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EQUAL SUMS OF LIKE POWERS

AJAI CHOUDHRY

ABSTRACT. This paper is concerned with four diophan-

tine systems, namely, (i)
∑4

i=1
xk

i =
∑4

i=1
yk

i , k = 1, 2, 4;

(ii)
∑4

i=1
xk

i =
∑4

i=1
yk

i , k = 1, 3, 4; (iii)
∑4

i=1
xk

i =∑4

i=1
yk

i , k = 2, 3, 4; (iv)
∑3

i=1
xk

i =
∑3

i=1
yk

i , k = 2, 3, 4.

Parametric solutions as well as numerical examples of solu-
tions in positive integers of the first three diophantine systems
have been obtained in the paper. For the fourth diophantine
system, solutions do not exist in positive real numbers and a
single numerical solution in integers has been obtained.

This paper is concerned with the following four diophantine systems
relating to the problem of equal sums of like powers:

I. xk
1 + xk

2 + xk
3 + xk

4 = yk
1 + yk

2 + yk
3 + yk

4 , k = 1, 2, 4.
II. xk

1 + xk
2 + xk

3 + xk
4 = yk

1 + yk
2 + yk

3 + yk
4 , k = 1, 3, 4.

III. xk
1 + xk

2 + xk
3 + xk

4 = yk
1 + yk

2 + yk
3 + yk

4 , k = 2, 3, 4.
IV. xk

1 + xk
2 + xk

3 = yk
1 + yk

2 + yk
3 , k = 2, 3, 4.

Solutions of these diophantine systems have not been published before.
We will obtain two parametric solutions of the diophantine system I,
one parametric solution of system II and one parametric solution of
system III. We also give an additional method of generating infinitely
many integer solutions of system III. As numerical examples we will
obtain solutions in positive integers of these three diophantine systems.
Finally, we obtain the following numerical solution of system IV:

(1)
3582 + (−815)2 + 12242 = (−410)2 + (−776)2 + 12332,

3583 + (−815)3 + 12243 = (−410)3 + (−776)3 + 12333,

3584 + (−815)4 + 12244 = (−410)4 + (−776)4 + 12334.

This solution is particularly interesting since it has been proved earlier
by Palama [4] that the diophantine system IV has no solutions in
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116 A. CHOUDHRY

positive real numbers. Further, according to a well-known theorem
of Bastien (as quoted by Dickson [1, p. 712]), the set of simultaneous
equations

(2) xk
1 + xk

2 + · · ·+ xk
n = yk

1 + yk
2 + · · ·+ yk

n

where k = 1, 2, . . . , n has no nontrivial solutions. It has also been
shown [2] that the diophantine system

(3)
x2

1 + x2
3 = y2

1 + y2
2

x3
1 + x3

2 = y3
1 + y3

2

has no nontrivial integer solutions. Thus, (1) provides the first example
of a solution of the equation (2) with the equality holding for n
consecutive values of the exponent k.

As solutions of the system of equations

(4) xk
1 + xk

2 + xk
3 = yk

1 + yk
2 + yk

3 , k = 1, 2, 4

have been known for a long time, diophantine system I given above may
not seem to be of much interest. However, in contrast to diophantine
system (4), solutions of system I can be obtained in positive integers.
Moreover, it is useful to study system I since a solution of this system
will be used to obtain solutions of system III which, in turn, would lead
to the numerical solution of system IV already given above.

2. We now consider diophantine system I given by the following three
equations:

x1 + x2 + x3 + x4 = y1 + y2 + y3 + y4,(5)
x2

1 + x2
2 + x2

3 + x2
4 = y2

1 + y2
2 + y2

3 + y2
4 ,(6)

x4
1 + x4

2 + x4
3 + x4

4 = y4
1 + y4

2 + y4
3 + y4

4 .(7)

We will obtain a parametric solution of this system of equations by
substituting

(8)
xi = (−ai + bi)u + αiv, i = 1, 2, 3, 4,
yi = (ai + bi)u + αiv, i = 1, 2, 3, 4,
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in each of the equations (5), (6) and (7). We will choose ai, bi,
i = 1, 2, 3, 4, such that the equations (5) and (6) hold identically for all
values of u and v. In the equation obtained from (7) by substituting the
values of xi, yi, i = 1, 2, 3, 4, given above, the coefficient of v4 cancels
out on both sides and we will choose ai, bi, i = 1, 2, 3, 4, such that the
coefficients of uv3 and u2v2 also cancel out. Thus, equation (7) would
reduce to

[ 4∑
i=1

{(−ai + bi)4 − (ai + bi)4}
]
u4

+ 4
[ 4∑

i=1

{(−ai + bi)3 − (ai + bi)3}αi

]
u3v = 0,

which, on simplifying and ignoring the factor u3, leads to the following
solution for u and v:

(9)

u =
4∑

i=1

(a2
i + 3b2

i )aiαi,

v = −
4∑

i=1

(a2
i + b2

i )aibi.

We must now choose ai, bi, i = 1, 2, 3, 4, so as to satisfy the conditions
mentioned above. Equations (5) and (6) will hold identically if the
ai, bi, i = 1, 2, 3, 4, satisfy the following conditions:

a1 + a2 + a3 + a4 = 0,(10)
a1α1 + a2α2 + a3α3 + a4α4 = 0,(11)

a1b1 + a2b2 + a3b3 + a4b4 = 0.(12)

Further, equating the coefficients of uv3 and u2v2 on both sides in the
equation obtained from (7), we get the conditions:

(13) a1α
3
1 + a2α

3
2 + a3α

3
3 + a4α

3
4 = 0,

and

(14) a1b1α
2
1 + a2b2α

2
2 + a3b3α

2
3 + a4b4α

2
4 = 0.
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We now have to solve equations (10), (11), (12), (13) and (14) for
ai, bi, i = 1, 2, 3, 4. The equations (10), (11) and (13) are linear
equations in the variables ai, i = 1, 2, 3, 4, and we readily obtain the
following solution:

(15)

a1 = −(α2 − α3) (α3 − α4) (α4 − α2) (α2 + α3 + α4)β0,

a2 = (α3 − α4) (α4 − α1) (α1 − α3) (α3 + α4 + α1)β0,

a3 = −(α4 − α1) (α1 − α2) (α2 − α4) (α4 + α2 + α1)β0,

a4 = (α1 − α2) (α2 − α3) (α3 − α1) (α1 + α2 + α3)β0,

where β0 is an arbitrary parameter. With the values of ai, i = 1, 2, 3, 4,
already known, equations (12) and (14) are just two linear equations
in the four variables bi, i = 1, 2, 3, 4. We impose the following auxiliary
condition on bi, i = 1, 2, 3, 4, given by

(16) b1β1 + b2β2 + b3β3 + b4β4 = 0,

where β1, β2, β3 and β4 are arbitrary. Solving the linear equations (12),
(14) and (16) for bi, i = 1, 2, 3, 4, we get

(17)

b1 = (α2
3 − α2

4)β2a3a4 + (α2
4 − α2

2)β3a4a2 + (α2
2 − α2

3)β4a2a3,

b2 = −[(α2
4 − α2

1)β3a4a1 + (α2
1 − α2

3)β4a1a3 + (α2
3 − α2

4)β1a3a4],
b3 = (α2

1 − α2
2)β4a1a2 + (α2

2 − α2
4)β1a2a4 + (α2

4 − α2
1)β2a4a1,

b4 = −[(α2
2 − α2

3)β1a2a3 + (α2
3 − α2

1)β2a3a1 + (α2
1 − α2

2)β3a1a2].

Thus, when ai, bi, i = 1, 2, 3, 4, are given by (15) and (17), the equations
(10), (11), (12), (13) and (14) are satisfied. It follows that a solution
of the diophantine system I consisting of equations (5), (6) and (7)
is given by (8) where the ai, bi, i = 1, 2, 3, 4, are defined by (15) and
(17) in terms of the arbitrary parameters αi, i = 1, 2, 3, 4, and βj ,
j = 0, 1, 2, 3, 4, while u and v are defined by (9).

As a numerical example, taking α1 = 1, α2 = 2, α3 = 3, α4 = 4,
β0 = 1, β1 = 1, β2 = 0, β3 = 0, β4 = 0, we get, after removal of
common factors and suitable rearrangement, the following solution of
the diophantine system I:

2370k + 2447k + 2515k + 2563k = 2375k + 2433k + 2542k + 2545k,

k = 1, 2, 4.
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3. We will now obtain a second parametric solution of diophantine
system I. We write

(18)

x1 = α1m − {(α2 + α3)p − q}n,

x2 = α2m + {(α1 − α3)p + q}n,

x3 = α3m + {(α1 + α2)p + q}n,

x4 = −(α1 + α2 + α3)m + qn,

y1 = −α1m − {(α2 + α3)p − q}n,

y2 = −α2m + {(α1 − α3)p + q}n,

y3 = −α3m + {(α1 + α2)p + q}n,

y4 = (α1 + α2 + α3)m + qn.

With these values of xi, yi, i = 1, 2, 3, 4, it is readily seen that equations
(5) and (6) are identically satisfied while

4∑
i=1

(x4
i − y4

i ) = 8mn(−m + np)(m + np)(α1 + α2)(α2 + α3)

· {(α1 − α3)(α1 − α2 + α3)p + 3q(α1 + α3)}.

Thus, equation (7) will also be satisfied if we take

(19) p = −3(α1 + α3), q = (α1 − α3)(α1 − α2 + α3).

This gives us, on substituting these values of p and q in (18), the
following solution of diophantine system I:

(20)

x1 = α1m + (α1 + 2α3)(α1 + 2α2 + α3)n,

x2 = α2m − (α1 − α3)(2α1 + α2 + 2α3)n,

x3 = α3m − (2α1 + α3)(α1 + 2α2 + α3)n,

x4 = −(α1 + α2 + α3)m + (α1 − α3)(α1 − α2 + α3)n,

y1 = −α1m + (α1 + 2α3)(α1 + 2α2 + α3)n,

y2 = −α2m − (α1 − α3)(2α1 + α2 + 2α3)n,

y3 = −α3m − (2α1 + α3)(α1 + 2α2 + α3)n,

y4 = (α1 + α2 + α3)m + (α1 − α3)(α1 − α2 + α3)n,

where α1, α2, α3, m and n are arbitrary parameters.
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4. Next we shall solve diophantine system II given by the following
three equations:

x1 + x2 + x3 + x4 = y1 + y2 + y3 + y4(21)
x3

1 + x3
2 + x3

3 + x3
4 = y3

1 + y3
2 + y3

3 + y3
4(22)

x4
1 + x4

2 + x4
3 + x4

4 = y4
1 + y4

2 + y4
3 + y4

4 .(23)

We write

(24)
xi = aiu + αiv, i = 1, 2, 3, 4,
yi = ai+1u + αiv, i = 1, 2, 3, 4,

where a5 = a1. With these values of xi, yi, i = 1, 2, 3, 4, equation (21)
is identically satisfied. Substituting the values of xi, yi, i = 1, 2, 3, 4, in
equation (22), we get

{ 4∑
i=1

(a2
i − a2

i+1)αi

}
u2v +

{ 4∑
i=1

(ai − ai+1)α2
i

}
uv2 = 0.

Thus equation (22) will be identically satisfied for all values of u and v if
the ai, i = 1, 2, 3, 4, are chosen so as to satisfy the following conditions:

(25) (a2
1−a2

2)α1+(a2
2−a2

3)α2+(a2
3−a2

4)α3+(a2
4−a2

1)α4 = 0,

(26) (a1−a2)α2
1+(a2−a3)α2

2+(a3−a4)α2
3+(a4−a1)α2

4 = 0.

Substituting the values of xi, yi, i = 1, 2, 3, 4, in equation (23), we get

(27)
{ 4∑

i=1

(a3
i − a3

i+1)αi

}
u3v +

{ 4∑
i=1

(a2
i − a2

i+1)α
2
i

}
u2v2

+
{ 4∑

i=1

(ai − ai+1)α3
i

}
uv3 = 0.

We will choose the ai, i = 1, 2, 3, 4, so that the coefficient of uv3 in
equation (27) becomes zero. This gives the condition

(28) (a1 − a2)α3
1 + (a2 − a3)α3

2 + (a3 − a4)α3
3 + (a4 − a1)α3

4 = 0.



EQUAL SUMS OF LIKE POWERS 121

We now have to solve equations (25), (26) and (28) for a1, a2, a3 and
a4. We note that

(29) (a1 − a2) + (a2 − a3) + (a3 − a4) + (a4 − a1) = 0

holds identically, so that it follows from (26), (28) and (29) that

(30)
a1 − a2

λ1
=

a2 − a3

λ2
=

a3 − a4

λ3
=

a4 − a1

λ4

where

(31)

λ1 = (α2 − α3) (α3 − α4) (α4 − α2) (α2α3 + α3α4 + α4α2),
λ2 = −(α3 − α4) (α4 − α1) (α1 − α3) (α3α4 + α4α1 + α1α3),
λ3 = (α4 − α1) (α1 − α2)(α2 − α4) (α4α1 + α1α2 + α2α4),
λ4 = −(α1 − α2) (α2 − α3) (α3 − α1) (α1α2 + α2α3 + α3α1).

Using (30), equation (25) reduces to the linear equation

(32) (a1+a2)λ1α1+(a2+a3)λ2α2+(a3+a4)λ3α3+(a4+a1)λ4α4 = 0.

Thus, the problem is effectively reduced to choosing ai, i = 1, 2, 3, 4,
so as to satisfy the linear equations (30) and (32), and we accordingly
get the following solution for ai, i = 1, 2, 3, 4:

(33)

a1 = λ2
1(α1−α4) + λ2

2(α2−α4) + λ2
3(α3−α4)

+ 2λ1λ2(α2−α4) + 2(λ1+λ2)λ3(α3−α4),
a2 = −λ2

1(α1−α4) + λ2
2(α2−α4) + λ2

3(α3−α4)
+ 2λ2λ3(α3−α4),

a3 = −λ2
1(α1−α4)− λ2

2(α2−α4) + λ2
3(α3−α4)

− 2λ1λ2(α1−α4),
a4 = −λ2

1(α1−α4)− λ2
2(α2−α4)− λ2

3(α3−α4)
− 2λ2λ3(α2−α4)− 2λ1(λ2+λ3)(α1−α4).

When the ai, i = 1, 2, 3, 4, are defined by (33), the values of xi, yi,
i = 1, 2, 3, 4, given by (24) satisfy equations (21) and (22) whereas
equation (23), which led to equation (27), reduces to

{ 4∑
i=1

(a3
i − a3

i+1)αi

}
u3v +

{ 4∑
i=1

(a2
i − a2

i+1)α
2
i

}
u2v2 = 0.
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This equation is satisfied if we take

(34) u =
4∑

i=1

(a2
i − a2

i+1)α
2
i , v = −

4∑
i=1

(a3
i − a3

i+1)αi.

Thus a solution of the diophantine system II is given in terms of
the parameters α1, α2, α3, α4 by (24), with the ai, i = 1, 2, 3, 4, being
defined by (31) and (33), and u and v being defined by (34).

As a numerical example we take α1 = 5, α2 = 2, α3 = 3, α4 = 4, when
we get, after removal of common factors and suitable rearrangement,
the following solution in positive integers of diophantine system II:

5318357k + 13600563k + 14484592k + 20533406k

= 6580709k + 9969256k + 18251462k + 19135491k, k = 1, 3, 4.

5. We will now consider diophantine system III given by the following
three equations:

x2
1 + x2

2 + x2
3 + x2

4 = y2
1 + y2

2 + y2
3 + y2

4(35)
x3

1 + x3
2 + x3

3 + x3
4 = y3

1 + y3
2 + y3

3 + y3
4(36)

x4
1 + x4

2 + x4
3 + x4

4 = y4
1 + y4

2 + y4
3 + y4

4 .(37)

We observe that, if xi, i = 1, 2, 3, 4, are chosen so that

(38) x3
1 + x3

2 + x3
3 + x3

4 = 0,

then a solution of equations (35), (36) and (37) is given by yi = −xi,
i = 1, 2, 3, 4. As integer solutions of equation (38) are well known [3,
pp. 290 291], we get integer solutions of the system of equations (35),
(36) and (37). However, this must be regarded in a way as a trivial
solution of this system of equations.

To obtain a nontrivial parametric solution of equations (35), (36) and
(37), we will start with a parametric solution of the diophantine system

(39)
x2

1 + x2
2 + x2

3 = y2
1 + y2

2 + y2
3

x4
1 + x4

2 + x4
3 = y4

1 + y4
2 + y4

3
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and write y4 = −x4 so that equations (35) and (37) will be automat-
ically satisfied, and we will finally choose suitably the parameters as
well as x4 so that equation (36) is also satisfied.

A solution of diophantine system (39) is given by

(40)

x1 = α1m − (α1 + 2α2)n,

x2 = α2m + (2α1 + α2)n,

x3 = (α1 + α2)m + (α1 − α2)n,

y1 = −α1m − (α1 + 2α2)n,

y2 = −α2m + (2α1 + α2)n,

y3 = −(α1 + α2)m + (α1 − α2)n.

It is readily verified that this is indeed a solution of diophantine system
(39). Substituting these values of xi, yi, i = 1, 2, 3, and y4 = −x4 in
equation (36), we get the equation

(41) (2α3
1 + 3α2

1α2 + 3α1α
2
2 + 2α3

2)m
3

+ (6α3
1 + 21α2

1α2 + 21α1α
2
2 + 6α3

2)mn2 + x3
4 = 0.

Considered as a cubic equation in the variables m, n and x4, equation
(41) represents a cubic curve in the projective plane. Moreover, it
can be readily verified that the point given by m = −1, n = 1,
x4 = 2(α1 + α2) lies on this cubic curve. By the well-known tangent
method, we now get a new solution of equation (41) which is given by

(42)
m = (−4α4

1 − 20α3
1α2 − 33α2

1a
2
2 − 20α1α

3
2 − 4α4

2)ξ,
n = (4α4

1 + 8α3
1α2 + 9α2

1α
2
2 + 8α1α

3
2 + 4α4

2)ξ,
x4 = (8α5

1 + 36α4
1α2 + 64α3

1α
2
2 + 64α2

1α
3
2 + 36α1α

4
2 + 8α5

2)ξ.

With these values of m and n we get, using (40) and taking ξ = 1/2,
the following parametric solution of diophantine system III consisting



124 A. CHOUDHRY

of equations (35), (36) and (37):

(43)

x1 = −4α5
1 − 18α4

1α2 − 29α3
1α

2
2 − 23α2

1α
3
2 − 12α1α

4
2 − 4α5

2,

x2 = 4α5
1 + 8α4

1α2 + 3α3
1α

2
2 − 4α2

1α
3
2 − 2α1α

4
2,

x3 = −10α4
1α2 − 26α3

1α
2
2 − 27α2

1α
3
2 − 14α1α

4
2 − 4α5

2,

x4 = 4α5
1 + 18α4

1α2 + 32α3
1α

2
2 + 32α2

1α
3
2 + 18α1α

4
2 + 4α5

2,

y1 = 2α4
1α2 + 4α3

1α
2
2 − 3α2

1α
3
2 − 8α1α

4
2 − 4α5

2,

y2 = 4α5
1 + 12α4

1α2 + 23α3
1α

2
2 + 29α2

1α
3
2 + 18α1α

4
2 + 4α5

2,

y3 = 4α5
1 + 14α4

1α2 + 27α3
1α

2
2 + 26α2

1α
3
2 + 10α1α

4
2,

y4 = −4α5
1 − 18α4

1α2 − 32α3
1α

2
2 − 32α2

1α
3
2 − 18α1α

4
2 − 4α5

2.

As a numerical example we take α1 = 1 and α2 = 2 when we get, after
removal of common factors and suitable rearrangement, the following
solution of diophantine system III:

65k + (−127)k + (−192)k + 210k = 8k + 165k + 173k + (−210)k,

k = 2, 3, 4.

Since x4 = −y4, the parametric solution (43) cannot yield a solution
of the diophantine system III in positive integers.

6. We will now describe a method of generating solutions of dio-
phantine system III which will yield solutions in positive integers. As
all three equations (35), (36) and (37) of the diophantine system III
are homogeneous, any rational solution of this system of equations can
be multiplied throughout by a suitable constant to yield a solution of
this system in integers. We will now use solution (20) of the system of
equations (5), (6) and (7). For brevity, we write

(44)

α4 = −(α1 + α2 + α3),
β1 = (α1 + 2α3)(α1 + 2α2 + α3),
β2 = −(α1 − α3)(2α1 + α2 + 2α3),
β3 = −(2α1 + α3)(α1 + 2α2 + α3),
β4 = (α1 − α3)(α1 − α2 + α3),



EQUAL SUMS OF LIKE POWERS 125

and it now follows from the aforementioned solution (20) that if we
take

(45)

x1 = ε1(α1m + β1n), y1 = ε1(α1m − β1n),
x2 = ε2(α2m + β2n), y2 = ε2(α2m − β2n),
x3 = ε3(α3m + β3n), y3 = ε3(α3m − β3n),
x4 = ε4(α4m + β4n), y4 = ε4(α4m − β4n),

where εi = ±1, i = 1, 2, 3, 4, then equations (35) and (37) are identically
satisfied. On substituting these values of xi, yi, i = 1, 2, 3, 4, in equation
(36) and observing that ε3

i = εi for each i = 1, 2, 3, 4, we get

(46) 2n
[
3
{ 4∑

i=1

εiα
2
i βi

}
m2 +

{ 4∑
i=1

εiβ
3
i

}
n2

]
= 0.

Thus equation (36) will also be satisfied by the xi, yi, i = 1, 2, 3, 4,
given by (45) if we can find suitable m and n satisfying equation (46).
Now equation (46) will have a rational solution for m and n if we can
find suitable values of εi, i = 1, 2, 3, 4, as well as rational αi, i = 1, 2, 3,
such that the equation

(47) z2 = −3
{ 4∑

i=1

εiα
2
i βi

}{ 4∑
i=1

εiβ
3
i

}

is satisfied by a rational value of z. We take ε1 = 1 as there is no
loss of generality in doing so. Further, we note that when ε1 = 1,
ε2 = −1, ε3 = 1 and ε4 = −1, the solutions obtained will be trivial
and we, therefore, exclude this set of values of εi from consideration.
We will now find, by trial, suitable αi, i = 1, 2, 3, and εi, i = 2, 3, 4,
such that equation (47) is satisfied by a rational value of z. With these
values of εi, i = 1, 2, 3, 4, and αi, i = 1, 2, 3, equation (46) can be
solved to obtain rational values of m and n, and using (44) and (45),
we can obtain rational, and hence, integer solutions of equations (35),
(36) and (37). As an example, it was found by trial that when we take
ε1 = 1, ε2 = −1, ε3 = −1, ε4 = 1, α1 = 19, α2 = −26 and α3 = −23,
the righthand side of equation (47) becomes a perfect square, and this
leads to the following solution of diophantine system III:

43k + 486k + 815k + 1058k = 242k + 335k + 907k + 1014k,

k = 2, 3, 4.
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A computer search carried out in the range 1 ≤ α1 ≤ 100, −100 ≤ αi ≤
100 for i = 2 and 3 yielded a number of solutions of equation (47) and
these, in turn, generated several distinct solutions of the diophantine
system III. The values of αi, i = 1, 2, 3, and εi, i = 2, 3, 4, and the
corresponding solutions (except for one solution which is dealt with
subsequently) with the values of xi, yi, i = 1, 2, 3, 4, suitably rearranged
are given in Table 1.

We will now show that there are infinitely many sets of rational values
of αi, i = 1, 2, 3, and εi, i = 1, 2, 3, 4, such that equation (47) is satisfied
by a rational value of z and, hence, infinitely many integer solutions of
the diophantine system III can be obtained by this method.

In equation (47) we fix ε1 = 1, ε2 = 1, ε3 = −1, ε4 = −1, and we
write

α2 = t(α1 + α3),

when the righthand side of equation (47) has the squared factor [3(α1+
α3)2{tα1 + (t+ 1)α3}]2 which can be removed so that equation (47) is
effectively reduced to the equation

(48)
Z2 = 3(α1 + α3) {(t − 1)α1 − (t + 2)α3}

{
(8t2 + 11t + 5)α2

1

+(8t2 + 8t − 1)α1α3 + (8t2 + 5t + 2)α2
3

}
.

It would be observed from Table 1 that is has been found by trial that
when ε1 = 1, ε2 = 1, ε3 = −1, ε4 = −1, α1 = 1, α2 = −40 and α3 = 4,
the righthand side of equation (47) becomes a perfect square. Using
this fact, we find that α1 = 1, α3 = 4, t = −8, Z = 1485 is a solution of
equation (48). We now fix α1 = 1 and t = −8 in equation (48) which
reduces to

(49) Z2 = 27(α3 + 1)(2α3 − 3)(158α2
3 + 149α3 + 143).

We note that α3 = 4, Z = 1485 is a known solution of equation (49).
Next, we apply the birational transformation

(50)
α3 = −(ξ + 2280)/ξ,

Z = 6840η/ξ2,

to this equation when we get

(51) η2 = ξ3 + 3417ξ2 + 7688160ξ + 4928083200.
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TABLE 1. Solutions of xk
1 + xk

2 + xk
3 + xk

4 = yk
1 + yk

2 + yk
3 + yk

4 , k = 2, 3, 4.

α1 α2 α3 ε2 ε3 ε4 x1, x2, x3, x4 y1, y2, y3, y4

1 -53 9 1 -1 -1 209, 303, 754, 1040 39, -247, 880, 974

1 -40 4 1 -1 -1 32, 47, 185, 225 -3, -43, 200, 215

1 -32 7 1 -1 -1 89, 175, 354, 524 49, -121, 414, 500

1 -22 4 1 -1 -1 14, 35, 89, 123 9, -25, 98, 119

1 -6 -4 -1 -1 1 -5, 6, 16, 17 8, 9, 10, 19

2 -37 -6 -1 -1 1 210, -658, 2237, 2617 522, 902, 1897, 2765

2 -9 14 1 -1 1 -23, 102, 208, 275 -53, 58, 240, 257

3 -98 33 1 -1 -1 299, 967, 1292, 2280 -437, 551, 1560, 2228

3 -5 -9 -1 -1 1 -5, 41, 42, 56 8, 35, 49, 54

3 -4 -9 -1 1 1 12, -31, 45, -58 -19, 33, 38, -60

3 85 27 -1 -1 1 209, 394, 735, 1120 119, -266, 880, 1065

4 -40 -53 -1 -1 1 -1169, 27045, 31327, 55456 6141, 22675, 34522, 55171

5 -64 -45 -1 -1 1 -1495, 1875, 4612, 5882 2075, 2812, 3345, 6182

5 -15 -11 -1 -1 1 -26, 52, 93, 111 39, 58, 76, 117

6 -65 -26 -1 -1 1 1784, -2796, 8545, 8765 3884, 4104, 5405, 9985

8 82 23 -1 -1 1 -151, 855, 2723, 3794 -385, 686, 2771, 3777

9 -14 -12 -1 -1 1 -11, 195, 254, 364 84, 130, 299, 349

10 -64 -29 -1 -1 1 1271, -1395, 4202, 4721 2006, 2511, 2525, 5177

10 -57 -22 -1 -1 1 -2360, 2452, 7149, 9057 2872, 4737, 4780, 9549

15 -23 -33 -1 -1 1 -85, 541, 672, 686 96, 581, 595, 722

17 -53 -40 -1 -1 1 -239, 457, 855, 976 349, 543, 664, 1045

17 -35 -22 -1 -1 1 -19, 155, 171, 290 71, 95, 206, 285

18 -61 -78 -1 -1 1 -2224, 7228, 9545, 13173 3753, 6148, 9776, 13205

19 -26 -23 -1 -1 1 43, 486, 815, 1058 242, 335, 907, 1014

19 -24 -67 -1 -1 1 239, 2324, 3855, 4564 604, 2079, 4220, 4319

24 -47 -39 -1 -1 1 -570, 2589, 2924, 4343 1109, 1935, 3354, 4268

33 -70 -93 -1 -1 1 -4029, 15591, 21070, 23890 5110, 16371, 19191, 24730

38 -63 -95 -1 -1 -1 17614, -25505, 36000, -44121 5439, -32825, 37680, -40946

47 -16 81 1 1 -1 3272, -4393, 16878, 17185 -823, 9528, 12050, 19327

51 -64 -75 -1 -1 1 -267, 9130, 11631, 14788 1852, 7869, 13527, 13750

51 -52 -75 -1 -1 1 813, 14008, 19605, 22096 1096, 13845, 19888, 21933
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The solution of equation (51) corresponding to the known solution
α3 = 4, Z = 1485 of (49) is given by

(52) ξ = −456, η = 45144.

Equation (51) represents an elliptic curve and a rational point, with
integer coordinates, on this elliptic curve, and is given by (52). The
discriminant of the cubic polynomial on the righthand side of equation
(51) is −239427613818938880000, and it is readily verified that the
ordinate of the rational point given by (52) does not divide this
discriminant. It therefore follows from the Nagell-Lutz theorem [5,
p. 56] on elliptic curves that this rational point is not a point of finite
order. Thus, it follows that equation (51) has infinitely many rational
solutions, and these can be obtained by using the group law. Working
backwards, we can obtain infinitely many rational solutions of equation
(49), and eventually we obtain infinitely many solutions of equation
(47). And, thus, the method leads to infinitely many solutions in
integers of the diophantine system III.

7. Finally we will obtain the numerical solution (1) of diophantine
system IV. We have already mentioned that one solution of diophantine
system III, obtained by trial, has not been listed in the table of solutions
given above. This solution, obtained by taking ε1 = 1, ε2 = 1, ε3 = 1,
ε4 = 1, α1 = 4, α2 = 91, α3 = 94, is given below:

358k+(−407)k+(−815)k+1224k = (−410)k+(−776)k+(−407)k+1233k,

k = 2, 3, 4.

Cancelling out the common term (−407)k from both sides, we get the
numerical solution (1) of diophantine system IV.
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