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COVARIANT REPRESENTABILITY FOR
COVARIANT MULTILINEAR OPERATORS

JAESEONG HEO

ABSTRACT. In this paper the notion of a covariant mul-
tilinear map from a C∗-algebra to another is introduced.
Covariant completely bounded symmetric multilinear maps
are decomposed into covariant completely bounded and com-
pletely positive multilinear maps, and each covariant com-
pletely bounded map is covariantly representable in terms of
covariant representations and bridging operators. We show
that a covariant completely bounded multilinear map extends
to a completely bounded multilinear map on the crossed prod-
uct C∗-algebra.

1. Introduction and preliminaries. Christensen and Sinclair
[2] were the first to formulate the notation of completely bounded
(respectively, completely positive) multilinear operators from a C∗-
algebra into B(H) and gave representations for completely bounded
multilinear operators. In particular, they introduced the notion of a
representable k-linear operator from Ak into B(H) and pioneered the
representability of completely bounded k-linear operators. Paulsen and
Smith [5] extended a representation of completely bounded multilinear
maps to the case of subspaces of C∗-algebras using the correspondence
between completely bounded multilinear maps and completely bounded
linear maps on Haagerup tensor products.

In Section 2 the notion of a covariant multilinear map from a C∗-
algebra to another is introduced. To prove the covariant representa-
tion theorem for covariant completely bounded and completely positive
multilinear maps, we prove the technical lemmas which are covariant
versions of Theorem 2.8 and Lemma 3.1 in [2]. In Section 3 we con-
struct the covariant representations of covariant completely bounded
symmetric multilinear maps and show that such maps are decomposed
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into covariant completely bounded and completely positive multilinear
maps and that each covariant completely bounded map is covariantly
representable in terms of covariant representations and bridging oper-
ators. In Theorem 3.5 we will show that, given a C∗-dynamical system
(A,G, α) with G amenable, a covariant completely bounded multilinear
map extends to a completely bounded multilinear map on the crossed
product A×α G.

We recall the definitions introduced in [2] about completely bounded
(and completely positive) multilinear maps for our convenience. Let A
and B be C∗-algebras, and let φ : Ak = A× · · · ×A→ B be a k-linear
map. The k-linear map φn from Mn(A)k into Mn(B) is defined by

(1.1) φn(A1, A2, . . . , Ak) =
( ∑

r,s,... ,t

φ(a1ir, a2rs, . . . , aktj)
)

for all Ap = (apij) ∈Mn(A), 1 ≤ p ≤ k. We define the norm of φn by

‖φn‖ = sup{‖φn(A1, A2, . . . , An)‖ : Ap ∈Mn(A)
with ‖Ap‖ ≤ 1 for 1 ≤ p ≤ k}

and define the completely bounded norm of φn by

‖φ‖cb = sup{‖φn‖ : n ∈ N}.

The k-linear map φ is called completely bounded if ‖φ‖cb < ∞. We
denote CB(Ak, B) by the set of all completely bounded k-linear maps.

The k-linear map φ∗ from Ak into B is defined by

(1.2) φ∗(a1, a2, . . . ak) = φ(a∗k, . . . , a
∗
2, a

∗
1)

∗

for all a1, a2, . . . ak ∈ A. The k-linear map φ is called symmetric (when
k = 1, self-adjoint) if φ = φ∗. Note that if φ is symmetric, then
φ is completely symmetric in that φn = (φn)∗ for all n and that
if φ is completely bounded, then so is φ∗ with ‖φ∗‖cb = ‖φ‖cb [2].
CBs(Ak, B) will denote the set of all completely bounded symmetric
k-linear maps.

A k-linear map φ : Ak → B is said to be completely positive if

φn(A1, . . . , Ak) ≥ 0
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for all (A1, . . . , Ak) = (A∗
k, . . . , A

∗
1) ∈Mn(A)k with Am ≥ 0 if k is odd

wherem = [(k+1)/2], and all n ∈ N. Though every completely positive
linear map between C∗-algebras is completely bounded, this fails in the
case of completely positive k-linear maps when k ≥ 2. CB+(Ak, B)
will denote the set of all completely bounded and completely positive
k-linear maps from Ak into B. The set CB+(Ak, B) is a proper positive
cone in CBs(Ak, B). CBs(Ak, B) = CB+(Ak, B) − CB+(Ak, B) if B
is an injective C∗-algebra [2]. For details and other definitions, see [2].

2. Technical lemmas for covariant representations. In this
paper we will follow the notations in [6]. Let (A,G, α) be a C∗-
dynamical system with a locally compact group G, and let U(H) be
the unitary group of B(H). If (A,G, α) is a C∗-dynamical system, then
the action α : G→ Aut (A) induces the action α̃ : G→ Aut (Ak) by

(2.1) α̃g(a1, . . . , ak) = (αg(a1), . . . , αg(ak))

for all a1, . . . , ak ∈ A. Given a unitary representation u : G → U(H),
a k-linear map φ : Ak → U(H) is called u-covariant if

(2.2)
φ(α̃g(a1, . . . , am)) = φ(αg(a1), . . . , αg(am)) = ugφ(a1, . . . , am)u∗g

for each a1, . . . , am ∈ A and g ∈ G. A covariant representation of
a C∗-dynamical system (A,G, α) is a triple (π, σ,H) where (π,H) is
a representation of A on a Hilbert space H and (σ,H) is a unitary
representation of G into U(H) such that

(2.3) π(αg(a)) = σgπ(a)σ∗g for each a ∈ A, g ∈ G.

The following Lemmas 2.1 and 2.2 are covariant versions of Theorem
2.8 and Lemma 3.1 in [2], respectively.

Lemma 2.1. Let (A,G, α) be a C∗-dynamical system with G
amenable and u : G → U(H) a unitary representation of G. If
φ : Ak → B(H) is a u-covariant completely bounded symmetric k-linear
map with k ≥ 2, then there is a u-covariant completely positive linear
map ψ : A→ B(H) such that

(2.4) −ψn(X∗X) ≤ φn(X∗, A2, . . . , Ak−1, X) ≤ ψn(X∗X)
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for all X ∈ Mn(A) and A = A∗ = (A2, . . . , Ak−1) ∈ Mn(A)k−2 (not
occurring when k = 2) with ‖A‖ ≤ 1, and for all n and such that
‖ψ‖ = ‖ψ‖cb ≤ ‖φ‖scb.

Proof. By [2, Theorem 2.8], there is a completely bounded and
completely positive k-linear map ϕ : A→ B(H) such that

−ϕn(X∗X) ≤ φn(X∗, A2, . . . , Ak−1, X) ≤ ϕn(X∗X)

for all X ∈ Mn(A) and A = A∗ = (A2, . . . , Ak−1) ∈ Mn(A)k−2 with
‖A‖ ≤ 1 and all n and such that ‖ϕ‖ = ‖ϕ‖cb = ‖φ‖scb.

Let m be a right invariant mean on G, and define ψ : A→ B(H) by

(2.5) 〈ψ(a)ξ, η〉 = m(t �→ 〈u∗tϕ(αt(a))utξ, η〉)

for a ∈ A and ξ, η ∈ H. Since ϕ is completely positive and m is a
positive linear functional, we see that ψ is completely positive. By the
right invariance of m, we have that m(t �→ f(ts)) = m(f) so that

〈ψ(αs(a))ξ, η〉 = m(t �→ 〈u∗tϕ(αt(αs(a)))utξ, η〉)
= m(t �→ 〈usu

∗
tsϕ(αts(a))utsu

∗
sξ, η〉)

= m(t �→ 〈u∗tϕ(αt(a))utu
∗
sξ, u

∗
sη〉)

= 〈usψ(a)u∗sξ, η〉,

for every s ∈ G, where the third equality follows from the right
invariance of m. Thus we have ψ(αs(a)) = usψ(a)u∗s for each s ∈ G.

For any x ∈ A, a = a∗ = (a2, . . . , ak−1) ∈ Ak−2 and ξ ∈ H, we have

〈(ψ(x∗x) − φ(x∗, a2, . . . , ak−1, x))ξ, ξ〉
= m(t �→ 〈u∗tϕ(αt(x∗x))utξ, ξ〉)
−m(t �→ 〈φ(x∗, a2, . . . , ak−1, x)ξ, ξ〉)

= m(t �→ 〈u∗tϕ(αt(x∗x))ut − φ(x∗, a2, . . . , ak−1, x)ξ, ξ〉)
= m(t �→ 〈u∗t {ϕ(αt(x∗x)) − φ(αt(x∗), αt(a2), . . . ,

αt(ak−1), αt(x))}utξ, ξ〉)
≥ 0,
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where the third equality follows from the u-covariance of φ. Similarly,
we have 〈(ψ(x∗x) + φ(x∗, a2, . . . , ak−1, x))ξ, ξ〉 ≥ 0. From the above
two inequalities, we conclude that

−ψn(X∗X) ≤ φn(X∗, A2, . . . , Ak−1, X) ≤ ψn(X∗X)

for all X ∈ Mn(A) and A = A∗ = (A2, . . . , Ak−1) ∈ Mn(A)k−2 with
‖A‖ ≤ 1 and all n. Since ‖ϕ‖ = ‖φ‖scb, we can obtain ‖ψ‖ ≤ ‖φ‖scb

by averaging the equation ‖ψ(·)‖ = ‖u∗sϕ(·)us‖, and this completes the
proof.

Lemma 2.2. Let (A,G, α) be a C∗-dynamical system and u : G →
U(H) a unitary representation of G. Let φ : Ak → B(H) be a u-
covariant completely bounded symmetric k-linear map with k ≥ 2. If
ϕ : A→ B(H) is a u-covariant completely positive linear map such that

−ϕn(X∗X) ≤ φn(X∗, A2, . . . , Ak−1, X) ≤ ϕn(X∗X)

for all X ∈ Mn(A) and A = A∗ = (A2, . . . , Ak−1) ∈ Mn(A)k−2 with
‖A‖ ≤ 1 and all n, then there exist

(i) a covariant representation (π, σ,K) of (A,G, α) into B(K),

(ii) a continuous linear operator V ∈ B(H,K) with ‖V ‖2 = ‖ϕ‖,
(iii) a σ-covariant completely bounded symmetric (k − 2)-linear map

ψ from Ak−2 into B(K) with ‖ψ‖scb ≤ 1 (when k = 2, ψ is just a fixed
self-adjoint element of B(K) commuting with σg)

such that

(1) φ(a1, . . . , ak) = V ∗π(a1)ψ(a2, . . . , ak−1)π(ak)V for all a1, . . . , ak

∈ A,

(2) V (H) reduces σ and V ug = σgV for each g ∈ G.

Proof. By [2, Lemma 3.1], there exist a Hilbert space K, a ∗-
representation π of A on K, a continuous linear operator V ∈ B(H,K)
with ‖V ‖2 = ‖ϕ‖ and a completely bounded symmetric (k − 2)-linear
map ψ : Ak−2 → B(K) with ‖ψ‖scb ≤ 1 satisfying (1). Recalling the
proof in [2, Lemma 3.1], we first form the algebraic tensor product
A⊗H and endow it with pre-inner product by setting

〈x⊗ ξ, y ⊗ η〉A⊗H = (ϕ(y∗x)ξ|η)H
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and extending linearly. To obtain K one divides by the kernel of
〈·, ·〉A⊗H and completes. The representation π of A is defined by
π(a)(x ⊗ ξ) = ax ⊗ ξ. If A is unital, the linear operator V : H → K
is defined by V ξ = 1A ⊗ ξ. If A is nonunital, let {aλ} be a bounded
approximate identity of positive elements of norm ≤ 1 in A, and define
V ∈ B(H,K) by V ξ = w∗ − lim(aλ ⊗ ξ). The completely bounded
symmetric (k − 2)-linear map ψ : Ak−2 → B(K) is given by

〈ψ(a2, . . . , ak−1)(x⊗ ξ), y ⊗ η〉A⊗H = (φ(y∗, a2, . . . , ak−1, x)ξ|η)H.

We first define a map σ : G→ B(K) by setting

σg(x⊗ ξ) = αg(x) ⊗ ugξ, g ∈ G

and extending linearly to A⊗H. Since

〈σg(x⊗ ξ), σg(y ⊗ η)〉 = 〈αg(x) ⊗ ugξ, αg(y) ⊗ ugη〉
= (ϕ(αg(y)∗αg(x))ugξ|ugη)
= (ϕ(y∗x)ξ|η)
= 〈x⊗ ξ, y ⊗ η〉,

we have that σg extends to an isometry on K. Further, σg is a unitary
because

〈σg(x⊗ ξ), y ⊗ η〉 = 〈αg(x) ⊗ ugξ, y ⊗ η〉
= 〈ϕ(y∗αg(x))ugξ|η)
= (ϕ(αg−1(y∗)x)ξ|u∗gη)
= 〈x⊗ ξ, αg−1(y) ⊗ u∗gη〉
= 〈x⊗ ξ, σg−1(y ⊗ η)〉.

Since αg(x) is norm continuous and u is strong continuous, σ is strong
continuous on the finite sums of elementary tensors and the fact that
‖σg‖ ≤ 1 allows one to pass to limits.

For each g ∈ G and a ∈ A, we have

σgπ(a)σ∗g(x⊗ ξ) = σg(aαg−1(x) ⊗ u∗gξ)
= αg(a)x⊗ ξ
= π(αg(a))(x⊗ ξ),
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which implies that (π, σ,K) of (A,G, α) is a covariant representation
of (A,G, α). Since σgV ξ = (1A ⊗ ugξ) = V ugξ for each ξ ∈ H, we get
V ug = σgV for each g ∈ G. Similarly, this equality is also obtained in
the nonunital case.

To show the σ-covariance of ψ, let a2, . . . , ak−1 ∈ A. Then we have

〈ψ(αg(a2), . . . , αg(ak−1))(x⊗ ξ), y ⊗ η〉
= (φ(y∗, αg(a2), . . . , αg(ak−1, x)ξ|η)
= (ugφ(αg−1(y∗), a2, . . . , ak−1, αg−1(x))u∗gξ|η)
= 〈ψ(a2, . . . , ak−1)(αg−1(x) ⊗ u∗gξ), αg−1(y) ⊗ u∗gη〉
= 〈σgψ(a2, . . . , ak−1)σ∗g(x⊗ ξ), y ⊗ η〉.

When k = 2, we get a fixed self-adjoint operator S in B(K) such that

〈S(x⊗ ξ), y ⊗ η〉 = (φ(y∗, x)ξ|η).

For each g ∈ G, we have

〈σ∗gSσg(x⊗ ξ), y ⊗ η〉 = 〈S(αg(x) ⊗ ugξ), αg(y) ⊗ ugη〉
= (φ(αg(y∗), αg(x))ugξ|ugη)
= 〈S(x⊗ ξ), y ⊗ η〉,

which completes the proof.

3. Covariant representations for covariant completely bound-
ed multilinear maps. In [2], the representability of k-linear operators
and the representable norm are introduced as follows: Let π1, . . . , πk

be representations of a C∗-algebra A on Hilbert spaces H1, . . . ,Hk,
and let Vj ∈ B(Hj+1,Hj) for j = 0, . . . , k, where H0 = H = Hk+1.
Then

φ(a1, . . . , ak) = V0π1(a1)V1 · · ·πk(ak)Vk

is clearly a k-linear map from Ak into B(H). Such a k-linear map
φ is said to be representable. The representable norm ‖ · ‖rep of a
representable k-linear operator φ is defined by

‖φ‖rep = inf {‖V0‖ · ‖V1‖ · · · ‖Vk‖},

where the infimum is taken over all such representations of φ.
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Similarly, we consider the covariant representability of covariant com-
pletely bounded k-linear operators. Let (A,G, α) be a C∗-dynamical
system and u : G → U(H) a unitary representation of G. Let
(πi, σi,Hi), 1 ≤ i ≤ k, be covariant representations of (A,G, α) and
Vj ∈ B(Hj+1,Hj) for j = 0, . . . , k, where H0 = H = Hk+1. Consider a
k-linear map φ : Ak → B(H) defined by

(3.1) φ(a1, . . . , ak) = V0π1(a1)V1 · · ·πk(ak)Vk, a1, . . . , ak ∈ A,
satisfying the relations

(3.2) ugV0 = V0σ1(g), Vkug = σk(g)Vk, Viσi+1(g) = σi(g)Vi

for each g ∈ G and i = 1, . . . , k − 1. Then we see that the k-linear
map φ is u-covariant. Such a k-linear map φ is said to be covariant
representable.

The following covariant representation theorem of a covariant com-
pletely bounded symmetric k-linear operator from Ak into B(H) is fol-
lowed from [2, Theorem 4.1] except for the covariance, so that we only
show the covariance.

Theorem 3.1. Let (A,G, α) be a C∗-dynamical system with G
amenable and u : G → U(H) a unitary representation of G. Let
φ : Ak → B(H) be a u-covariant completely bounded symmetric k-linear
map and m = [(k + 1)/2].

(A) k odd. There exist covariant representations (πi, σi,Hi), 1 ≤ i ≤
m − 1, and (θj , τj ,Kj), j = 1, 2, of (A,G, α) and continuous linear
operators Vi ∈ B(Hi,Hi+1), 0 ≤ i ≤ m− 2, where H0 = H with

‖V0‖ · ‖V1‖ · · · ‖Vm−2‖ = ‖φ‖1/2
scb

and Wj ∈ B(Hm−1,Kj), j = 1, 2, with ‖W ∗
1W1+W ∗

2W2‖ = 1 such that

(3.3)
φ(a1, . . . , ak) = V ∗

0 π1(a1)V ∗
1 · · ·V ∗

m−2πm−1(am−1)
× {W ∗

1 θ1(am)W1 −W ∗
2 θ2(am)W2}

× πm−1(am+1)Vm−2 · · ·V1π1(ak)V0

for all a1, . . . , ak ∈ A and
(3.4)
σ1(g)V0 = V0ug, σi+1(g)Vi = Viσi(g), σm−1(g)W ∗

j = W ∗
j τj(g)



COVARIANT REPRESENTABILITY 293

for each g ∈ G, i = 1, . . . ,m − 1 and j = 1, 2. If, in addition, φ is
completely positive, then the W2 expression is zero.

(B) k even. There exist covariant representations (πi, σi,Hi), 1 ≤
i ≤ m, of (A,G, α) and continuous linear operators Vi ∈ B(Hi,Hi+1),
0 ≤ i ≤ m− 1,

‖V0‖ · ‖V1‖ · · · ‖Vm−1‖ = ‖φ‖1/2
scb

where H0 = H and W = W ∗ ∈ B(Hm) with ‖W‖ = 1 such that

(3.5)
φ(a1, . . . , ak) = V ∗

0 π1(a1)V ∗
1 · · ·V ∗

m−1πm(am)W
× πm(am+1)Vm−1 · · ·V1π1(ak)V0

for all a1, . . . , ak ∈ A, and

(3.6) V0ug = σ1(g)V0, σi+1(g)Vi = Viσi(g), σm(g)W = Wσm(g)

for each g ∈ G and 1 ≤ i ≤ m − 2. If, in addition, φ is completely
positive, then W is positive.

Proof. The proof follows from Lemmas 2.1 and 2.2 as in [2].

(A) k odd. Using the invariant mean to average as in Lemma 2.1,
the case k = 1 is obtained from [3, Corollary 2.6]. Let φ : Ak → B(H),
k ≥ 3, be a u-covariant completely bounded symmetric k-linear map.
By Lemma 2.1 there is a u-covariant completely positive linear map
ϕ : A→ B(H) such that

−ϕn(X∗X) ≤ φn(X∗, A2, . . . , Ak−1, X) ≤ ϕn(X∗X)

for all X ∈ Mn(A) and (A2, . . . , Ak−1) = (A∗
k−1 · · ·A2) ∈ Mn(A)k−2.

By Lemma 2.2 there is a Hilbert space H1, a covariant representation
(π1, σ1,H1) of (A,G, α) and a σ1-covariant completely bounded sym-
metric (k − 2)-linear map ψ : Ak−2 → B(H1) such that

φ(a1, . . . , ak) = V ∗
0 π1(a1)ψ(a2, . . . , ak−1)π1(ak)V0

for all a1, . . . , ak ∈ A and that V0ug = σ1(g)V0 for each g ∈ G,
‖V0‖2 ≤ ‖φ‖scb and ‖φ‖scb ≤ 1. In the proof of [2, Lemma 3.1], the
equality

φn(A1, . . . , Ak) = (V0)∗n(π1)n(a1)ψn(A2, . . . , Ak−1)(π1)n(Ak)(V0)n
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holds for all A1, . . . , Ak ∈ Mn(A). Hence ‖φ‖scb ≤ ‖ψ‖scb · ‖V0‖2 so
that we have ‖φ‖scb = ‖V0‖2. The remainder is obtained by induction.

(B) k even. By Lemma 2.2 and the induction it suffices to consider
only the case k = 2. Let φ be a u-covariant completely bounded sym-
metric two-linear map from A2 into B(H). By Lemma 2.1 there is a
u-covariant completely positive linear map ψ : A2 → B(H) dominating
φ. From Lemma 2.2 we conclude that there exist a covariant represen-
tation (π, σ,K) of (A,G, α), a continuous linear operator V ∈ B(H,K)
and a self-adjoint W ∈ B(K) with ‖W‖ = 1 and ‖V0‖2 ≤ ‖φ‖scb such
that

φ(a, b) = V ∗π(a)Wπ(b)V and W = σ∗gWσg

for all a, b ∈ A and g ∈ G. The remainder is obtained by induction.

Corollary 3.2. Let (A,G, α) be a C∗-dynamical system with G
amenable. Let B be an injective von Neumann algebra and u a unitary
representation of G into the unitary group U(B) of B. If φ : Ak → B is
a u-covariant completely bounded symmetric k-linear map, then there
are u-covariant completely bounded and completely positive k-linear
maps φ+ and φ− from Ak into B such that

φ = φ+ − φ− and ‖φ‖cb ≥ ‖φ+ + φ−‖cb.

Proof. By [2, Corollary 4.3] there are u-covariant completely bounded
and completely positive k-linear maps ψ+ and ψ− from Ak into B such
that

φ = ψ+ − ψ− and ‖φ‖cb = ‖ψ+ + ψ−‖cb.

First, represent B on a Hilbert space H. Then there is a completely
positive projection P from B(H) onto B so that we may regard φ, ψ+

and ψ− as being k-linear maps from Ak into B(H).

Let m be a right invariant mean on G, and define φ+ and φ− by

(φ±(a1, . . . , ak)ξ|η) = m(t �→ (u∗tψ±(αt(a1), . . . , αt(ak))utξ|η)

for a ∈ A and ξ, η ∈ H. Then φ+ and φ− are completely bounded and
completely positive k-linear maps. By the right invariance of m, we



COVARIANT REPRESENTABILITY 295

have

(φ±(αs(a1), . . . , αs(ak))ξ|η)
= m(t �→ (u∗tψ±(αts(a1), . . . , αts(ak))utξ|η))
= m(t �→ (usu

∗
tsψ±(αts(a1), . . . , αts(ak))utsu

∗
sξ|η))

= m(t �→ (u∗tψ±(αt(a1), . . . , αt(ak))utu
∗
sξ|u∗sη))

= (usφ±(a1, . . . , ak)u∗sξ|η).

Hence we have φ±(αs(a1), . . . , αs(ak)) = usφ±(a1, . . . , ak)u∗s for each
s ∈ G so that φ+ and φ− are u-covariant. For all a1, . . . , ak ∈ A and
ξ, η ∈ H, we have

((φ+(a1, . . . , ak) − φ−(a1, . . . , ak))ξ|η)
= m(t �→ (u∗t{ψ+(αt(a1), . . . , αt(ak))

− ψ−(αt(a1), . . . , αt(ak))}utξ|η))
= m(t �→ (u∗tφ(αt(a1), . . . , αt(ak))utξ|η))
= m(t �→ (φ(a1, . . . , ak)ξ|η))
= (φ(a1, . . . , ak)ξ|η),

so that φ = φ+ − φ−. Furthermore, we get the desired result by
averaging the equation

‖φ‖cb = ‖ψ+ + ψ−‖cb = ‖u∗gψ+ug + u∗gψ−ug‖cb,

which completes the proof.

Let B be a C∗-algebra and u a unitary representation of G into U(B).
Let [φij ] be a k-linear map fromAk intoMn(B), and let ũg ∈ U(Mn(B))
be a diagonal matrix with all the diagonal entries ug. If the map
[φij ] : Ak →Mn(B) is ũ-covariant with respect to the dynamical system
(Ak, G, α̃), we say that [φij ] is a u-covariant k-linear map. Note that
a k-linear map [φij ] is u-covariant if and only if

(3.7)
φij(αg(a1), . . . , αg(ak)) = ugφij(a1, . . . , ak)u∗g

i, j = 1, . . . , n

for each (a1, . . . , ak) ∈ Ak and g ∈ G, cf. [3].
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Corollary 3.3. Let (A,G, α) be a C∗-dynamical system with G
amenable and u a unitary representation of G into U(H). If φ :
Ak → B(H) is a u-covariant completely bounded k-linear map, then
φ is covariant representable.

Proof. We get the proof via a slight modification. Let Sφ be a k-linear
map from Ak into M2(B(H)) = B(H⊕H) defined by

(3.8) Sφ =
[

0 φ∗

φ 0

]
.

Then Sφ is a completely symmetric k-linear map.

For each (a1, . . . , ak) ∈ Ak and g ∈ G, we have

Sφ(αg(a1), . . . , αg(ak))

=
[

0 φ∗(αg(a1), . . . , αg(ak))
φ(αg(a1), . . . , αg(ak)) 0

]

=
[

0 ugφ(a∗k, . . . , a
∗
1)u∗g

ugφ(a1, . . . , ak)u∗g 0

]

=
[
ug 0
0 ug

] [
0 φ∗(a1, . . . , ak)

φ(a1, . . . , ak) 0

] [
u∗g 0
0 u∗g

]

= ũgSφ(a1, . . . , ak)ũ∗g,

so that Sφ is u-covariant. Since the norm of the symmetrization
operator S is 1, Sφ is completely bounded. Using Theorem 3.1 and
restricting to the lower left corner of a 2 × 2-matrix defining Sφ gives
the desired result.

Corollary 3.4. Let (A,G, α) be a C∗-dynamical system with G
amenable and u a unitary representation of G into U(H). If φ : Ak →
B(H) is a u-covariant completely bounded k-linear map, then there are a
covariant representation (π, σ,K) of (A,G, α), a u-covariant completely
bounded symmetric (k−2)-linear map φ : Ak−2 → B(K) and continuous
linear operators V : K → H and W : H → K such that
(3.9)
φ(a1, . . . , ak) = V π(a1)ψ(a2, . . . , ak−1)π(ak)W, a1, . . . , ak ∈ A,
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and

(3.10) V σg = ugV, Wug = σgW, g ∈ G

with ‖φ‖cb = ‖V ‖ · ‖W‖ · ‖ψ‖cb.

Proof. Likewise, as in the proof of Corollary 3.3, the symmetrization

Sφ =
[

0 φ∗

φ 0

]

gives a u-covariant completely bounded symmetric k-linear map from
Ak into B(H ⊕ H) with ‖Sφ‖cb = ‖φ‖cb. By Lemma 2.1 there is
a u-covariant completely positive linear map ϕ : A → B(H ⊕ H)
dominating Sφ. By Lemma 2.2 there exist a covariant representation
(π, σ,K) of (A,G, α), a u-covariant completely bounded symmetric
(k − 2)-linear map ψ : Ak−2 → B(K) and a continuous linear operator
U ∈ B(H⊕H,K) such that

Sφ(a1, . . . , ak) = U∗π(a1)ψ(a2, . . . , ak−1)π(ak)U, a1, . . . , ak ∈ A,

and Uũg = σgU for each g ∈ G. Let P be an orthogonal projection
from H⊕H onto H⊕ 0. Letting V = (I − P )U∗ and W = U |H⊕0, we
get

φ(a1, . . . , ak) = V π(a1)ψ(a2, . . . , ak−1)π(ak)W.

Furthermore, we have V σg = ugV and Wug = σgW for each g ∈ G.

Theorem 3.5. Let (A,G, α) be a unital C∗-dynamical system
with G amenable and u a unitary representation of G into U(H). If
φ : Ak → B(H) is a u-covariant completely bounded k-linear map, then
a completely bounded k-linear map ψ : (A×α G)k → B(H) exists given
by
(3.11)

ψ(f1, . . . , fk) =
∫

Gk

φ(f1(s1), αs1(f2(s2)), . . . , αs1···sk−1(fk(sk)))

× us1us2 · · ·usk dµ(s1) dµ(s2) · · · dµ(sk)
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for all f1, . . . , fk ∈ K(G,A) where K(G,A) is the set of continuous
functions from G to A with compact supports.

Proof. The proof is divided into both the k odd and k even cases.

(A) k odd. By Theorem 3.1, there exist covariant representations
(πi, σi,Hi), (θj , τj ,Kj) of (A,G, α) and continuous linear operators
Vi ∈ B(Hi,Hi+1) where H0 = H and Wj ∈ B(Hm−1,Kj) satisfy (3.3)
and (3.4). We define πi × σi and θj × τj by

(πi × σi)(f) =
∫

G

πi(f(s))σi(s) dµ(s), 1 ≤ i ≤ m− 1,

(θj × τj)(f) =
∫

G

θj(f(s)τj(s) dµ(s), j = 1, 2,

for every f ∈ K(G,A). From [6, Proposition 7.6.4], we see that πi ×σi

(respectively, θj × τj) extends to a representation, again denoted by
πi × σi (respectively, θj × τj) from L1(G,A) to B(Hi) (respectively,
B(Kj)). By the universal property of the crossed product A×α G, the
representation πi×σi (respectively, θj ×τj) extends to a representation
of A ×α G into B(Hi) (respectively, B(Kj) ) still denoted by πi × σi

(respectively, θj × τj).
We define a k-linear map ψ : (A×α G)k → B(H) by

ψ(x1, . . . , xk) = V ∗
0 (π1 × σ1)(x1)

× V ∗
1 · · ·V ∗

m−2(πm−1 × σm−1)(xm−1)
× {W ∗

1 (θ1 × τ1)(xm)W1 −W ∗
2 (θ2 × τ2)(xm)W2}

× (πm−1 × σm−1(xm+1)Vm−2 · · ·
× V1(π1 × σ1)(xk)V0

for each x1, . . . , xk ∈ A ×α G. The case k = 1 is obtained from [3,
Proposition 3.2]. We only consider the case k = 3 because the general
case is similar. For f1, f2, f3 ∈ K(G,A), we have

ψ(f1, f2, f3) = V ∗(π × σ)(f1){W ∗
1 (θ1 × τ1)(f2)W1

−W ∗
2 (θ2 × τ2)(f2)W2}(π × σ)(f3)V
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=
∫

G3
V ∗π(f1(s1))σ(s1){W ∗

1 θ1(f2(s2))τ1(s2)W1

−W ∗
2 θ2(f2(s2))τ2(s2)W2}

× π(f3(s3))σ(s3)V dµ(s1) dµ(s2) dµ(s3)W1

=
∫

G3
V ∗π(f1(s1)){W ∗

1 θ1(αs1(f2(s2)))

×−W ∗
2 θ2(αs1(f2(s2)))W2}

× σ(s1s2)π(f3(s3))σ(s3)V dµ(s) dµ(s2) dµ(s3)
=

∫
G3
V ∗π(f1(s1)){W ∗

1 θ1(αs1(f2(s2)))W1

×−W ∗
2 θ2(αs1(f2(s2)))W2}

× π(αs1s2(f3(s3)))V us1us2us3 dµ(s1) dµ(s2) dµ(s3)

=
∫

G3
φ(f1(s1), αs1(f2(s2)), αs1s2(f3(s3)))

× us1us2us3 dµ(s1) dµ(s2) dµ(s3).

(B) k even. By Theorem 3.1, there exist covariant represen-
tations (πi, σi,Hi) of (A,G, α), continuous linear operators Vi ∈
B(Hi,Hi+1),where H0 = H, and W = W ∗ ∈ B(Hm) satisfying (3.5)
and (3.6). Likewise, as in (A), we define πi × σi

(πi × σi)(f) =
∫

G

πi(f(s))σi(s) dµ(s), 1 ≤ i ≤ m− 1,

for every f ∈ K(G,A). From [6, Proposition 7.6.4], we see that πi ×σi

extends to a representation, again denoted by πi × σi, from L1(G,A)
to B(Hi). By the universal property of the crossed product A ×α G,
the representation πi × σi extends to a representation of A ×α G into
B(Hi), still denoted by πi × σi.

We define a k-linear map ψ : (A×α G)k → B(H) by

ψ(x1, . . . , xk) = V ∗
0 (π1 × σ1)(x1)V ∗

1 · · ·V ∗
m−1

× (πm × σm)(xm)W (πm × σm)(xm+1)
× Vm−1 · · ·V1(π1 × σ1)(xk)V0
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for each x1, . . . , xk ∈ A×αG. We only consider the case k = 4 because
the general case is similar. Let fi ∈ K(G,A), 1 ≤ i ≤ 4. Then we have

ψ(f1, f2, f3, f4)
= V ∗

0 (π1 × σ1)(f1)V ∗
1 (π2 × σ2)(f2)W (π2 × σ2)(f3)V1(π1 × σ1)(f4)V0

=
∫

G4
V ∗

0 π1(f1(s1))σ1(s1)V ∗
1 π2(f2(s2))σ2(s2)Wπ2(f3(s3))σ2(s3)V1

× π1(f4(s4))σ1(s4)V0 dµ(s1) dµ(s2) dµ(s3) dµ(s4)

=
∫

G4
V ∗

0 π1(f1(s1))V ∗
1 π2(αs1(f2(s2)))Wσ2(s1s2)π2(f3(s3))σ2(s3)V1

× π1(f4(s4))σ1(s4)V0dµ(s1) dµ(s2) dµ(s3) dµ(s4)

=
∫

G4
V ∗

0 π1(f1(s1))V ∗
1 π2(αs1(f2(s2)))

×Wπ2(αs1s2(f3(s3)))V1σ1(s1s2s3)π1(f4(s4))σ1(s4)
× V0 dµ(s1) dµ(s2) dµ(s3) dµ(s4)

=
∫

G4
V ∗

0 π1(f1(s1))V ∗
1 π2(αs1(f2(s2)))

×Wπ2(αs1s2(f3(s3)))V1π1(αs1s2s3(f4(s4)))
× V0us1us2us3us4 dµ(s1) dµ(s2) dµ(s3) dµ(s4)

=
∫

G4
φ(f1(s1), αs1(f2(s2)), αs1s2(f3(s3)), αs1s2s3(f4(s4)))

× us1us2us3us4 dµ(s1) dµ(s2) dµ(s3) dµ(s4),

which completes the proof.
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