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FAST METHODS FOR
THREE-DIMENSIONAL INVERSE

OBSTACLE SCATTERING PROBLEMS

HELMUT HARBRECHT AND THORSTEN HOHAGE

ABSTRACT. We study the inverse problem to reconstruct
the shape of a three dimensional sound-soft obstacle from mea-
surements of scattered acoustic waves. To solve the forward
problem we use a wavelet based boundary element method and
prove fourth order accuracy both for the evaluation of the for-
ward solution operator and its Fréchet derivative. Moreover,
we discuss the characterization and implementation of the ad-
joint of the Fréchet derivative. For the solution of the inverse
problem we use a regularized Newton method. The bound-
aries are represented by a class of parametrizations, which
include non star-shaped domains and which are not uniquely
determined by the obstacle. To prevent degeneration of the
parametrizations during the Newton iteration, we introduce
an additional penalty term. Numerical examples illustrate
the performance of our method.

1. Introduction. It is well known that the propagation of an acous-
tic wave in a homogeneous, isotropic and inviscid fluid is approximately
described by a velocity potential U(x, t) satisfying the wave equation
Utt = c2ΔU . Here, c denotes the speed of sound, v = Ux is the velocity
field and p = −Ut is the pressure. For more details on the physical
background, we refer the reader to the monograph [5]. If U is time
harmonic, that is, U(x, t) = Re (u(x)e−iωt), ω > 0, in complex nota-
tion, then the complex valued space-dependent function u satisfies the
Helmholtz equation

(1.1) Δu+ κ2u = 0 in R3 \ Ω.

Here, Ω ⊂ R3 describes an obstacle and κ = ω/c is the wave number.
We assume that Ω is bounded, that R3\Ω is simply connected and that
the boundary Γ = ∂Ω is smooth. For sound-soft obstacles the pressure
p vanishes on Γ, which leads to the Dirichlet boundary condition

(1.2) u = 0 on Γ.
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We shall consider the situation that u = ui + us is composed of a
known incident plane wave ui(x) = eiκd·x with direction d (‖d‖ = 1),
and a scattered wave us. The scattered field satisfies the Sommerfeld
radiation condition

(1.3) lim
r→∞ r

{
∂us
∂r

− iκus

}
= 0, r = ‖x‖,

which implies the asymptotic behavior

(1.4) us(x) =
eiκ‖x‖

‖x‖
{
u∞

(
x

‖x‖
)

+ O
(

1
‖x‖

)}
, ‖x‖ → ∞.

A function which satisfies (1.1) and (1.3) is called a radiating solution to
the Helmholtz equation. The function u∞ : S2 := {x : ‖x‖ = 1} → C
is called the far field pattern, which is always analytic, see [5].

The direct scattering problem consists in finding us as solution to the
exterior boundary value problem (1.1) (1.3), given ui and Ω. We shall
be concerned with the inverse problem to find an approximation of Ω,
given ui and measurement data uδ∞ of the exact far field pattern u∞.
Here, δ denotes the noise level, which is measured in the L2(S2)-norm,
i.e., ‖uδ∞ − u∞‖L2(S2) ≤ δ.

The numerical solution of two-dimensional inverse obstacle scattering
problems by iterative regularization methods has been studied inten-
sively in the literature, see e.g., [11, 15, 16, 25, 26, 28]. On the other
hand, we are only aware of the paper by Farhat et al. [8] concerning
three-dimensional inverse obstacle scattering problems in the resonance
region. In [8] the forward problem was solved on a 24 processor machine
by finite elements using domain decomposition and transparent bound-
ary conditions on the artificial boundary of the computational domain.
The number of unknowns can be significantly reduced if boundary ele-
ment methods are employed, but this leads to a dense system matrix.
To cope with this difficulty one may either apply multi-pole and panel
clustering methods or wavelet based methods. Whereas in the first
class of methods the system matrix is never set up, in the second class
of methods the system matrix is computed with respect to a wavelet
basis in which it can accurately be approximated by a sparse matrix.
Computing the system matrix is comparatively expensive, but then
matrix-vector multiplications can be carried out extremely fast. This
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is advantageous in the context of Newton-type methods where the same
matrix equation has to be solved for a large number of righthand sides.

A particular emphasis of this paper is on the reconstruction of non
star-shaped obstacles. Therefore, we start the following section with a
discussion of the parametrization of the boundaries of such obstacles.
Since the parametrization of the boundary will not be unique, and some
parametrizations are preferable to others from a numerical perspective,
we introduce an additional penalty term in the regularized Newton
method for finding an approximate parametrization of the true obstacle.

In Sections 3 and 4 we describe the wavelet based boundary element
method and show that bilinear shape functions lead to fourth order
accurate approximations of the forward solution operator F and its
Fréchet derivative F ′. Moreover, in Section 5 we discuss the charac-
terization and implementation of the adjoint operator F ′[·]∗ which is
needed in our implementation of the Newton method. Finally, in Sec-
tion 6 we present numerical examples.

2. Parametrization of the boundary and iterative regular-
ization methods. Let Γref ⊂ R3 be a smooth closed reference surface
of the same genus as Γ. (In our numerical examples in Section 6 we will
always choose Γref = S2.) Then Γ can be parametrized by a smooth
mapping

Ψ : Γref −→ Γ,

which is one-to-one, preserves orientation, and DΨ(x) is one-to-one for
all x ∈ Γref. Here DΨ(x) : Tx → TΨ(x) denotes the derivative of Ψ
at x, which is a linear mapping from the tangent space of Γref at x
to the tangent space of Γ at Ψ(x). A linear mapping L : Tx → TΨ(x)

is called orientation-preserving if (La) × (Lb) is an outward pointing
normal vector on Γ for all a,b ∈ Tx such that a × b is an outward
pointing normal vector on Γref. Ψ is called orientation-preserving if
DΨ(x) is orientation-preserving for all x ∈ Γref. The tangent spaces
are equipped with an inner product induced by the standard inner
product in R3. If O : TΨ(x) → Tx is any orthogonal, orientation-
preserving mapping, then ODΨ(x) maps Tx to itself, and we can define
det(DΨ(x)) := det(ODΨ(x)). It is easy to check that this definition
does not depend on the choice of O. If we choose any orthonormal
bases {a,b} in Tx and {c,d} in TΨ(x) such that a × b and c × d are
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pointing outwards, and if A ∈ R2×2 is the matrix representing DΨ(x)
with respect to these bases, we have det(DΨ(x)) = det(A). With this
notation, the transformation formula

(2.1)
∫

Γ

f(y) dσy =
∫

Γref

f(Ψ(x)) det(DΨ(x)) dσx

holds true for any f ∈ C(Γ).

Since we want to work in a Hilbert space setting, we describe the
smoothness of Ψ by a Sobolev space X := Hs(Γref;R3) with s > 2.
Let

Xadm :=

⎧⎨
⎩

Ψ is one-to-one, orientation-preserving,
Ψ ∈ Hs(Γref;R3) :

and det(DΨ(x)) �= 0 for all x ∈ Γref

⎫⎬
⎭

be the set of admissible parametrizations, let Y := L2(S2) and define
the operator

(2.2) F : Xadm −→ Y, Ψ 	→ u∞,

which maps a parametrization Ψ to the far field pattern u∞ corre-
sponding to the obstacle described by Ψ. Thus, the inverse scattering
problem can be formulated as an operator equation

(2.3) F (Ψ) = uδ∞.

The special case that the obstacle is star-shaped with respect to a
known point (without loss of generality, the origin) has been studied
extensively in the literature, see [11, 16, 25, 26, 28]. In this case it
is natural to choose Ψ in the form

(2.4) Ψ(x) = r(x)x, x ∈ Γref = S2

with a positive scalar function r and define the operator

(2.5) Fstar : X̃adm −→ Y, r 	→ u∞

on the domain X̃adm := {r ∈ Hs(S2;R) : r > 0}.
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Whereas the function r in (2.4) is uniquely determined by the ob-
stacle, the parametrization of a surface Γ by elements of Xadm is not
unique. In fact, if Φ ∈ Xadm is any smooth bijective mapping on Γref,
then Ψ ◦Φ is another admissible parametrization of Γ. Therefore, F is
not one-to-one even if Γ is uniquely determined by u∞. We will further
discuss this problem below.

It can be shown that the operator F is Fréchet differentiable and that
the derivative can be characterized by a boundary value problem, see
Kirsch [23]. More precisely, for Ψ ∈ Xadm and V ∈ Hs(Γref;R3) the
derivative of F at Ψ in direction V is given by

(2.6) F ′[Ψ](V) = u′V,∞

where u′V,∞ is the far field pattern of a solution u′V to the Helmholtz
equation (1.1), which satisfies the Sommerfeld radiation condition (1.3)
and the boundary condition

(2.7) u′V = −(V · n)
∂u

∂n
on Γ.

Here and in the sequel, n(x) denotes the outward normal vector on Ω
at x ∈ Γ.

One of the most attractive methods for the solution of nonlinear ill-
posed operator equations is the iteratively regularized Gauss-Newton
method. The nth step of this method consists in computing an update
Vn = Ψn+1 − Ψn by solving the quadratic minimization problem

‖F ′[Ψn]V + F (Ψn) − uδ∞‖2
Y + αn‖V + Ψn − Ψ0‖2

X = min!,(2.8)
V ∈ Hs(Γref;R3)

with regularization parameters αn which can be chosen of the form
αn = α0q

n, q ∈ (0, 1). More precisely, we used q = 2/3 and chose
α0 such that ‖F ′[Ψ0]V0 + F (Ψ0) − uδ∞‖Y ≈ 0.8‖F (Ψ0) − uδ∞‖Y . The
convergence of the IRGNM was analyzed by Bakushinskii [1], Blaschke,
et al. [2] and Hohage [16]. This analysis (see also the recent monograph
[20]) also includes the case that F is not one-to-one. In this case the
sequence (Ψn) converges to a solution with minimal distance to Ψ0.

In our problem not all parametrizations of a given boundary are
equally well suited in a Newton iteration. The derivative DΨ(x) should
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not only be nonsingular for all x ∈ Γref, but the inverse [DΦ(x)]−1

should also be of reasonable size. This is advantageous for the solution
of the forward problem by boundary element methods, and it reduces
the danger of getting an inadmissible parametrization in the following
Newton steps. If ‖DΦ(x0)‖ is small for some x0 ∈ Γref, then there exists
a small perturbation V of Φ such that Φ+V describes a self-penetrating
and hence inadmissable surface near x0. We typically observed this
type of self-penetration already after a few Newton iterations.

Therefore, we introduce a mapping G : Xadm → Z with values in a
Hilbert space Z such that ‖G(Ψ)‖Z is small for desirable parametriza-
tions and include this as an additional penalty term in the Newton
iteration:

‖F ′[Ψn]V + F (Ψn) − uδ∞‖2
Y + αn‖G′[Ψn]V +G(Ψn)‖2

Z(2.9)
+αn‖V + Ψn − Ψ0‖2

X = min!

To define a possible choice of G, we identify DΨ(x) : Tx → TΨ(x)

with its 3×2 matrix representation using a fixed choice of orthonormal
bases of the tangent spaces Tx, x ∈ Γref and the embedding of TΨ(x) in
R3. Moreover, we denote by DΨ(x)† = (DΨ(x)∗DΨ(x))−1DΨ(x)∗

the Moore-Penrose inverse of DΨ(x) and define the inner product
(A : B) :=

∑m
j=1

∑n
k=1 ajkbjk of m × n matrices A = (ajk) and

B = (bjk) corresponding to the Frobenius norm ‖A‖F = (A : A)1/2.
Moreover, we define the Hilbert space Z := L2(Γref;R3×2) of square
integrable (3 × 2)-matrix valued functions on Γref with inner product

〈A,B〉Z :=
∫

Γref

A(x) : B(x) dσx,

and the operator G : Xadm → Z by

(2.10) (G(Ψ))(x) := DΨ(x)†, x ∈ Γref.

For our problem, it would be computationally very expensive to com-
pute and invert the matrix for F ′[Ψn]. Instead, we solve the minimiza-
tion problem (2.9) iteratively by the conjugate gradient method. In
[17] a preconditioning technique was developed for CG iteration ap-
plied to (2.8), which keeps F ′[Ψm] fixed for a number of Newton steps
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(m ≤ n). To apply the same technique to (2.9) we use the modified
problems

‖F ′[Ψm]V + F (Ψn) − uδ∞‖2
Y + αm‖G′[Ψm]V +G(Ψn)‖2

Z

+αn‖V + Ψn − Ψ0‖2
X = min!

or equivalently

(2.11)

∥∥∥∥∥∥
⎡
⎣ F ′[Ψm]√

αmG
′[Ψm]√

αnI

⎤
⎦V −

⎡
⎣ uδ∞ − F (Ψn)

−√
αmG(Ψn)√

αn(Ψ0 − Ψn)

⎤
⎦
∥∥∥∥∥∥

2

Y×Z×X

= min!

Let us introduce the notation Am for the operator

(F ′[Ψm],
√
αmG

′[Ψm])T : X → Y × Z.

In the mth Newton step (n = m) we apply the CG method to the
normal equation corresponding to (2.11), i.e., to invert the operator
A∗
mAm+αmI. Memorizing all quantities computed in the CG method,

we can then apply the Lanczos algorithm to obtain good approxima-
tions to the largest eigenvalues and eigenvectors of A∗

mAm+αmI. These
quantities are used in the following Newton steps to construct a precon-
ditioner which shifts the largest eigenvalues of the matrix A∗

mAm+αnI
to the cluster at αn. Therefore, the condition number of the precon-
ditioned system is small, and only a few preconditioned CG steps are
required to solve it. For details we refer to [17].

3. Boundary integral equations. In this section we review
boundary integral equations both for solving the forward scattering
problem and for evaluating domain derivatives using a combination of
a Green’s and a potential ansatz, see [25]. In the following

E(x,y) =
eiκ‖x−y‖

4π‖x− y‖
denotes the fundamental solution to the Helmholtz equation. Adding
Green’s representation formula for us and Green’s second theorem in
Ω for E(x, ·) and ui, it can be shown that the total field u = ui + us
for Dirichlet boundary conditions satisfies

(3.1) u(x) +
∫

Γ

∂u

∂n
(y)E(x,y) dσy = ui(x), x ∈ R3 \ Ω.
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We introduce the acoustic single layer potential operator S, its normal
derivative D′ and the double layer potential operator D by

(Sρ)(x) :=
∫

Γ

E(x,y)ρ(y) dσy , x ∈ Γ,

(D′ρ)(x) :=
∫

Γ

∂E(x,y)
∂n(x)

ρ(y) dσy, x ∈ Γ,

(Dρ)(x) :=
∫

Γ

∂E(x,y)
∂n(y)

ρ(y) dσy, x ∈ Γ.

Throughout this paper these integral operators will be considered
as operators from L2(Γ) to L2(Γ). For jump relations for densities
ρ ∈ L2(Γ) we refer to [20]. Letting x tend to Γ in (3.1) and taking the
normal derivative, it can be shown that the Neumann data ∂u/∂n of
the total field satisfy the integral equation

(3.2)
(

1
2
I + D′ − iηS

)
∂u

∂n
=
∂ui
∂n

− iηui on Γ,

for any η ≥ 0. The term involving η has been introduced to ensure
unique solvability of the integral equation (3.2). In accordance with
Kress [24] and Giebermann [9] we choose η = κ/2 to obtain a small
condition number of the operator on the lefthand side. Letting ‖x‖
tend to ∞ in (3.1) we obtain the following formula for the far field
pattern of the scattered field:

(3.3) u∞(x̂) = − 1
4π

∫
Γ

e−iκx̂·y
∂u

∂n
(y) dσy , x̂ ∈ S2.

To compute the derivative u′V of the scattered field, we make the ansatz

(3.4) u′V(x) =
∫

Γ

(
∂E(x,y)
∂n(y)

− iηE(x,y)
)
ρ(y) dσy , x ∈ R3 \ Ω.

Using the boundary condition (2.7) and the jump relations, this leads
to the boundary integral equation

(3.5)
(

1
2
I + D − iηS

)
ρ = −(V · n)

∂u

∂n
on Γ.
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The advantage of this ansatz is that the operator on the lefthand side
of this equation is the transposed of the operator in (3.2), and the
righthand side can easily be computed using the solution of (3.2). A
formula for the far field pattern of u′V is obtained by letting ‖x‖ tend
to ∞ in (3.4):

(3.6) u′∞,V(x̂) =
1
4π

∫
Γ

e−iκx̂·y(−iκ(n(y) · x̂) − iη)ρ(y) dσy , x̂ ∈ S2.

4. Wavelet based boundary element methods. We will assume
that the boundary manifold Γ is given as a parametric surface consisting
of smooth patches. More precisely, let � := [0, 1]2 denote the unit
square. The manifold Γ ⊂ R3 is partitioned into a finite number of
patches

(4.1) Γ =
M⋃
i=1

Γi, Γi = γi(�), i = 1, 2, . . . ,M,

where each γi : � → Γi defines a diffeomorphism of � onto Γi. The
intersection Γi ∩ Γi′ , i �= i′, of the patches Γi and Γi′ is assumed to be
either ∅ or a common edge or vertex.

Obviously, it suffices to construct such a parametrization of the
reference manifold Γref. For the unit sphere Γref = S2 this can be done
as follows: The surface of the cube [−0.5, 0.5]3 consists of six patches.
Each point x ∈ ∂([−0.5, 0.5]3) can be lifted onto the boundary Γ via
the operation

(4.2) y(x) = Ψ
(

x
‖x‖

)
.

That way, the surface Γ is subdivided into M = 6 patches. This
subdivision of the reconstructed surfaces is illustrated in Figure 3
together with further uniform subdivisions of the six patches. The
parametric representations γi : Γi → Γ can easily be derived from
(4.2). Note that the surface of the cube itself cannot serve as reference
manifold Γref since it is not smooth.

We shall be concerned with the wavelet Galerkin scheme for solving
the given boundary integral equations (3.2) and (3.5). We consider the
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Fredholm integral equation of the second kind

(4.3) Au(x) = u(x) +
∫

Γ

k(x,y)u(y) dσy = f(x), x ∈ Γ,

with A : L2(Γ) → L2(Γ). The crucial ingredient in wavelet methods
is a hierarchy of trial spaces Vj ⊆ Vj+1 ⊆ L2(Γ). Such spaces can be
constructed using the parametric representation described above.

We introduce a mesh of level j on the unit square by dyadic subdi-
visions of depth j into 4j squares. On this mesh we consider piecewise
bilinear nodal basis functions {φ�

j,k : k ∈ Δ�
j }, where Δ�

j denotes a
suitable index set satisfying |Δ�

j | = (2j + 1)2.

We define the set of basis functions on the surface Γ via parametriza-
tion

φi,j,k(x) :=
{
φ�
j,k(s) x = γi(s) ∈ Γi,

0 elsewhere,

where i = 1, 2, . . . ,M . Then, the trial spaces

Vj := span {φi,j,k : (i, k) ∈ Δj},

where Δj := {(i, k) : i = 1, . . . ,M, k ∈ Δ�
j }, are nested with respect

to j.

The Galerkin formulation of (4.3) reads: find uj ∈ Vj such that

〈Auj , vj〉 = 〈f, vj〉 for all vj ∈ Vj .

Equivalently, considering any (stable) basis {ξi,j,k : (i, k) ∈ Δj} of Vj
and making the ansatz uj =

∑
(i,k)∈Δj

[uξj ](i,k)ξi,j,k, we seek the vector
uj ∈ R|Δj| solving the linear system of equations

(4.4) Aξ
ju

ξ
j = fξj ,

where the system matrix respective the load vector are given by

(4.5) [Aξ
j ](i,k),(i′,k′) = (Aξi′,j,k′ , ξi,j,k)L2(Γ), [fξj ]i,k = ξi,j,k)L2(Γ).

Using the single scale bases {φi,j,k : (i, k) ∈ Δj} we obtain the
traditional boundary element method. Then, the system matrix Aφ

j is
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densely populated and we end up with an at least quadratic complexity
for computing the approximate solution of (4.4), i.e., the computational
work scales like O(|Δj |2) = O(16j).

We employ instead appropriate biorthogonal spline wavelets {ψi,j,k :
(i, k) ∈ Δj} as constructed in several papers, see e.g., [7, 12, 14].
Then, we obtain a quasi-sparse system matrix Aψ

j having only O(|Δj |)
relevant matrix coefficients. Applying the matrix compression strategy
developed in [6, 27] combined with an exponentially convergent hp-
quadrature method [13], the wavelet Galerkin scheme produces the
approximate solution of (4.3) within linear complexity. However,
one has to adopt the bandwidth parameters in the wavelet matrix
compression appropriately since the Helmholtz kernel oscillates. It
turns out that it is sufficient to increase them proportional to the wave
number κ, see [19] for the details.

Next, we shall investigate the approximation errors which appear in
the iterative solution of (2.3), namely the approximation errors of the
far field patterns (3.3) and (3.6) of the scattered field and its derivative.

Theorem 1. If Ψ ∈ Xadm is a smooth parametrization of the
boundary Γ and hj ∼ 2−j denotes the step width of the Galerkin
discretization, then the discretization error in our approximation Fhj

of the forward solution operator F satisfies

‖F (Ψ) − Fhj (Ψ)‖L2 = O(h4
j )

uniformly in j.

Proof. Since the domain Ω is assumed to be smooth, the Neumann
data ∂u/∂n are contained in H2(Γ) by elliptic regularity theory. There-
fore, in accordance with [6, 27], the approximate Neumann data com-
puted by the Fredholm integral equation of second kind (3.2) satisfy

(4.6)
∥∥∥∥∂u∂n −

[
∂u

∂n

]app

hj

∥∥∥∥
Ht(Γ)

� h2−t
j

∥∥∥∥∂u∂n
∥∥∥∥
H2(Γ)

, t ∈ [−2, 0]

uniformly in j. Now, we consider the far field evaluation (3.3). Since
the kernel −e−iκx·y/(4π) is analytic in x̂ ∈ S2 and y ∈ Γ, the integral
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operator defined by the righthand side of (3.3), which maps ∂u/∂n to
u∞ is bounded from H−2(Γ) to L2(S2). Therefore,

‖u∞ − uapp
∞,hj

‖L2(S2) �
∥∥∥∥∂u∂n −

[
∂u

∂n

]app

hj

∥∥∥∥
H−2(Γ)

.

This together with (4.6) implies the assertion.

The corresponding error estimate for the approximation of the
Fréchet derivative is a bit more involved:

Theorem 2. If V ∈ C2(Γref;R3) in addition to the assumptions of
Theorem 1, then the approximation F ′[Ψ]hjV of the Fréchet derivative
satisfies

‖F ′[Ψ]V − F ′[Ψ]hjV‖L2 = O(h4
j )

uniformly in j.

Proof. Let f := −(V · n) ∂u∂n denote the exact righthand side of (3.5)
and fapp

hj
:= −(V · n)[ ∂u∂n ]app

hj
its approximation. Using V · n ∈ C2(Γ)

and (4.6), we obtain

(4.7) ‖f − fapp
hj

‖Ht(Γ) � h2−t
j , t ∈ [−2, 0].

Our approximation ρapp
hj

to the solution ρ of (3.5) is defined by

〈
Aρapp

hj
, ϕhj

〉
=

〈
fapp
hj

, ϕhj

〉
for all ϕhj ∈ Vj

with the integral operator A on the righthand side of (3.5). For any
g ∈ L2(Γ) let ϕg ∈ L2(Γ) denote the solution to the adjoint problem

〈Av, ϕg〉 = 〈g, v〉 for all v ∈ L2(Γ).

Moreover, let ϕghj
∈ Vj denote the L2orthogonal projection of ϕg onto
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Vj . Using the definition of the adjoint problem, we obtain

(4.8)

‖ρ− ρapp
hj

‖H−2(Γ) = sup
‖g‖H2(Γ)≤1

|〈g, ρ− ρapp
hj

〉|

= sup
‖g‖H2(Γ)≤1

|〈A(ρ− ρapp
hj

), ϕg〉|

≤ sup
‖g‖H2(Γ)≤1

{|〈A(ρ− ρapp
hj

), ϕg

− ϕghj
〉| + |〈A(ρ − ρapp

hj
), ϕghj

〉|}
� sup

‖g‖H2(Γ)≤1

{‖ρ− ρapp
hj

‖L2(Γ)‖ϕg

− ϕghj
‖L2(Γ) + |〈f − fapp

hj
, ϕghj

〉|}.

We now estimate the terms on the righthand side of this inequality
separately. By the first Strang lemma we have

‖ρ− ρapp
hj

‖L2(Γ) � h2
j .

Moreover,

(4.9) ‖ϕg − ϕghj‖L2(Γ) � h2
j‖ϕg‖H2(Γ) � h2

j‖g‖H2(Γ).

Here the second inequality follows from the fact the A∗ : H2(Γ) →
H2(Γ) is bounded and boundedly invertible, see e.g. Kirsch [21].
Finally, the last term can be estimated by

|〈f − fapp
hj

, ϕghj
〉| ≤ |〈f − fapp

hj
, ϕghj

− ϕg〉| + |〈f − fapp
hj

, ϕg〉|
≤ ‖f − fapp

hj
‖L2(Γ)‖ϕghj

− ϕg‖L2(Γ)

+ ‖f − fapp
hj

‖H−2(Γ)‖ϕg‖H2(Γ)

� h4
j‖g‖H2(Γ)

using (4.7) and (4.9). Putting the last four inequalities together, we
arrive at

‖ρ− ρapp
hj

‖H−2(Γ) � h4
j

uniformly in j. Now the proof is finished by applying the last argument
of the proof of Theorem 1 to (3.6) instead of (3.3).



250 H. HARBRECHT AND T. HOHAGE

Obviously, the constants in Theorems 1 and 2 hidden in the Landau
symbols O depend on Ψ. In particular, these constants may deteriorate
in a Newton iteration, e.g., if Ψn(Γref) approaches a self-penetrating
surface or if the mesh on Ψn(Γref) becomes too nonuniform. We try to
avoid these effects by the incorporation of the additional penalty term
in (2.9).

5. The adjoint of F ′[Ψ]. Our method is based on iteratively
solving the normal equation corresponding to (2.11), which requires
repeated application of the adjoint of the Fréchet derivative F ′[Ψ], a
topic which we now discuss. It can easily be shown using (5.1) below
that F ′[Ψ] can uniquely be extended to a bounded linear operator
F ′[Ψ]L2 : L2(Γref;R3) → L2(S2;C) for every Ψ ∈ Xadm. Its adjoint
will be denoted by F ′[Ψ]∗L2 . Since F ′[Ψ] = F ′[Ψ]L2Js where Js :
Hs(Γref;R3) ↪→ L2(Γref;R3) denotes the embedding operator, the
relation of F ′[Ψ]∗ and F ′[Ψ]∗L2 is given by

F ′[Ψ]∗ = J∗
sF

′[Ψ]∗L2 .

Note that F ′[Ψ] maps from a real to a complex Hilbert space. To
speak of the adjoint we interpret the image space L2(S2;C) as a real
Hilbert space with inner product (u∞, v∞) := Re

∫
S2 u∞v∞ dσ. In the

following we will silently interpret other complex Hilbert spaces as real
Hilbert spaces in the same manner. Note that, for a bounded linear
mapping A : H1 → H2 between complex Hilbert spaces H1 and H2,
the adjoint of A is the same whether we interpret H1 and H2 as real
or as complex Hilbert spaces.

We now discuss the implementation of the operator J∗
s if Γref is the

unit sphere S2. Recall that the norm in Hs(S2;R3) can be defined by

‖Ψ‖2
Hs

=
∞∑
n=0

n∑
m=−n

(1 + n2)s
∣∣∣∣
∫
S2

ΨYn,m ds
∣∣∣∣
2

2

in terms of the spherical harmonics Yn,m, see e.g., [5]. Hence,

J∗
sΨ =

∞∑
n=0

n∑
m=−n

(1 + n2)−s
∫
S2

ΨYn,m ds Yn,m.
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This is easy to implement since we use the spherical harmonics as basis
functions. By the formula (2.7) the operator F ′[Ψ]L2 can be factorized
as follows:

(5.1) F ′[Ψ]L2 = GΨAΨ.

Here AΨ : L2(Γref;R3) → L2(Γ;C) is defined by

(AΨV)(y) := − ∂u

∂n
(y)V(Ψ−1(y)) · n(y), y ∈ Γ,

and GΨ : L2(Γ;C) → L2(S2;C) is the operator which maps Dirichlet
data f ∈ L2(Γ) to the far field pattern v∞ of the radiating solution v
to the Helmholtz equation satisfying the Dirichlet condition v = f on
Γ. It follows from (5.1) that

(5.2) F ′[Ψ]∗L2 = A∗
ΨG

∗
Ψ.

Therefore, we have to characterize the operators G∗
Ψ and A∗

Ψ. A
characterization of G∗

Ψ has been obtained by Kirsch [22]. We will
give another proof of this result corresponding to our implementation
of this operator for reasons to be discussed below.

Theorem 3. (1) Let

(5.3) vgi (y) :=
1
4π

∫
S2
e−iκx̂·yg(x̂) dσx̂, y ∈ R3

denote the Herglotz wave function with kernel g ∈ L2(S2), and let vg
be the total field corresponding to vgi as incident field, i.e., vg = vgi +vgs
where v = 0 on Γ and vgs is a radiating solution to the Helmholtz
equation. Then

(5.4) G∗
Ψg =

∂vḡ

∂n
.

(2) The adjoint of AΨ applied to a function f ∈ L2(Γ;C) is given by

(5.5) (A∗
Ψf)(x) = −Re

(
f(y) · ∂u

∂n
(y)

)
n(y) det(DΨ(x)), x ∈ Γref

where y := Ψ(x).
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Proof. (1) If the righthand side of (3.6) is denoted by (Bρ)(x̂) with
B : L2(Γ;C) → L2(S2;C), then

(5.6) GΨ = B

(
1
2
I + D − iηS

)−1

.

We denote the adjoint of an integral operator T by T ∗ and the
transposed by T ′, i.e., T ′g = T ∗g. Then

(5.7) G∗
Ψg =

(
1
2
I + D∗ − (iηS)∗

)−1

B∗g =
(

1
2
I + D′ − iηS′

)−1

B′ḡ.

We obtain immediately from the definitions (3.6) and (5.3) that

B′ḡ =
∂vḡi
∂n

− iηvḡi .

Now (5.4) follows from (3.2).

(2) Let f ∈ L2(Γ;C) and V ∈ L2(Γref;R3). Then

Re
∫

Γ

f(y)(AV)(y) dσy

= −Re
∫

Γ

f(y)
∂u

∂n
(y)V(Ψ−1(y)) · n(y) dσy

=
∫

Γref

{
− Re

(
f(Ψ(x)) · ∂u

∂n
(Ψ(x))

)
nΨ(x) det(DΨ(x))

}
·V(x) dσx

by the transformation formula (2.1). This implies (5.5).

For the performance of the inner CG iteration in the Newton method
it is essential that the operators F ′[Ψ] and F ′[Ψ]∗ are discretized in
such a way that the discrete operators are adjoint to each other. Since
the factorization (5.6) describes our implementation of GΨ, we have to
replace the operators in the factorization (5.7) of G∗

Ψ by the adjoints
of the corresponding matrices described in Section 3. The same holds
true for the discretization of the adjoint of AΨ using (5.5). If the
inversion of the boundary integral operators is done approximately
by an iterative method, the solution of the discrete equation systems
should be computed to high accuracy.
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We now consider star-shaped domains described by parametrizations
of the form (2.4). In R2 the adjoint of the Fréchet derivative for star-
shaped obstacles was characterized by Hanke, Hettlich and Scherzer
[11]. To show the connection to this result and explain the different
powers of the radial function r, we formulate the following corollary for
arbitrary space dimensions d ≥ 2:

Corollary 4. The adjoint of the Fréchet derivative F ′
star[r] of the

solution operator Fstar for star-shaped obstacles defined in (2.5) is given
by

(F ′
star[r]

∗g)(x) = −r(x)d−1Re
(
∂vḡ

∂n
(Ψ(x)) · ∂u

∂n
(Ψ(x))

)
,(5.8)

x ∈ Sd−1.

Proof. In analogy to (5.1) the Fréchet derivative can be decomposed
into F ′

star[r]h = GΨÃr with the operator Ãr : L2(S2;R) → L2(Γ;C)
defined by

(Ãrh)(r(x)x) := − ∂u

∂n
(Ψ(x))h(x){x · n(Ψ(x))}, x ∈ Sd−1.

For a fixed x ∈ Sd−1 we introduce an orthonormal system {v1, . . .,vd−1}
of Tx and denote by ∂j the derivative in the direction vj . Note that
vj = ∂jx. By Grad r :=

∑d−1
j=1 ∂jrvj we denote the surface gradient of

r. Then the normal vector is given by

n(Ψ(x)) = (r(x)2 + ‖Grad r(x)‖2
2)

−1/2(r(x)x − Grad r(x))

since

∂jΨ(y) · (r(x)x − Grad r(x))
= (∂jr(x)x + r(x)vj) · (r(x)x − Grad r(x))
= ∂jr(x)r(x) − r(x)∂jr(x) = 0

for j = 1, . . . , d − 1. To compute det(DΨ(x)) we consider the
augmented mapping Bx : Rd → Rd defined by Bxx := n(x) and
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Bvj := vj for j = 1, . . . , d − 1 and note that det(DΨ(x)) = det(B).
Hence, using the orthonormal basis {x,v1, . . .vd−1} we obtain

det(DΨ(x)) =
1√

r(x)2 + ‖Grad r(x)‖2
2

×

⎡
⎢⎢⎣

r(x) ∂1r(x) · · · ∂d−1r(x)
−∂1r(x) r(x) 0

...
. . .

−∂d−1r(x) 0 r(x)

⎤
⎥⎥⎦

=
√
r(x)2 + ‖Grad r(x)‖2

2r(x)d−2.

Using (5.5) (which holds true for any d = 2, 3, . . . ) we obtain

(Ã∗
rf)(x) = −Re

(
f(y) · ∂u

∂n
(Ψ(x))

)
× {x · n(Ψ(x))} det(DΨ(x))

= −Re
(
f(Ψ(x)) · ∂u

∂n
(y)

)
r(x)d−1, x ∈ Sd−1.

Together with (5.4) we obtain the assertion.

6. Numerical results. Our first test is concerned with the
reconstruction of a star-shaped domain shown in Figure 1 using the
operator Fstar defined in (2.5). The diameter of the obstacle is roughly
2.8. In two of the experiments the data consisted of six far field patterns
corresponding to plane incident waves from top, bottom, right, left,
front, and back. A comparison of the results for κ = 4 and κ = 1 shows
that the quality of the reconstructions is very sensitive to the size of
the wave number. The reconstruction for κ = 4 is surprisingly good
considering the fact that the problem is (asymptotically!) exponentially
ill-posed. In the bottom left picture, where only one incident wave
from top was used, the reconstruction is poor on the shadow side of
the obstacle.

In all cases the unit ball was used as an initial guess. The recon-
struction in the top right picture was obtained in nine preconditioned
Newton steps after 21 minutes computation time on a PC. The ra-
dial functions describing the reconstructions belonged to the space of
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FIGURE 1. Reconstruction of a star-shaped obstacle.

spherical harmonics of order ≤ 20 resulting in 202 = 400 degrees of
freedom. To avoid an inverse crime, we chose an obstacle which does
not belong to the ansatz space and used a potential ansatz with a finer
discretization to compute synthetic data.

In a second test we studied the reconstruction of a dolphin-shaped
scatterer. This scatterer is not star-shaped, and we used the operator
F defined in (2.2). The surface of the obstacle was given by a triangu-
lation shown at the bottom of Figure 2, which we refined to generate
synthetic data. Each Cartesian component of the parametrizations of
the reconstructed surfaces was represented by spherical harmonics of
order ≤ 20 resulting in 3 · 202 = 1200 unknown design parameters. As
an initial guess we used a sphere of diameter 1 shown at the top of
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FIGURE 2. Reconstruction of a dolphin with six incident waves with wave number
κ = 2 and 1% noise. Top: initial guess (a ball of radius 0.5) and reconstruction.
Bottom: true obstacle.

Figure 2, which has an empty intersection with the true scatterer. To
obtain a coarse approximation from a bad initial guess, we found the
Newton-CG method, see [10], the fastest and most reliable. To obtain
more accurate reconstructions given a sufficiently good initial guess, a
preconditioned Newton method is more efficient. The reconstruction
shown in Figure 2 was obtained in 10 Newton-CG steps after only 6
minutes of computation time. We did not need a step length control
for the Newton iteration in this example.

For the computations with wave number κ = 8 shown in Figure 3 we
used the result for κ = 2 as an initial guess. The result was obtained
after six preconditioned Newton steps and 75 minutes computation
time on a PC. To solve the forward problems we used the grid shown
in Figure 3 corresponding to 6·(16+1)2 = 1734 bilinear basis functions.
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FIGURE 3. Reconstruction of a dolphin with six incident waves with wave number
κ = 8 and 1% noise.

Finally, we comment on the effect of the choice of the parametrization
and the penalty terms in (2.9). Figure 3 shows that our scheme
automatically leads to an anisotropic mesh refinement in directions of
large curvature. This is due to the penalty term ‖V+Ψn−Ψ0‖2

X in (2.9)
since a parametrization of given surface has small second derivatives if
it varies slowly in directions of large curvature. This is a desirable
effect both for the accurate solution of the forward problems and for
the accurate approximation of the geometry using a limited number of
degrees of freedom on the unit sphere.
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Without the additional penalty term involving the operator G the
meshes often deteriorate leading to self-penetrations. The operator G
in (2.10) was scaled such that both penalty terms are of the same
size at the initial guess. As an alternative to incorporating G in
the Newton scheme we also tried to perform a remeshing every few
Newton steps. However, this strategy did not turn out to be successful
since a remeshing increases the penalty term ‖V + Ψn −Ψ0‖2

X , and in
the next Newton step the residual ‖F (Ψn) − uδ∞‖Y tends to increase
considerably. This leads to a stagnation or a significant slowdown of
the convergence of the Newton iteration.

We finally mention that our choice (2.10) of G only protects against
local, but not against global self-penetrations. Therefore, different
choices of G may be a subject of further studies.
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