j)a)

and inner products

A〈j, k〉 := jk∗, 〈j, k〉A := α−1
1 (j∗k)

for j, k ∈ A1 and a ∈ A. In other words, we can get AXA by converting
the standard A1 − A1 imprimitivity bimodule A1 into an A1 − A−1

imprimitivity bimodule via the isomorphism α1, then extending it
canonically to a Hilbert A−A bimodule.

Definition 5.1. The Hilbert bimodules AXA and BYB are called
Morita equivalent if there is an isomorphism (id, φ, id) between the
Hilbert bimodules X ⊗A M and M ⊗B Y for some imprimitivity
bimodule AMB .

Abadie, Eilers and Exel show that if AXA and BYB are Morita
equivalent bimodules then the crossed products A×XZ and B×Y Z are
Morita equivalent. They note that Hilbert bimodules corresponding to
Morita equivalent actions of Z are Morita equivalent. We show that
the Morita equivalence of Hilbert bimodules corresponding to partial
actions of Z is equivalent to the Morita equivalence of the partial
actions, in the sense of Definition 4.2.

Suppose we have two partial actions (A,α,Z) and (B, β,Z) with
corresponding Hilbert bimodules AXA and BYB . We show that the
two notions of Morita equivalence of the actions coincide.

Proposition 5.2. The partial actions (A,α,Z) and (B, β,Z) are
Morita equivalent if and only if the corresponding Hilbert bimodules
AXA and BYB are Morita equivalent.

Proof. If AMB is an imprimitivity bimodule, then

span 〈M ⊗B Y,M ⊗B Y 〉B = span 〈Y, 〈M,M〉B · Y 〉B
= spanβ−1

1 (B∗
1〈M,M〉BB1) = B−1 ,
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hence the imprimitivity bimodule corresponding to M ⊗B Y is of the
form D(M ⊗B Y )B−1 for some closed ideal D of A. Similarly, the
imprimitivity bimodule corresponding to A(X ⊗A M)B is of the form
A1(X ⊗A M)C for some closed ideal C of B. It is routine to check
that the map m ⊗ l 
→ m · l for m ∈ M and l ∈ B1 extends to a map
ν :M ⊗B Y →M · B1 such that (id, ν, β1) is an isomorphism between
D(M ⊗B Y )B−1 and the imprimitivity subbimodule D(M · B1)B1 of
AMB . Similarly, the map j ⊗m 
→ α−1(j) ·m for j ∈ A1 and m ∈ M
extends to a map µ : X ⊗A M → A−1 ·M such that (α−1, µ, id) is an
isomorphism between A1(X⊗AM)C and the imprimitivity subbimodule
A−1(A−1 ·M)C of AMB .

Suppose now that the Hilbert bimodules X and Y are Morita equiv-
alent. Then by Lemma 2.3 and the above an imprimitivity bimod-
ule AMB and an isomorphism (id, ψ, id) exist between the imprimi-
tivity bimodules A1(X ⊗A M)C and D(M ⊗B Y )B−1 . Then A1 = D
and C = B−1 and so (α1, ν ◦ ψ ◦ µ−1, β1) is an isomorphism between
A−1(A−1 ·M)B−1 and A1(M ·B1)B1 . This implies that (A,X,Z) ∼X,φ
(B, Y,Z), where φn := (ν ◦ ψ ◦ µ−1)n for n ∈ Z \ {0}. The situation
can be visualized by the following diagram:

A(X ⊗A M)B

u

A1(X ⊗A M)C w

(α−1,µ,id)

u

(id,ψ,id)

A−1(A−1 ·M)C

u

(α1,φ1,β1)

A(M ⊗B Y )B D(M ⊗B Y )B−1 w

(id,ν,β1)
D(M ·B1)B1

Going the other way, if (A,α,Z) ∼M,φ (B, β,Z), then φ1 is an isomor-
phism between A−1(A−1 ·M)B−1 and A1(M ·B1)B1 . So C = B−1, D =
A1 and (id, ν−1 ◦ φ1 ◦ µ, id) is an isomorphism between A1(X ⊗A M)C
and D(M ⊗B Y )B−1 and so the Hilbert bimodules X and Y are Morita
equivalent by Lemma 2.3.
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