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NONCLASSICAL GORENSTEIN CURVES

E. BALLICO AND A. COSSIDENTE

1. Introduction. Let C be a complete irreducible algebraic curve
of arithmetic genus g, defined over an algebraically closed field K of
characteristic p > 0.

Let Ĉ be its nonsingular model. Let D be a canonical positive divisor
of the curve C, and let d0, d1, . . . , dg−1 be a basis of the space H0(C, D).
The canonical morphism

(d0, d1, . . . , dg−1) : Ĉ −→ Pg−1,

is uniquely determined by C up to projectives.

We will always assume that C is a Gorenstein curve, i.e., the canonical
morphism induces a morphism C → Pg−1, and that C is not hyperel-
liptic, i.e., the canonical morphism induces an isomorphism of C onto a
curve in Pg−1. Let {bi}, 0 ≤ i ≤ g − 1, be the generic Hasse sequence
of invariants of C. Hence b0 = 0 and bi, 1 ≤ i ≤ g − 1, is the intersec-
tion multiplicity at a general point Q ∈ C of the i-dimensional linear
subspace of C at Q. It follows that bi ≥ i+ 1 and bi−1 < bi for every i.
If p = 0, then bi = i and C is said to be classical; otherwise C is said to
be nonclassical. For further information, see [23].

The curves of genus smaller than three or, more generally, hyperel-
liptic curves are always classical Gorenstein curves. In the nonsingular
case, the nonclassical curves of genus three and four have been classi-
fied by Komiya [14]. In [9], the authors extended the classification list
by Komiya to nonclassical Gorenstein curves of arithmetic genus three
and four. In [18], among other results, Rosa classified the nonclassical
trigonal Gorenstein curves of genus g when charK = g − 1, g − 2 or
g − 3. If charK = 2, she completely solved the case g = 2n + 1, too.
See also [16], [17].

Our aim here is to extend (under suitable assumptions) the classifi-
cation by Freitas and Stöhr to nonclassical Gorenstein curves of arith-
metic genus g by at least 5. We do not give equations of the curves,
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explicitly, but we have a good description of such curves. However, we
consider the problem as solved if we can say, “the curve C is strange,
the characteristic is a certain prime p and C lies on a surface S of a
certain type (a ruled surface or a cone).” This is because, in this case,
we may describe all such curves in S, [1], [2].

We will prove the following theorem.

Theorem 1.1. Let C ⊂ Pg−1 be a canonically embedded Gorenstein
irreducible curve with arithmetic genus pa(C) = g ≥ 5. Let q be the
genus of the normalization C′′ of C. Let {bi}, 0 ≤ i ≤ g − 1, be the
generic Hasse invariants of C. Then we have

(i) if b1 ≥ 3, then b1 = p−3, C is strange and contained in a smooth
rational normal scroll S ⊂ Pg−1, see a);

(ii) Assume g = 6, b1 = 2 and b2 ≥ 4 and that C is contained in
the Veronese surface of P5. Thus C is isomorphic to a plane quintic
curve. If p 
= 2, then p = b2 = 5, C is strange and the equations of
all such strange curves are given in [4, Section 3] and in [13, Theorem
3.4]. If p = 2, we have b2 = 4 and there are examples which are strange
and, hence, singular, see b). If C is smooth, then it is isomorphic to a
Fermat quintic curve with equation x5 + y5 + z5 = 0.

(iii) The only cases with b1 = 2 and b2 ≥ 5 are the ones considered in
b) for g = 6.

(iv) Assume b1 = 2, b2 = 4 and p = 2. Then either C is strange, see
e), or there is a double covering f : C → E with E an integral curve
with pa(E) = 1, see g). If E is smooth, then C is strange. If E is
singular, then q = 0, C is contained in a cone T with vertex P and as a
base rational normal curve of Pg−2. Furthermore, P is a double point
of C and the rational map, π : C → E induced by the projection from P
has degree 2. Any canonical curve C contained in T , with multiplicity
two at P and such that π is inseparable, has b2 ≥ 4, see f).

(v) If b1 = 2, b2 = 4, p = 2, q = 0 and C is not a double covering
f : C → E, with pa(E) = 1, then there is a purely inseparable morphism
of degree four m : C → P1.

(vi) Assume q > 0 and b2 ≥ 4. Then g ≤ 9. If q = 3, 4, then C is
classified in [14]. If q ≥ 5, then there is a degree two morphism C → E
with E smooth elliptic curve. If q > 0, g ≥ 5, b1 = 2 and b2 = 4, then



NONCLASSICAL GORENSTEIN CURVES 357

C is bielliptic, see g).

Notice that the letters a), b), e), g) that appear in the statement of
Theorem 1.1, refer to the corresponding steps in the proof given in the
next section.

Remark 1.2. We stress that nonclassical smooth canonical curves
cannot have b2 ≥ 4 if the genus is large.

2. The proof of Theorem 1.1. We divide the proof in several
steps according to the type of the generic Hasse sequence of invariants.

We begin with a remark.

Remark 2.1. By [22], if C ⊂ Pg−1 is not scheme-theoretically cut out
by quadrics, then C is contained in a minimal degree irreducible surface
S ⊂ Pg−1. Such surfaces have been classified [7]: S is either a minimal
degree rational ruled surface or a cone over the normal rational curve
of Pg−2 or g = 6 and S is the Veronese surface. Furthermore, S is
the intersection of the quadrics containing C. In the latter case, C is
isomorphic to a plane quintic and conversely.

a) Assume b1 ≥ 3. In this case there is an integer e ≥ 1 such
that b1 = pe. This is a consequence of the p-adic criterion (see [9], [13,
Proposition 3.2a]). Since b1 ≥ 3, every quadric hypersurface containing
C contains the ruled variety union of the general tangent lines of C.
Hence C ⊂ S, and S is not the Veronese surface, even if g = 6. Firstly
assume that S is smooth. Then S � Fe (the Segre-Hirzebruch surface)
for an integer e with 0 ≤ e ≤ g− 3 and e ≡ g mod 2. Furthermore, the
restriction to C of the ruling S → P1 is purely inseparable of degree 3.
It follows that p = b1 = 3. In this case all curves C and their equations
have been determined in [1], [2]. Now assume that S is singular, i.e., let
S be the cone over the rational normal curve of Pg−2. Let u : Y → S
be the blowing-up of the vertex of the cone and C′ the strict transform
of C in u. We have Y � Fg−2. Take as a basis of Pic (S) � Z⊕2,
a minimal degree section h of the ruling and a fiber f of the ruling.
Hence, h2 = −e, hf = 1 and f2 = 0. The morphism Y → S ⊂ Pg−2
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is induced by the complete linear system |h + (g − 2)f |. We have
h = u−1(v) where v is the vertex of S. Let µ be the multiplicity of C
at v. It follows that µ ≥ 0, µ = 0 if and only if v /∈ C and µ = 1 if
and only if v ∈ Creg. We have C′ ∈ |ah + (µ + a(g − 2)f | and a = sb1
with s ≥ 1 (s is the number of points outside the vertex such that
a general line of S intersects C). Since deg (C) = 2g − 2, we have
2g − 2 = (ah + (µ + a(g − 2))f)(h + (g − 2)f) = µ + a(g − 2). Hence
this case cannot occur.

From now on, we assume b1 = 2 and b2 ≥ 4. It follows from [9], [13],
that p | b2.

b) Assume g = 6 and let C be a plane quintic curve. We have
b1 = 2 because the Veronese surface S has no trisecant lines. We have
b2 ≥ 4 if and only if in the embedding of degree 5, j : C → P2, j(C) has
b1(j(C)) ≥ 4 and indeed, in that case, the image of the general tangent
line of j(C) is a conic osculating C. From [11, Section 3], C is a strange
curve with degree of inseparability equal to deg (j(C)) = 5 = p.

For p ≥ 3, the equations of all such curves are described in [4].
It remains that the case p = 2 and b2 = 4 and curves j(C) with
b1(j(C)) = 4. Let D ⊂ P2 be an irreducible curve of degree 5 with
b1(D) = 4. Hence p = 2. Assume D strange with P as a strange point.
Due to the degree we have that P is a regular point of D. The equations
of all such curves are described in [4, Section 3]. By Bezout’s theorem,
the tangent line TP (D) to D at P has intersection multiplicity b1(D, P )
at most 5 with D at P . Since P is a regular point, b1(D, P ) is the
Hermite invariant of D at P , and we have b1(D, P ) ≥ b1(D) = 4 [13,
Theorem 2.4], [15, Proposition 4].

Hence, by Bezout’s theorem TP (D) cannot intersect D at a singular
point P ′: if D has multiplicity µ ≥ 2, we would have 4+µ ≤ deg (D) =
5. Since 8 > deg (D), TP (D) cannot intersect D at another smooth
point. Hence b1(D, P ) = 5.

Let D ⊂ P2 be an irreducible degree 5 curve with b1(D) = 4. If D is
smooth [13, Theorem 6.1], or has a very small number of singularities
[11, Corollary 5.10], we know all the possible equations of D. In
particular, if D is smooth, then it is projectively equivalent to the
Fermat curve x5 + y5 + z5 = 0.
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c) Assume b2 ≥ 5. Since a zero-dimensional subscheme of length
b2 ≥ 5 of a plane is not cut out by quadrics, C is contained in a minimal
degree surface S. By step b), we may assume that S is not the Veronese
surface.

Since b1 = 2, no irreducible line (even a double line) may have order of
contact ≥ 4 with C at a general point of C. Hence, a general osculating
conic D to C is irreducible. Since S is the intersection of the quadrics
containing C, every osculating conic is contained in S. We distinguish
two cases.

(i) The surface S is a smooth ruled surface. Hence S � Fe

for an integer e with 0 ≤ e ≤ g− 3 and e ≡ g mod 2. Take as a basis of
Pic (S) � Z⊕2, a minimal degree section h of the ruling and a fiber f of
the ruling. Hence, h2 = −e, hf = 1 and f2 = 0. Since S is embedded as
a degree g−2 ruled surface, we have OS(1) � OC(h+((g+e−2)/2)f).
Assume that C ∈ |ah+ bf |. Since C is not hyperelliptic, we have a ≥ 3.
Notice that a general fiber F of the ruling of S intersects C only at
regular points. Hence, any such F induces a length a divisor F ∩ C of
C.

Since F is a line, by the geometric version of the Riemann-Roch
theorem, we have h0(C,OC(F ∩C)) = a−1. Since C is not hyperelliptic,
by Clifford’s theorem for singular curves, we have a = 3. Thus C is
trigonal. Since C is integral, if e > 0 then b ≥ ae. Since C is not
hyperelliptic, if e = 0 we have b ≥ 3. Since deg (C) = 2g − 2, we have
2g−2 = (ah+bf)(h+((g+e−2)/2)f), and so b = 2g−2−a(g−e−2)/2.

The general osculating conic, D, is a member of |yh+xf | with y ≥ 0
and y = 0 if e = 0 and x = 1 (since D is irreducible). Since deg (D) = 2,
we have 2 = (yh+xf)(h+((g+e−2)/2)f) = −ey+x+y(g+e−2)/2.
If y = 0, then x = 2, contradicting the fact that D is irreducible. The
case g = 5, e = 1, a + b = 8, b ≥ a ≥ 3 and 2y + x = 2 remains. Since
the case y = 0 and x = 2 is excluded by the irreducibility of D, we
have y = 1 and x = 0. However, such a curve is unique in S, and the
plane Π spanned by it is also unique. Since Π must be the osculating
plane to C at a general point of C, we have C ⊂ Π, a contradiction.

(ii) The surface S is a cone over the normal rational curve
of Pg−2. Let u : Y → S be the blowing-up of the vertex of the cone,
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and let C′ be the strict transform of C in u.

We have Y � Fg−2 and, with the convention used in the previous
steps for Pic (Y ) � Z⊕2, the morphism Y → S is induced by the
complete linear system |h + (g − 2)f |. We have h = u−1(v) where v
is the vertex of S. Let µ be the multiplicity of C at v. Hence µ ≥ 0,
µ = 0, if and only if v /∈ C and µ = 1 if and only if v is a regular point
of C.

We have C′ ∈ |ah + (µ + a(g − 2))f |. Since C′ is assumed not to be
hyperelliptic, if µ = 0 we have a ≥ 3. Assume µ = 1. Since C is smooth
at v and not hyperelliptic, we obtain a ≥ 2. Since deg (C) = 2g− 2, we
have

2g−2 = (ah + (µ + a(g−2))f)(h + (g−2)f) = µ + a(g−2).

Hence, either µ = 2 and a = 2 or a = 1 and µ = g. The case a = 2 and
µ = 2 has been studied (with no assumptions on b2) in [19, Theorem
3.6].

If a = 1, the normalization of C is rational. Let D′ be the strict
transform in Y of a general osculating conic D of C. Then D′ is
irreducible. Let |xh+yf | be the linear system containing D′. Since D is
irreducible and it is not a line, we have y ≥ x(g−2). Since deg (D) = 2,
we have 2 = (xh + yf)(h + (g − 2)f) = −xe + x(g − 2) + y = y.

Hence, for g ≥ 5, we obtain a contradiction and so this case cannot
occur.

d) Assume b2 = 4 (and hence p = 2). By the geometric version
of the Riemann-Roch theorem, for a general regular point Q of C, we
have h0(C,OC(4Q)) ≥ 2. Since b1 = 2, again by the geometric version
of the Riemann-Roch theorem, we have h0(C,OC(3Q)) = 1. Hence
h0(C,OC(4Q)) = 2 and the line bundle OC(4Q) is spanned.

Here we assume that the normalization C′′ of C is not rational. For
the case in which C′′ is rational, see the next step. Since C ′′ is
not isomorphic to P1, for a general regular point Q′ of C, OC′′(4Q)
and OC′′(4Q′) are not isomorphic. We stress this point because it
is a characteristic p phenomenon. For any integral singular curve C
with normalization C′′, the kernel K of the surjective homomorphism
Pic0(C) → Pic0(C′′) is a unipotent group and, if Pic0(C′′) = {d} and K



NONCLASSICAL GORENSTEIN CURVES 361

is not an extension of copies of the multiplicative group of the ground
field, then K contains a one-dimensional family, say {Lα} of nontrivial
line bundles, with L⊗p

α � OC for every α, just because for every α ∈ K,
we have pα = 0.

Hence, C has infinitely many complete base point free pencils of
degree 4. If C is smooth, this implies an arbitrary characteristic that C
is bielliptic.

We will check the existence of a double covering v : C → E with E
an irreducible curve with pa(E) = 1. Thus E is either a smooth elliptic
curve or a rational curve with an ordinary node as unique singularity,
or a rational curve with an ordinary cusp as unique singularity.

The case g ≥ 10 is easy to check because of the following reason. Take
two different degree 4 spanned line bundles L and L′ on C. The two
associated pencils induce a morphism b : C → P1 ×P1. If b is rational,
then b(C) is an irreducible curve of degree (4, 4) on the quadric P1×P1

and hence 9 = pa(b(C)) ≥ pa(C) = g. So we may assume g ≤ 9.

Now assume that the normalization C′′ of C is rational and that the
previous discussion cannot start, i.e., we assume that all line bundles
OC(4Q), Q general on C, are isomorphic.

We stress that they are isomorphic as line bundles on C because their
pull-backs to C′′ are isomorphic since they have the same degree.

Fix a general point Q ∈ C and call m : C → P1 the induced
morphism. We have h0(C,OC(4Q)) = 2 because C is assumed to be
nonhyperelliptic.

By assumption, for a general point Q′ ∈ C, the divisors 4Q and
4Q′ are linearly equivalent, and hence 4Q is a scheme theoretic fiber
m−1(m(Q′)) of Q′. It follows that m is purely inseparable of degree 4.

Vice versa, take any Gorenstein nonhyperelliptic integral curve C with
a degree 4 purely inseparable morphism m : C → P1. Set g := pa(C′)
and embed C in P g−1. We have that for a general regular point Q of
C, the scheme theoretic fiber m−1(m(Q′)) is the divisor 4Q. By the
geometric version of the Riemann-Roch theorem for a general Q ∈ C,
the subscheme 4Q of C spans at most a plane of Pg−1. By definition,
this means b2(C) ≥ 4.
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e) The canonically embedded curve C is strange. Call P the
strange point of C and C′ ⊂ Pg−2 the image of C by the projection from
P .

Since C′ spans Pg−2, we have deg (C′) ≥ g−2. Since deg (C) = 2g−2
and the projection π of C from P has at least degree p, we see that
p = 2, the projection is purely inseparable, generically injective and
that only two cases are a priori possible:

(i) P /∈ C, deg (π) = 2, deg (C′) = g − 1;

(ii) P ∈ C, C has multiplicity 2 at P , deg (π) = 2 and deg (C′) = g−2,
i.e., C′ is a normal rational curve.

Furthermore, in case (i) we have to distinguish the following subcases.

(i1) C′ is smooth and rational (and hence not linearly normal);

(i2) C′ is smooth and elliptic and hence linearly normal;

(i3) C′ has a node (hence C′ is linearly normal and pa(C′) = 1);

(i4) C′ has a cusp (hence C′ is linearly normal and pa(C′) = 1).

Call T ⊂ Pg−1 the cone with vertex P and base C′. Thus deg (T ) =
g − 1 in case (i) and deg (T ) = g − 2 in case (ii). Let W be the strict
transform of T in the blowing-up of Pg−1 at P .

In case (i2) W is the ruled surface P(OC′ ⊕ OC′(1)) over C′; call
v : W → C′ the ruling, h the counterimage of the vertex P and
R := v∗(OC′(−1)).

We have h2 = −g + 1. The map W → Pg−1 is induced by the linear
system |h + R|.

In case (ii) we have a similar description of T and W , but here the
embedding is not linearly normal. In cases (i3) and (i4), the cone T
arises from a nongeneral projection of a linearly normal cone T ′ ⊂ Pg

of degree g−1 over a normal rational curve of Pg−1 and the blowing-up,
W ′, of T ′ at the vertex is isomorphic to Fg−1.

Now we exclude case (ii).

Let A ⊂ Pg−1 be a quadric hypersurface containing C. Since a
general line of T contains at least a length three subscheme of C,
we have T ⊂ A. Since every quadric hypersurface containing T is
the cone with vertex P of a quadric hypersurface of Pg−2 containing
C′, we have h0(Pg−1, IT (2)) = h0(Pg−2, IC′(2)) = g(g − 1)/2 − 2(g −
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2) − 1. Since h0(C,OC(2)) = g − 3, by the Riemann-Roch theorem
we have h0(Pg−1, IC(2)) ≥ g(g + 1)/2 − 3g + 3 > h0(Pg−2, IT (2)), a
contradiction.

The case (i1) is not possible because C would be hyperelliptic, contra-
dicting our assumptions. Here we use the fact that P /∈ C′, i.e., we use
the fact that the rational map from C onto C′ induced by the projection
from P is regular. The same would be true if P is a regular point of C
but would be false if P is a singular point.

Now we classify the possible curves C in case (i2).

We have h0(Pg−1, IT (2)) = h0(Pg−2, IC′(2)) = g(g−1)/2−2(g−1) <
g(g + 1)/2 − 3g − 3 ≤ h0(Pg−1, IC(2)).

Hence there is a quadric hypersurface A of Pg−1 containing C but
not T . Since deg (C) = 2deg (T ), C = A ∩ T , as schemes. Since P /∈ T ,
every singular point of C is a planar singularity. Vice versa, for every
quadric hypersurface A of Pg−1 not containing P , with C ∩ T with no
multiple components and irreducible, the curve A ∩ T is a Gorenstein
bielliptic curve.

The curve A ∩ T is strange (and hence p = 2) if and only if every
line of T is tangent to the curve A ∩ T . In this case P is the strange
point of A ∩ T . We described all the equations of such curves inside
the linear space P(H0(T,OT (2)) in [1] and [2].

Proposition 2.2. Let T be as in subcases (i2), (i3) and (i4), and let
A be a quadric hypersurface of Pg−1 not containing T with P /∈ A
and with A ∩ T irreducible and with no multiple component. Set
C := A ∩ T . Assume that C is strange, i.e., assume that p = 2 and
that the projection f : C → C′ from P is purely inseparable of degree 2.
Let {bi}, 0 ≤ i ≤ g − 1 be the Hasse sequence of invariants of C. Then
bi = 2i for every i ≤ g − 1.

Proof. Take a general Q ∈ C′ and let bi(C′), 0 ≤ i ≤ g − 2 be the
Hasse sequence of invariants of C′. Let B := (f−1(Q))red. B may be
considered a general point of C. Since the line, W1, of T through Q
has multiplicity two with C at B, we have b1 = 2. Since C′ is linearly
normal and h0(C′,OC′(tQ)) = t for every t > 0, we have bi(C′) = i + 1
for every i.
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Let Vi, 1 ≤ i ≤ g − 2, be the osculating linear subspace of C′ at Q
with dim (Vi) = i. Let Wi+1 := 〈{P, Vi}〉 be the linear span of Vi and
P . We have dim (Wi+1) = i+1. Since f is purely inseparable of degree
two, the connected component of the scheme Wi+1 ∩ C supported by
P has length twice the length i + 1 of the subscheme Vi ∩ C with Q
as support. Since B is general, we obtain bi ≥ 2i for 2 ≤ i ≤ g − 2.
Inductively, we obtain that {Wj}, 1 ≤ j ≤ g − 2, is the osculating flag
to C at B. Thus bi = 2i for every i ≤ g − 1.

f) The case C bielliptic. Here we study the case in which C
is bielliptic, i.e., we assume the existence of a degree two morphism
f : C → E with E an integral curve and pa(E) = 1. Thus either E is
a smooth elliptic curve or E is a rational curve with an ordinary node
or an ordinary cusp as unique singularity.

Also, in this step and the next steps, we extend to the case of
Gorenstein bielliptic curves the well-known characterization of smooth
bielliptic curves as the curves whose canonical model in Pg−1 lies on the
cone over a degree g−1 linearly normal elliptic curve E of a hyperplane
of Pg−1 (see, e.g., [6, Theorem 2.1]).

Here we assume that Y is a Gorenstein nonhyperelliptic curve with a
double covering f : C → E with pa(C) = 1. By [20, Theorem 1.5], the
canonical morphism is a degree 2g − 2 embedding of Y into Pg−1.

See C as a canonically embedded curve. For a general point Q ∈ E,
either card (f−1(Q)) = 2 (and hence f is separable) or card (f−1(Q)) =
1 (and hence f is purely inseparable). In the latter case, the scheme
f−1(Q) is a length two subscheme of C.

Thus, in both cases, for a general Q ∈ E, there is a unique line
D(Q) ⊂ Pg−1 spanned by the scheme f−1(Q).

Fix general Q,Q′ ∈ E. Since h0(E,OE(Q + Q′)) = 2, we have
h0(C,OC(f−1(Q) + f−1(Q′))) ≥ 2. By the geometric version of the
Riemann-Roch theorem, we obtain that for general Q,Q′ ∈ E, we have
D(Q) ∩ D(Q′) 
= ∅. Since E has infinitely many points, this implies
that either all lines D(Q) are contained in the same plane or P ∈ Pg−1

exists with P ∈ D(Q) for all Q.

Since Pg−1 is not a plane and C spans Pg−1, we obtain that C is
contained in a cone T which is the closure of the union of the lines D(Q)
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with Q ∈ E, and Q general. Call P the vertex of T . Let C′ ⊂ Pg−2 be
the image of the projection, say π, of C from P .

Since f is a morphism, f−1(Q) ∩ f−1(Q′) 
= ∅, for general points
Q,Q′ ∈ E, Q 
= Q′. This implies that the rational map from C onto
C′ induced by the projection from P has at least degree two. Since C ′

spans Pg−2, deg (C′) ≥ g − 2. Hence, for g ≥ 5, only two cases are
a priori possible.

(i) P /∈ C, deg (π) = 2, deg (C′) = g − 1;

(ii) P ∈ C, C has multiplicity two at P , deg (π) = 2 and deg (C′) =
g − 2, i.e., C′ is a normal rational curve.

Remark 2.3. Every integral canonical curve C with C ⊂ T , C with
multiplicity two at P and with π inseparable has b2 ≥ 4. Indeed, take
a general point Q ∈ C. The plane Π(Q) spanned by P and the tangent
line to C′ at π(P ) contains at least the double of the scheme cut out
on C at Q by the line 〈{P,Q}〉. Since this scheme has length two, by
the inseparability of the degree two map π, we obtain b2 ≥ 4. Since a
rational normal curve is ordinary and π has degree two, the subscheme,
Z, of Π∩ C supported by P and has length < 6. Since 2 is divisible by
p = 2, we obtain b2 = 4.

Remark 2.4. In both cases C′ is birational to E. Hence, if E is smooth,
then we are in case i) and C ′ is an elliptic linearly normal curve.

Remark 2.5. The case E smooth is completely classified in (i1).

Here we assume the case (i). Since the case C strange has been
analyzed in e), we may assume that C is not strange. If C′ is linearly
normal (i.e., not a smooth rational curve), the proof given to exclude
the case (i2) gives C = A∩T (as schemes) with A a quadric hypersurface
with P /∈ T . The proof of Proposition 2.2 would give that C is ordinary
unless C is strange with vertex P , i.e., unless we are in a case completely
classified in e). Hence, we may assume that C′ ⊂ Pg−2 is a nonlinearly
normal smooth rational curve of degree g − 1. Since P /∈ C, π is a
morphism and hence C is hyperelliptic, a contradiction.
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Examples with g = 9, b1 = 2 and b2 = 4. Here we construct
a family of examples with g = 9, b1 = 2 and b2 = 4 (and hence
p = 2). Let S � P1 × P1 ⊂ P3 be a smooth quadric surface. Every
irreducible curve D of type (4, 4) on S has ωS ≡ OS(2), and hence
pa(D) = 9. Consider the projection f : S → P1 on the first factor. In
the linear system OS(2) we have described in [2] the “equations” of all
such curves, D, such that f |D is purely inseparable of degree 4.

Consider the canonical embedding, C, of D. Since h1(S,OS) = 0
and h1(P3,OP3) = 0, the restriction maps α : H0(S,OS(2)) →
H0(D,OD(2)) and β : H0(P3,OP3(2)) → H0(S,OS(2)) are surjective.

Hence the restriction map H0(P3,OP3(2)) → H0(D,OD(2)) is sur-
jective and its kernel is one-dimensional.

This means that the canonical embedding of D embeds C as a curve
in a hyperplane H � P8 of P9 where P9 is the ambient space for
the double Veronese embedding j of P3. This implies b1(C) = 2 (use
reducible quadrics). Fix a general Q ∈ D and call Q′ the corresponding
point of C. Let D(Q) be the line of P3 tangent to D at Q. The line
D(Q) has intersection multiplicity four with D at Q.

The line D(Q) is sent by j into a conic j(D(Q)). Since j(D(Q)) has
intersection multiplicity four with C at Q′, j(D(Q)) is the osculating
conic of C at Q′.

Then b1(C(Q′)) = 4 as wanted. Notice that the normalization of C is
P1 and that, for all A,B ∈ Creg, we have OC(4A) � OC(4B).

Remark 2.6. Take any example D with g = 9, b1 = 2 and b2 = 4 given
before, and any partial normalization Y of D, i.e., any integral curve
with a birational morphism Y → D. Assume that Y is Gorenstein
and not hyperelliptic. Since the canonical series of Y is a subseries
of ωD (subadjunction theory), the canonical embedding Y ′ of Y has
b2(Y ′) ≥ b2(C) = 4, and hence every such Y gives an example with
lower genus.

Remark 2.7. The examples of curves with g = 9, b1 = 2 and b2 = 4
and parts e) and f) give a complete classification of all curves C of genus
nine with b2 ≥ 4.

Indeed, if C is a double covering of a curve with arithmetic genus one,
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then we may apply the classification made in f) and e). If this is not
the case, then by the case b2 = 4, we know that two general degree four
pencils send C onto a curve D of type (4, 4) on S � P1 × P1. Since
pa(D) = 9, the morphism C → D is an isomorphism.

Furthermore, we know that for a general point Q ∈ D, we have
h0(D,OD(4Q)) ≥ 2, i.e., by Serre duality, h0(D,ωD(−4Q)) > 0.
By the adjunction formula, we have OD(2) � OD(2, 2). Since
H1(S,OS(2, 2)) = 0 (e.g., by Künneth’s formula), the restriction
map H0(S,OS(2, 2) → H0(D,OD(2, 2)) is surjective. We obtain
H1(S,OS(2, 2)⊗ I{4Q}) 
= 0, where {4Q} denotes the zero-dimensional
length four subscheme of S associated to the effective Cartier divisor
4Q on D.

Using reducible curves of type (2, 2) on S, we see that this is equiv-
alent to the fact that {4Q} is contained either in a line of type (0, 1)
or on a line of type (1, 0). Since this is true for a general Q ∈ D, we
see that the restriction to Q of the projection from S onto one of its
factors P1 is purely inseparable of degree four. Thus, C is given by the
examples with g = 9, b1 = 2 and b2 = 4.

g) Again on the case b2 ≥ 4. Here we will conclude the case b2 ≥ 4
under the assumption that the normalization C′′ of C has genus q ≥ 4.

In particular, since q > 0, we may apply results in part a) and hence
C has many base point free degree four spanned line bundles. By parts
e) and f), we may assume that there is no degree two morphism from C
onto a curve E with pa(E) = 1 and such that all these spanned degree
four line bundles come from E.

In particular, by part d) we may assume g ≤ 9. However, we will
only assume q > 0 unless otherwise specified.

Remark 2.8. Notice that the canonical series of C′′ is in a natural way
a subseries of the canonical series of C. Hence, if q = 3, 4 and C′′ is not
hyperelliptic, then C′′ is classified in [14].

Remark 2.9. Assume q ≥ 5. Since q > 0, the pull-back to C′′ of the
line bundles OC(4Q), Q a general regular point of C, are spanned and
hence, either C′′ is hyperelliptic or C′′ is bielliptic and these line bundles
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come from a degree two morphism f : C′′ → E. This implies that,
for general points Q,Q′ ∈ Creg, the corresponding pencils OC′′(4Q)
and OC′′(4Q′) induce a degree two morphism u : C′′ → P1 × P1

with u(C′′) = E. Since not only the line bundles but also the
spanning sections come from C, the morphism u factors through the
normalization map C′′ → C.

Thus we have found a degree two morphism C → E with E smooth
elliptic curve. We have solved the case C′′ not hyperelliptic.

Now we will exclude the case q ≥ 2 and C′′ hyperelliptic. By
assumption, for a general Q ∈ C, the line bundle OC(4Q) is spanned.
Hence, for a general B ∈ C′′, the line bundles OC′′(4B) is spanned.

This is false for every smooth hyperelliptic curve C′′ of genus ≥ 2.

Now we assume that q > 0, g ≥ 5, b1 = 2 and b2 = 4, hence p = 2,
and prove that C is bielliptic.

Let M ⊂ Pic4(C) be the one-dimensional family of spanned line
bundles {OC(4Q)}, Q ∈ Creg and Q general. Note that dim (M) = 1
because q > 0 (see part d) ). Since the line bundles OC(4Q) and
OC(4Q′) are not isomorphic for general Q,Q′, by the base point free
pencil trick, we obtain h0(C,OC(4Q + 4Q′)) ≥ 4. By the geometric
version of the Riemann-Roch theorem, we obtain that two planes, M
and M ′, spanned by a general divisor of OC(4Q) and a general divisor
of OC(4Q′), respectively, M ∪M ′ spans at most a 4-dimensional linear
space. Thus we have that M ∩ M ′ 
= ∅. If the curve C′ is not
hyperelliptic or trigonal, it is easy to obtain that M ∩ M ′ is a point,
say P (M,M ′). Without assuming that C is not trigonal, one has to
consider separately (but in a similar way) the far easier case in which
for general M,M ′, the set M ∩M ′ is a line.

We have a continuous family of mutually intersecting planes which,
in general, intersect mutually in exactly one point. Since M and M ′

are planes in Pg−1, g ≥ 7, and their union spans Pg−1, we obtain that
all the planes M pass through a common point [5].

Call P the common point of all planes M,M ′. First assume that
P /∈ C. We assume that C is not strange (this case has been classified
in part e) ).

We assume that C is not contained in a minimal degree surface
because this case was studied in part a).
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Hence h0(Pg−1, IC∪{P}(2)) = h0(Pg−1, IC(2)) − 1.

Since P /∈ C, every quadric hypersurface containing C ∪ {P} contains
at least five points of such general plane M . Hence, the base locus, W ,
of the linear system U of all quadric hypersurfaces containing C ∪ {P}
contains either a conic of each general plane M or a general such M .
Since C is not strange and not contained in a minimal degree surface,
C is scheme-theoretically cut out by quadrics and hence W ∩B = C as
schemes for any quadric hypersurface B containing C, but not P .

This implies that W is, except for finitely many points, an irreducible
surface, W ′, with 2deg (W ′) = deg (C), i.e., with deg (W ′) = g−1. Since
C = W ′ ∩ B as schemes, we have Creg ⊂ W ′

reg. Two different planes
through P intersect only in P or in a line. Since planes associated to
different degree four divisors of the linear system P(H0(C,OC(4Q)))
are different and planes associated to divisors of different line bundles
OC(4Q) and OC(4Q′) are different, we have a two-dimensional family
of such planes such that, the union of the conics containing the divisors
and P gives W . Since B is a Cartier divisor of Pg−1 and W ′ ∩B = C,
we have dim (W ′) = 2, as remarked before.

The only way W ′ may be the union of such a family of conics is if
the conics are reducible so that each of the associated lines is contained
in a one-dimensional family of our two-dimensional family of planes.
Since at least one of the two lines of each reducible conic of M ∩W ′,
M one of our planes, must contain P , the projection of W ′ from P
into Pg−1 is a curve. Hence, W ′ is a cone with vertex P and basis an
irreducible curve, E, with deg (E) = deg (W ′) = g − 1 and E spanning
Pg−2. Hence pa(E) ≤ 1.

Since E is irreducible and the family of lines contained in W ′ is
parametrized by E, there is a Zariski dense open set Ω of such lines
such that every D ∈ Ω intersects C in a scheme with the same length,
say a. Since P /∈ C and a general plane M in our family is 4-secant to
C, we have a = 2. Since p /∈ C this means that the projection from P
induces a degree two morphism f : C → E. It is sufficient to exclude
the case pa(E) = 0.

Assume pa(E) = 0, i.e., assume that E is a smooth degree g−1 curve
spanning a hyperplane, H, of Pg−1. Thus the embedding of E in H
is not linearly normal and E is an isomorphic projection of a rational
normal cone E′′ of Pg−1. The cone W ′ is the projection of a cone
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W ′′ ⊂ Pg with base E′′. Call P ′′ the vertex of W ′′. W ′ and W ′′ are
not isomorphic, but W ′\{P} and W ′′\{P ′′} are isomorphic as abstract
varieties. Since P /∈ C, C is the projection of a curve D ⊂ W ′′ \ {P ′′}
with D � C, deg (D) = 2g−2. Since OC(1) � ωC , we have OD(1) � ωD.

Since deg (D) > deg (W ′′), the Bezout theorem implies that D is
not contained in a hyperplane of Pg−2. Thus g = pa(C) = pa(D) =
h0(D,ωD) = h0(D,OD(1)) ≥ g + 1, a contradiction.
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