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DEGENERATE HOMOGENEOUS STRUCTURES OF
TYPE §; ON PSEUDO-RIEMANNIAN MANIFOLDS

A. MONTESINOS AMILIBIA

ABSTRACT. We obtain all of the pseudo-Riemannian
manifolds endowed with homogeneous structures defined by
isotropic vector fields. Thus, the (general pseudo-Riemannian)
class 81 of homogeneous structures is fully determined.

1. Introduction. Ambrose and Singer [1] gave a characterization
for a connected, simply connected and complete Riemannian manifold
to be homogeneous, in terms of a (1,2) tensor field S on the manifold.
This characterization extends the classical one given by Cartan of
Riemannian symmetric spaces as the spaces of parallel curvature, which
correspond to Ambrose-Singer’s case S = 0. That characterization has
also permitted Tricerri and Vanhecke [8] to classify those homogeneous
Riemannian manifolds into eight classes which are defined by the
invariant subspaces of certain space S; & So @ S3. In [8] it is proved
that a connected, simply connected and complete Riemannian manifold
admits a nonvanishing homogeneous structure S of type S; if and only
if it is isometric to the hyperbolic space.

Gadea and Oubina [4] have extended the characterization in [1] to
the pseudo-Riemannian case of any signature and proved that a con-
nected, simply connected and complete pseudo-Riemannian manifold
admits a homogeneous pseudo-Riemannian structure if and only if it
is reductive homogeneous. As is well known, in the Riemannian case
every homogeneous manifold is complete and reductive.

Gadea and Oubina give in [6] a classification for the pseudo-Rieman-
nian case of any signature similar to that given in [8] for Riemannian ho-
mogeneous structures, and they moreover characterize the three prim-
itive classes. From now on we shall focus attention on the first class,
S1. A connected, simply connected and complete pseudo-Riemannian
manifold (M, g) of any signature (M, g) admits [6] a nondegenerate,
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see Section 2, homogeneous structure of type Sy if and only if g is, up
to a change of sign, a metric of strictly negative constant curvature.
Moreover, the nonflat pseudo-Riemannian space forms of arbitrary sig-
nature locally admit nondegenerate homogeneous pseudo-Riemannian
structures of type S;. By the way, we note that in the complex case
the situation is similar to the real one [3]: one of the classes in Abbena-
Garbiero’s classification [2] (of homogeneous Kahler structures) corre-
sponds to spaces of strictly negative holomorphic curvature.

Thus, to determine the (general pseudo-Riemannian) class Sy, it only
rests upon the degenerate case which is solved in the present paper,
proving the following

Theorem. Let (M,g) be an n + 2-dimensional connected pseudo-
Riemannian manifold with a degenerate homogeneous structure of
type S1. Then (M, g) is locally isometric to R"*? with the pseudo-
Riemannian metric

g=du®dv+dv®du+ (b(x,x)+2u) dv @ dv + h,

where b and h are symmetric bilinear forms in R™, h is nondegenerate,
X is the position vector in R™ and u,v are the coordinates in R2.

As we shall see in Proposition 3, (R"*2 h,b) is isometric to the
reductive homogeneous pseudo-Riemannian manifold G/H with group
G, isotropy group H and Lie subspace m endowed with the Ad (H)-
invariant inner product as defined in Section 5; but G is not in general
the whole group of isometries of (R"*2, h,b). Moreover, (R"*2, h,b) is
an example of a reductive homogeneous pseudo-Riemannian manifold
which is noncomplete.

2. Preliminaries. Let (M,g) be a connected C* pseudo-
Riemannian manifold with Levi-Civita connection V and curvature
R. Then, in the same vein as [8], Gadea and Oubina [4] define a
homogeneous pseudo-Riemannian structure on (M, g) as a tensor field
S of type (1,2) on M such that the connection V = V — § satisfies
Vg = VR =VS = 0. Such a structure is said to be of type S; if there
is a vector field £ € X(M) that defines S by

S(X,Y) =g(X,Y)E - g(Y, )X,



DEGENERATE HOMOGENEOUS STRUCTURES 563

and it is said to be degenerate or not according to £ being isotropic or
not.

Gadea and Oubina [6] have studied nondegenerate homogeneous
structures of type ;. They turn out to be defined on certain subsets of
pseudo-Riemannian manifolds of strictly negative constant curvature.

Here we treat the case of degenerate homogeneous pseudo-Riemannian
structures of type Sj.

Let (M,g) be a connected C*° pseudo-Riemannian manifold with
dim M =n+2, and let 0 # £ € X(M) be isotropic, that is, g(£,&) = 0.
We assume that if we put

then Vg = VR = VS = 0, where S(X,Y) = g(X,Y)é — g(Y,£)X. The
condition Vg = 0 is automatically satisfied. As for V.S we have

(VxS)(Y, Z) = g(Y, Z)Vx& — g(Z,VxE)Y =0.

Let W be any nonisotropic (local) vector field. Since dimM > 2,
we can take Y nonisotropic and orthogonal to W and Z =Y. Then
g(Y,Y)g(Vx& W) =0, whence g(Vx&, W) = 0. Since this is true for

any nonisotropic W we conclude V¢ = 0. Thus,
Vx&=g(X, 8,
or if we put @ = g(§), we have
VE=a®E, Va=a® a.

Then
da = 0.

As for the curvature, we first fix the notation. We define

R(X, Y)Z = V[X)y]Z +VyVxZ —-VxVyZ,
R(X,Y,Z,W) = g(R(X,Y)Z,W).

We have Vy V& =2a(Y)a(X)€ + a(Vy X)E, whence evidently

R(X,Y)é=0, R(X.Y,Z¢)=0.
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By expanding the condition VR = 0, we get

(VxR)(Y,Z,W,U) = a(Y)R(X, Z,W,U) + a(Z)R(Y, X, W,U)
+a(W)R(Y, Z,X,U) + a(U)R(Y, Z,W, X).

If we take the cyclic sum in X, Y, Z and apply Bianchi identities we get
Gxyza(X)R(Y,Z,W,U) = 0.
In other terms, for every W,U € X (M), we have
aANR(.,. ., W,U)=0,
and if we bring this into the formula for Vx R, we get

VxR =2a(X)R.

Now since da = 0 for each point of M there must be a function v
defined in some connected neighborhood of it that satisfies @ = dw.
But then Vx(de ") = 0. Thus, if we put w = e~ and restrict our
study to that neighborhood, we have the following situation:

weC®(M), z:=g '(dw), z#0, g(z,2)=0,
Vz =0, Vdw =0,
(2.1) dwAR(.,.,X,Y)=0, X,YeX(M),

2
VR=—-—dw®R.
w

3. The local canonical form of the metric.

Proposition 1. The metric on R"*2 has the canonical form
g=du®dv+dv®du+ (b(x,x)+2u) dv®@dv+ Zfadxa ® dx?,
a=1

and we have

& =0y, a = dv.
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Proof. Since M is connected and there is some point where dw
does not vanish, we conclude that dw is everywhere nonzero because
Vdw = 0. Thus, for each t € R the subset H; = w™({t}) is a
regular hypersurface of M. Let v : I — M be a geodesic and put
w(t) = (wo)(t); then

So if for some value t € R, 4; is tangent to H, ), then v remains in
that hypersurface. On the contrary, if w(0) = 1, then we always have
w(t) = 1.

Let e, € X(M) be such that e,(w) = dw(e,) = 1. By inner
multiplication of (2.1) with e,, we have

R(.,.,X,Y) =dwA R(ey, ., X,Y).

Thus R(Z, W, X, Y) = Z(w)R(ew, W, X, Y) =W (w)R(ew, Z,X,Y). By
using the symmetries of R we can write

R(ew, 2, X,Y) = R(X,Y, ey, Z)
= X(w)R(ew,Y, ey, Z) — Y(w)R(ew, X, €4, Z),

so that if we put m(X,Y) := R(ew, X, €y, Y), then
(3.1) R = (dw ® dw) Am,

where the wedge stands for the product of double forms.

If X,Y € X(H;) we have dw(VxY) = Vx(dw(Y))— (Vxdw)(Y) =0
because dw is parallel. Hence VxY € X(H;). Thus, V induces on
H, a torsionless connection whose curvature, due to (3.1), vanishes.
Therefore, the parallel displacement along H; does not depend (locally)
on the path. This will allow for a suitable choice of coordinates.

Assume that Hy # @ and that p € Hy. Since z, € T,Hy because
z,(w) = (dw)p(2p) = 9(2p,2p) = 0, and z, is orthogonal to the whole
T,Hy, we can take vectors e;(0), ... ,e,(0) of T,,Hy such that if we call

e;(0) :=z,,
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we have

The two-dimensional subspace of T),M which is orthogonal to that
generated by the vectors e;(0),...,e,(0) has a nondegenerate metric
induced by ¢ and contains e, (0) which is an isotropic vector. Therefore,
a vector e,,(0) € T, M exists such that

L,
9(ew(0),e,(0)) =0,
0, a=1,...,n.

Now we consider the geodesic v in M with initial condition vy = p,
Yo = ey (0). By parallel displacement of the basis {e.(0), e,,(0), e4(0)}
along  we obtain the basis {e.(t), ew(t), eq(t)} of T4 M and we have
71 € Hy because o(w) = dw(ew(0)) = (2, eu(0)) = g(e=(0), €4 (0)) =
1, whence w(t) = t. Starting from the point v; we make the parallel
displacement of e,(t) along H;. Since initially (dw),(eq(0)) = 0
and dw is parallel, we have that e,(t) € T, H;. Therefore, that
parallel displacement does not depend on the path. Thus, there is a
neighborhood V' of p on which we have vector fields e, = z, e, € X(V)
such that Ve, =0, V., e, =0, Ve, =0, a,b =1,...,n. Therefore,
lex,€a] = [€asep) =0, a,b=1,... ,n. Consequently, the flows ¢%, ¢ of
these vector fields commute. Thus, there is a neighborhood of 0 € R"*2
where there is a well-defined map

w(zawvxla s axn) = (¢§ qu;:l ©---0 (b;")(,}/’w)

which is the inverse of a chart for M with coordinates (z,w,x®) such
that the coordinate w is the function w, and such that

0 0
Z.—@—GZ—Z, 8a'_a$a_ a a_17 y 1y
0
B (w) = —(w) = 1.

ow
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We put
b:= g(awaaw)v Sq = g(aw>aa)-

Then, having in mind that g(z) = ¢(9.) = dw, that ¢(9,,0,) =
9(z,z) = 0 and that ¢(94,0p) = €a9ap, We have

g=dz®dw+ dw ® dz + bdw ® dw

+ Z Sq(dw ® dx® + dx® ® dw) + Zsadx“ ® dz®.
a=1 a=1
Also we have the initial conditions
(32) b(z=0,xa=0) = g(;ywa ’Vw) = g('yOa ’70) = g(ew (O)a ew(o)) =0,
(3.3) Sa(z=0,z2=0) = g(ew(w), eq(w)) = 0.

Since Vz = V0, = 0, we have immediately L5 g = 0, that is,

@_asa_
8z 0z

Conversely, these conditions guarantee that Vz = 0 and also that
V.0, = 0, as is easily verified. Now we need to impose the condition
Vo, 0, = 0. The usual formula for Christoffel symbols gives

1/0s, Osp
Vaaaeb = 5 <a$b + %)8.2;

and we conclude that

8Sa + 8817 —0.
oxb  Oze
But then, if we call
. 8%s,
Sabe = 5 b are
we have Sqpe = Sach and Sgpe = —Spae. Thus, as is well known, s4p. = 0.

Since, by (3.3), we have s,(.—0,42—0) = 0, we conclude that there are
some functions Sgp(w) such that

Sap(w) + Spe(w) =0,

Sq = Z Sab(w)a:b.
b=1
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From this, we get T, = £,Sp, (w). But along v we have (Vg,0,) 0y =
Vseq, = 0; this implies that I'%, = 0 at the points where z = 2! =
oo =x" = 0. And this leads to Su,(w) =0, %, =0 and s, = 0.

After computation, we get the Christoffel symbols that are not
identically zero:

@7 ra o _ 1 ob I 1 0b
ow

Toow = 25 gpa’ wa = 9 Pga”

N =

With the aid of these formulae, we can easily compute the components
Map = R(Ow, Oa, Ow, Op) which completely determine the curvature. We
get

L &b
2 0xe0xb’

Thus the curvature is given by R =37, | map(dw Adz®) @ (dw A dz?).
Then

(3.4) Map =

Vo, R = Z Omay (dw A dz®) ® (dw A da®),

Vo, R = (dw A dz®) @ (dw A dz®).

Hence, the condition VR + (2/w) dw ® R = 0 requires that

Omap | 2map 1 Owlmap —0 Omap
(3.5) ow w o ow? ow oxc
a,b,e,=1,... n.

If we bring (3.4) to the last formula, we have

2%b
——— =0 bc=1,...,n.
Ox*0xbdxe p GHET e
Now at the points on which z = z! = --- = 2" = 0 we have
Iz = (1/2)(0b/0x*) = 0. Since, by (3.2), b vanishes at those points,
we conclude that b = 22717:1 Bay(w)x®x® and map = —Bgp(w). The
first formula of (3.5) now implies that

1
Bab(w) = W bap,  bap € R.
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Thus we get the following form of the metric

1 n
g:dz®dw+dw®dz+—26(X,X)dw®dw+25adxa®d:ca,
w

a=1
where we have put b(x,x) = >, bapz?®z’ and x = (x!,... 2") is
the position vector in R™. Now we substitute w = e™?, u := —e~ Yz and
finally obtain the canonical form of the metric given in the statement,
which is a pseudo-Riemannian metric defined in all of R"12. o

4. The curvature and geodesics of this metric.

Proposition 2. Let (R"™2 h,b) denote R""? equipped with the
metric

g=du®dv+dv®du+ (b(x,x)+2u) dv® dv + Z hapdz® @ da.

a,b=1

Then its curvature and its Ricci tensor are given by

R=-— Z bap(dv A dz®) @ (dv A dzb),

a,b=1

Ricci = — tr(h™! - b) dv ® dv.

Ezcept for the straight lines in the hyperplane v = vy, the geodesics are
not defined for all t. Thus (R™"2, h,b) is a connected, simply connected
and noncomplete pseudo-Riemannian manifold.

Proof. For brevity, we shall put h = ZZ,b:l hapdz® ® dab with
det hyep # 0 so that h is a constant nondegenerate pseudo-Riemannian
metric on R™. Then the metric of M is locally given by

g=du®dv+dv®du+ (b(x,x)+ 2u) dv® dv + h,

(4.1) o 7
g =0,®0,+09,®0, — (b(x,x) +2u)d, ® 0, +h ™",

where h=! = h?*9, ® 0 and the matrix (h®) is the inverse of (hp)-



570 A. MONTESINOS AMILIBIA

The nonvanishing Christoffel symbols are

Ty, =b(x,x)+2u, Th,=1 T4 => by’
b=1

Iy, =-1, T8, =-> h%ba".

b,e=1

It is very easy to verify that this metric satisfies our requirements,
i.e., that 9, is a degenerate homogeneous pseudo-Riemannian structure
in R"*2 with the metric (4.1). The curvature of (R"*2 h,b) is given
by

n

R==>" ba(dvAdz®) @ (dv Ada).
a,b=1

The Ricci tensor is
Ricci = —tr (b~ - b) dv @ dv,

and the scalar curvature vanishes. Therefore, for the right choice
of dimension and signature, (4.1) is a solution of Einstein’s general
relativity equations for a universe filled with a swarm of photons, see
7, p. 579).

The equations of geodesics are
i+ (b(x,x) 4 2u)0® + 2b(x, X)0 + 20d = 0,
v—9%2 =0,
% —*h™'-b-x=0.

Then v = vy — In(1 — ¥gt). If we put primes to represent differentiation
with respect to v, then the third equation becomes x” = —x’+h~1.b-x,
whose solution is

(30 = e (o air s o) ().

or undoing the change:

(- wnzo)

—o (i _on s ot ) (st )
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With the same change, the first equation is now
w4+ 3u' 4+ 2u = — b(x,x) — 2b(x,x’).

A particular solution is f(v) = —(1/2)h(x(v),x'(v)). The general
solution of v” + 3u' +2u =0 is u = " "Y(A + Be" 7). Thus,

u(t) = (1 — it) (A + B — igt) — % h(x(b), X(t))) ,

and the constants A, B must be determined from the initial conditions.
Of course, these formulae hold when 0y # 0. If v9 = 0, we simply
have the equations of straight lines in the hyperplane v = vg, that is,
v(t) = vo, u(t) = ot + uog, x(t) = Xt + x. With the exception of this
case, the geodesics are not defined for all ¢. O

5. The homogeneous pseudo-Riemannian space (R"*2, h,b).
Let G be R?™*2 with the product

(51) (alatlasl) : (a27t2782)
= (a1 + age™ +7(s1) - Jy, - 52, t1 +to, Jy, - s2+ 51)

where

a;, t; € R, Sz—<xz)€RnXRn, 1=1,2,

T 0 tl

T<y)_(yha_xh)7 Jt—exp(th—lb —tI)
Let
0 n

o w00 (0))vew)co
and

(5.3) m—{(a,t,<_xx)):a,tER,IERn}Cg.
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Then H = (R™, +) is a closed subgroup of G, m is an Ad (H)-invariant
subspace of the Lie algebra g of G and the inner product { , ) in m
defined by

R (E) NETES) R

is Ad (H)-invariant.

Let (R"*2 h,b) be as in Proposition 2 and G, H, m and ( , ) as in
(5.1), (5.2), (5.3) and (5.4) above. Then we have

Proposition 3. (R""2 h,b) is isometric to the reductive homoge-
neous pseudo-Riemannian manifold G/H with Lie subspace m, endowed
with the Ad (H)-invariant inner product ( , ).

As a first step towards this description of (R"*2, h,b) as a homoge-
neous space, we compute the algebra ¢ of Killing vector fields of (4.1).

Lemma 4. The vector field Z € X(R"*2 h,b) belongs to € if and
only if it can be written as

Z = ((p(x) — k)e’u — h(¢',x) + ae~") 9,

5.5
(5:5) + (ke* +1— h(p,x)e*)0, + B - x + ue’p + q.

where a,k,l € R; p = p°d. with p¢ € R forc=1,... ,n; ¢ = ¢*(v)0,
satisfies ¢' = —q' +h™1-b-q; B € o(h)No(b); and, if b # 0, then k =0
and p = 0.

Proof. Let Z = U9, + VO, + X*0, € X(M). We shall use the

summation convention over the indexes a,b,c,... = 1,... ,n. Then
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Z € tif and only if the following equations hold:

ou ov

(5.6) Ut 5+ b(x, X) + (b(x,x) + 2u) S5, =0

(5.7) %—‘; + Z—Z + (b(x,x) + 2u) Z—Z =0,

(5.8) 2—‘; =0,

(5.9) % + (b(x,x) + 2u) % + hap aaXb =0,
b

(5.10) N he 20

(5.11) Pac % + hpe % =0.

From (5.8) we have V' = V(u,x). If we bring this to (5.7) and
differentiate with respect to u, we get 9*U/0u?® = 0. Therefore, taking
account of (5.7), we conclude that

oV (v,x)

v

U=- u~+ B(v,x),

for some function B(v,x). For brevity we put X, := hqX®. Then
(5.11) reads X, /02" +0X,/0x% = 0. So there are functions A, (u,v),
Co(u,v) with Agp(u,v) + Ape(u,v) = 0 such that

X, = Aab(uv v)xb + Ca(uv ’U).

From (5.10), we have

oV(v,x)  0Xe = O0Aaw(u,v) b 0C, (u,v)

ozx® ou ou ou

By anti-differentiation and having in mind that A, + Ay, = 0, we have

V(’U,.’E) = M %+ C(ua ’U),
(5.12) Ou
0Aup(u,v) 0

ou
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By differentiation of (5.12) with respect to u, we get Cy(u,v) =
Pa(V)u + ¢4 (v) for some functions p,(v), ¢, (v). Also C(u,v)/Ou = 0.
Therefore, the situation is now as follows
Xo = Aap(0)2® + pa(v)u + ga(v),
V = —py(v)z® 4+ C(v),
U = (p,(v)z® — C'(v))u + B(v,x).

We substitute this in (5.9):

(5.13)  pl,(v)u + %

— (b(x,%) + 2u) pa(v) + ALy (V)" + pl, (v)u + ¢, (v) = 0.

From the coefficient in u we see that p,(v) = pee” and the numbers
po can be regarded as the components of a form p € (R™)*. By
differentiation of the whole formula with respect to x?, we get

9?B(v,x)
Ozedx®

By interchanging indexes a and b and subtracting, we have
A;b(v) - ev(pabbc - pbbac)l‘c =0,

whence Agp is constant (take values for % = 0) and ppbae = Paboe.
Assume that some of the p, are not zero, for instance, p; # 0. Then
P1bae = DPabic, whence by = (pa/p1)bic, and further by, = by =
(Pe/p1)b11. Thus,

+ AL, (v) — 2pae’bpezt = 0.

_ PaPe

p}

bU.C

b11.

In other words, b is decomposable, and if we call r := by1/p?, we have
b(x,x) = rp(x)? where p(x) = p,z®. Substituting in (5.13), we have

aB(vvx) _ v 2
Bpa — "PacP(x)” = ¢4 (v)
_ E ap(X)?’ o
3 Oz 9a(v),
B(v,x) = - p(x)° - dy(v)" +a(v)

v

- % b(x, x)p(x) — g} (v)a® + a(v),
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for some function a(v). After substitution in (5.6), we have

(5.14)  (bapa®h"pee” — C"(v) + C'(v)) u

= 5 b0, 3)p(x) +a'(0) + alv) — (¢ (v) + gl (v)) 2
+ bapz®ht° (Acdxd + qc(v)) + b(x,x)C'(v) = 0.

The term of third degree in x must be zero, that is, p = 0 or otherwise
b = 0. From the factor in u we get C(v) = ke? + [. By differentiation
of (5.14) with respect to * and taking x* = 0, we see that

¢"=—q +q h'b,

where ¢ : R — (R™)* is given by ¢(v) = ¢.(v)dx®. Note that we
usually shall consider a bilinear form b as a map b : R" — (R")*.
In this same spirit, h=! is conceived as a map A~ : (R?)* — R".
By evaluating (5.14) at ® = 0 we see that a(v) = ae™". So (5.14)
becomes by h° A gz + b(x,x)ke’ = 0 so that k = 0 if b # 0 and
bach®@Agy + bpch®Ag, = 0, or equivalently

sym(b-h~'-A) =0.

Let us interpret the conditions upon A. If we put B := h~!.
A € gl(n;R), the condition for B to belong to the Lie algebra of
the group O(h), that is, the group of linear h-isometries of R", is
h(B(v),w) + h(v,B(w)) = h(h71(A(V)),w) + h(v,h 1 (A(w))) =
A(v,w) + A(w,v) = 0, and this is the condition of A being skew-
symmetric. The condition for B to belong to the Lie algebra of the
group O(b) is that b(B(v),w) +b(v, B(w)) =0 for all v,w € R". But
the lefthand side is

b(B(v),w)+b(v,B(w)) =b((h~" - A)(v),w) +b(v, (™" A)(w))
=b-h - A)(v,w)+(b-ht-A)(w,v)=0.

Thus the conditions upon A can be expressed as B € a(h) No(b).

We now change the notation putting ¢ := ¢-h~% p := p- h71,
x := %0, and considering p,q as vector fields in R"*2 given by
qlu,v, 28, ... 2") = ¢ (v)0a, plu,v, 2t ... 2") = pd,. Then we get
the expression stated in the lemma. a
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Proof of Proposition 3. We consider the subspaces of £ given by the
vector fields as (5.5) with the following additional conditions:
g={Ze€t: k=0, B=0, p=0},
h={Ze€g:a=1=0, ¢q(0) =0},
m={Z €g:q(0)+q(0) =0}

Thus a vector G € g is given as G = (—h(¢',x) + ae™)9, + 10, + ¢,
where a,l € R and ¢ = ¢*(v)d, satisfies ¢ = —¢' +h™'-b-q.

Let 2: R x R x R™ x R™ — g be the map given by
%(0,7 la z, y) = (_h’(q/’ X) + (1/2)61’67”)8“ + laU + q,

where ¢ : R — R" is the solution of the differential equation ¢” =
—¢' + K -q, ¢(0) = z, ¢'(0) = y, where we have put K := h=1-b. After
calculation, we have
(5.15)
[se(a1,l1, 21, 91), (a2, l2, T2, y2)]
= x(aly — agly 4+ 2(h(y1, 22) — h(y2, 1)), 0, Liya — Loy,
Liye + oy + K(lixzg — l2$1))~

In the course of the computation one encounters the expression

(h(CIi>(I2) - h(qéu ql))au
But we have

d _
— (h(d},q2) — hldh, @) = h(—qi +h™" - b-q1,q2)

dv
—h(—=gy+h"" b g2, q1)
= —h(ay,q2) + h(az, q1)
+b(q1,q2) — b(g2, q1)
= —h(q1, q2) + h(ga, q1).

Hence (h(q1,q2) — h(g3,q1))0u = (h(y1, x2) — h(y2, 21))e " Oy
From (5.15), we easily see that g and h are subalgebras of £, that h =

#(0,0,0,R™) is abelian and that [h, m] C m so that the decomposition
g = h @ m is reductive. Also, g®® = 0, whence g is solvable.
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We endow m with the inner product { , ) given by g at the origin of
R"*2. Thus, if Y = x(a,l,z,—x) € m, we have

(5.16) (YY) =al+ h(z,x).
Then
<[%(Oa 0) 07 y)a Y]7 Y> = <%(2h(y7 x)a 07 Y, y)v Y>
= lh(y,z) — lh(y,x) = 0.
Therefore, ( , ) is ad h-invariant.

For describing g as a matrix subalgebra, we need some notation. First
we put

0 I
J = (K —I) , Jp :=exp(tJ]),

x

where [ is the identity in R". Now if s = (y) € R™ x R"™, we shall

write 7(s) = (y-h, —z-h). Evidently, Jy, - Ji, = Ji, +1,. From the easily
verified fact that h - K = K - h, it can be directly proved that

(5.17) T7(s)-J=—7(J-s+s).

Now we consider the subspace of (2n 4 2) x (2n + 2) matrices of the
form
-1 7(s)
M(a,l,z,y)=|( 0 IJ
0 0

S »w

where s = (;) Then it can be shown at once with the aid of (5.17)

that the map
#(a,l,z,y) — M(a,l, z,y)

is a Lie algebra isomorphism. Accordingly, we shall identify g with this
matrix Lie algebra and m with the subspace

{M(a,l,z,—x): (a,l,z) e Rx R x R"}.

We consider the subset G of (2n + 2) x (2n 4 2) real matrices of the
following form

et 1(s)-Jy a



578 A. MONTESINOS AMILIBIA

We have

N(ay,t1,81) - N(az,t2,52)

e~ tt) o=t (sy). Jy, 47 (1) - Jiy 1ty aoe P AT(51)- s, -So+an
= 0 Sty 4t Ji, - S2+s1
0 0 1

Now

T(Joy - 24 81) - Jrypt, — € 7(52) - Ty, — T(51) - Jii et
= (7(Jt, - 82) - Jiy, —e " 7(s2)) - i,

Hence G is a group if and only if for every ¢t € R and s € R?" we have
7(Jy - 8) - Jp = e '7(s). But with the aid of (5.17) we get

d
E(T(Jt's)'g]t):T(J'Jt'S)'Jt+T(Jt'S)'J'Jt:—T(Jt'S)'Jt.

Therefore, the condition holds and G is a Lie group whose Lie algebra
is g. It is clear that G is diffeomorphic to R?"*2. Also, let H be the
subgroup of G given by the matrices

Vo ()

whose Lie algebra is . Then H = (R", +). Since

v (00 () ¥ (G) = (o, 12))

the orbits for the left action of H on G can be parametrized by the
elements N(a, t, (_Iw) ) Since G \ H is diffeomorphic to G/H, we see
that G/H is diffeomorphic to R"*2. Finally it can be proved at once
that the metric (5.16) for m is Ad (H)-invariant. u]

Remark. We have dropped a direct summand from £ consisting of
vector fields of the form

X = (p(x) — k)e”u@u + (k — h(p, x))e”@v + B-x+ ue’p,
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with the conditions stated in Proposition 4. Thus, in general, G is not
the whole group of isometries of (R"*2, h,b).
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