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THE DISCRETE MULTI-PROJECTION METHOD
FOR FREDHOLM INTEGRAL EQUATIONS

OF THE SECOND KIND

ZHONGYING CHEN, GUANGQING LONG AND GNANESHWAR NELAKANTI

ABSTRACT. In this paper, discrete multi-projection meth-
ods are developed for solving the second kind Fredholm inte-
gral equations. We propose a theoretical framework for anal-
ysis of the convergence of these methods. The theory is then
applied to establish super-convergence results for the corre-
sponding discrete Galerkin method, collocation method and
their iterated solutions. Numerical examples are presented
to illustrate the theoretical estimates for the error of these
methods.

1. Introduction. Let X be Banach space and K a compact linear
operator from X to X. For a given f ∈ X, suppose that we want to
find a u ∈ X such that

(1.1) (I − K)u = f.

Let N := {1, 2, . . . }. The projection method for approximately solving
(1.1), cf. [3, 5, 11], would be the following. First, select a sequence
of linear subspaces {Xn ⊂ X : n ∈ N}, and a sequence of projection
operators {Pn : X → Xn : n ∈ N}, then use Kn := PnKPn (or
Kn := PnK|Xn

) as an approximation of K, and find un ∈ Xn such that

(1.2) (I − Kn)un = Pnf.
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Using the notations in [6], the operator K can be written as the
following matrix form

[
KLL

n KHL
n

KLH
n KHH

n

]
:=

[
PnKPn PnK(I − Pn)

(I − Pn)KPn (I − Pn)K(I − Pn)

]
.

We remark that matrix forms of an operator pay an important role
in developing multilevel methods, see [7, 10]. It can be seen here
that four blocks of the above matrix correspond to lower and higher
resolutions of the operator K. When n is large enough, the block KLL

n is
of first importance, blocks KLH

n and KHL
n are next to it. The standard

projection method replaces the operator K by the block KLL
n , which can

be seen as a mapping from the lower level subspace of the space X to the
same lower level subspace. An idea to improve the convergence of the
standard projection method is using multi-blocks to approximate the
operator K instead of a single one KLL

n , that is, using a combination
of some of blocks KLL

n , KLH
n and KHL

n , denoted by KM
n , as a better

approximation of K, and instead of (1.2) consider the approximation
problem: Finding un ∈ X such that

(1.3) (I − KM
n )un = f.

In fact, the Sloan iteration method uses KM
n := KPn = KLL

n + KLH
n ,

which leads to the equation

u′
n −KPnu′

n = f,

and the approximate solution has super-convergence, see [8, 14]. Re-
cently [12] chose KM

n := KLL
n +KLH

n +KHL
n to develop the algorithm for

compact operator equations and obtain higher order super-convergence.
Noting that the method uses multi -blocks which correspond to lower
and higher resolutions of K instead of a single lower one KLL

n , we call the
scheme (1.3) multi-projection method (or simply M -projection method)
for solving (1.1).

The purpose of this paper is to develop discrete M -projection meth-
ods for solving Fredholm integral equations of the second kind. We will
propose a unified theoretical framework for the methods and use it to
establish super-convergence results for corresponding discrete Galerkin
and collocation methods and their iterated solutions. We organize this
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paper as follows. In Section 2 we set up a theoretical framework which
is convenient for the analysis of discrete M -projection methods and
corresponding iterated versions. In Section 3 we apply the theory pre-
sented in Section 2 to discrete M -Galerkin methods and discrete M -
collocation methods to obtain super-convergence theorems. Section 4
is devoted to a presentation of numerical examples, which illustrate the
theoretical estimates obtained in Section 3.

2. An abstract framework. In this section we present an abstract
framework of discrete multi-projection methods for solving Fredholm
integral equations of the second kind.

Let X be a Banach space with norm ‖·‖ and V its subspace. Assume
that K is a compact linear operator from X to V, and I the identity
operator from X to itself. We consider the Fredholm equation of the
second kind

(2.1) (I − K)u = f.

We assume that for any f ∈ V, or X, equation (2.1) is uniquely solvable
in V, or X.

As in [9], to describe discrete approximate schemes, we let {Xn : n ∈
N} be a sequence of finite-dimensional subspaces of X satisfying

(2.2) V ⊆ X̃ :=
∞⋃

n=1

Xn ⊆ X,

and assume that Kn : X → V are bounded linear operators and
Pn : X → Xn are linear projection operators, which approximate
the operator K and the identity operator I respectively, that is, the
operators satisfy the following conditions, see [9].

(H1) The set of operators {Pn : n ∈ N} is uniformly bounded, i.e.,
there exists a positive constant p such that ‖Pn‖ ≤ p for all n ∈ N.

(H2) Operators Pn converge pointwise to I on V, i.e., for any x ∈ V,
‖Pnx − x‖ → 0, as n → ∞.

(H3) The set of operators {Kn : n ∈ N} is collectively compact, i.e.,
the set ∪nKn(B) is relatively compact whenever B ⊂ X is bounded.
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(H4) Operators Kn converge pointwise to K on the set X̃, i.e., for any
x ∈ X̃, ‖Knx −Kx‖ → 0, as n → ∞.

With the above assumptions, we will develop an abstract frame of
discrete multi-projection methods. To do this, we let

(2.3) KM
n := PnKnPn + (I − Pn)KnPn + PnKn(I − Pn).

The approximation method for solving (2.1) is to find un ∈ X such
that

(2.4) (I − KM
n )un = f,

and its corresponding iterative solution is defined by

(2.5) u′
n = Knun + f.

To solve (2.4), applying Pn and I − Pn to the equation yields

(2.6) Pnun − PnKnPnun − PnKn(I − Pn)un = Pnf

and

(2.7) (I − Pn)un = (I − Pn)KnPnun + (I − Pn)f,

respectively. Substituting (2.7) into (2.6) yields

(2.8) Pnun−(PnKn+PnKn(I−Pn)Kn)Pnun = Pnf+PnKn(I−Pn)f.

This means that we can seek u1
n := Pnun ∈ Xn from the equation

(2.9) [I − QnKn] u1
n = Qnf,

where Qn := Pn + PnKn(I − Pn), and then obtain un = u1
n + u2

n with

(2.10) u2
n := (I − Pn)un = (I − Pn)(Knu1

n + f)

by using (2.7).

We remark that when Kn is defined by a given quadrature formula,
Pn is chosen to be the orthogonal projection (corresponding to some
inner product), the generalized best approximation projection (corre-
sponding to some inner product), and the interpolation projection re-
spectively, (2.4) gives the corresponding discrete Galerkin method, the
discrete Petrov-Galerkin method and the discrete collocation method.
Moreover, when Pn is chosen to be the identity operator, (2.4) corre-
sponds to the quadrature method, see [9].

We will show the approximation operator equation (2.4) to be
uniquely solvable in V, or X. To this end, we first recall the concept
of ν-convergence, see [1, 13].
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Definition 2.1. Let X be a Banach space, and T , Tn are bounded
linear operators from X to X. {Tn} is said to be ν-convergent to T , if

‖Tn‖ ≤ c, ‖(Tn − T )T ‖ −→ 0, ‖(Tn − T )Tn‖ −→ 0, as n → ∞,

where c is a constant independent of n.

We now prove that both {Kn} and {KM
n } are ν-convergent to K. To

do this we quote the following lemma from [9], which slightly generalizes
Proposition 1.7 of [2]. For the convenience of readers, we provide a
short proof.

Lemma 2.2. Let X be a Banach space and S ⊂ X a relative compact
set. Assume that T , Tn are bounded linear operators from X to X
satisfying

‖Tn‖ ≤ c,

for all n ∈ N, and for each x ∈ S,

‖Tnx − T x‖ → 0, as n → ∞,

where c is a constant independent of n. Then ‖Tnx−T x‖ → 0 uniformly
for all x ∈ S.

Proof. For any ε > 0, S has a finite ε-net Nε ⊂ S, that is, for any
x ∈ S there is an xε ∈ Nε such that ‖x − xε‖ < ε. This leads to

‖Tnx − T x‖ ≤ ‖(Tn − T )(x − xε)‖ + ‖Tnxε − T xε‖
≤ (C + ‖T ‖) ε + ‖Tnxε − T xε‖.

Noting that Tn converges pointwise to T on S and Nε is finite, the
result of this lemma follows.

Theorem 2.3. Assume that conditions (H1) (H4) hold. Then {Kn}
and {KM

n } are ν-convergent to K.

Proof. Let B be the closed unit ball in X, that is,

B := {x ∈ X : ‖x‖ ≤ 1}.
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It follows from (H3) that the set ∪nKn(B) is bounded by a constant c.
Thus {Kn} is uniformly bounded: for any n ∈ N,

(2.11) ‖Kn‖ = sup{‖Knx‖ : x ∈ B} ≤ c.

Since K is a compact operator from X to V, the set S := {Kx : x ∈ B}
is a relatively compact set in V. Using Lemma 2.2 we conclude from
(H4) that ‖Knx −Kx‖ → 0 uniformly for all x ∈ S. Thus

(2.12)
‖(Kn−K)K‖ = sup{‖(Kn−K)Kx‖ : x ∈ B}

= sup{‖(Kn−K)x‖ : x ∈ S} → 0, as n → ∞.

Again, it follows from (H3) that the set S′ := {Knx : x ∈ B, n ∈ N}
is a relatively compact set in V. Similarly we conclude that

(2.13)
‖(Kn−K)Kn‖ = sup{‖(Kn−K)Knx‖ : x ∈ B}

≤ sup{‖(Kn−K)x‖ : x ∈ S′} → 0, as n → ∞.

Combining (2.11), (2.12) and (2.13) leads to the first result that {Kn}
is ν-convergent to K.

We now prove the ν-convergence of {KM
n }. Taking use of conditions

(H1) (H2) and Lemma 2.2, we have that ‖Pnx− x‖ → 0 uniformly for
x ∈ S′. Let En := (I−Pn)Kn(I−Pn). It follows from Lemma 2.2 that

‖En‖ ≤ (1 + p)‖(I − Pn)Kn‖ = (1 + p) sup{‖(I − Pn)Knx‖ : x ∈ B}
≤ (1 + p) sup{‖(I − Pn)x‖ : x ∈ S′} → 0, as n → ∞.

Noting that KM
n = Kn − En, this with (2.11), (2.12) and (2.13) means

that there is a constant c such that

‖KM
n ‖ = ‖Kn − En‖ ≤ ‖Kn‖ + ‖En‖ ≤ c,(2.14)

‖(KM
n −K)K‖ ≤ ‖(Kn−K)K‖ + ‖En‖‖K‖ → 0, as n → ∞,

(2.15)

and

‖(KM
n −K)KM

n ‖ = ‖(Kn −K − En)(Kn − En)‖
(2.16)

≤ ‖(Kn −K)Kn‖ + (2‖Kn‖ + ‖K‖ + ‖En‖)‖En‖
−→ 0, as n → ∞,
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which means that {KM
n } is ν-convergent to K. The proof is completed.

The existence of (I−K)−1 and the ν-convergence of {Kn} and {KM
n }

to K lead to the following theorem, see [13].

Theorem 2.4. Assume that (I −K)−1 exists on V (or X), Kn and
Pn satisfy conditions (H1) (H4). Then there is a positive integer N
such that for all n ≥ N , the inverse (I −Kn)−1 and (I −KM

n )−1 exist
as linear operators defined on V (or X), and there exists a constant c
independent of n such that for all n ≥ N

(2.17) ‖(I − Kn)−1‖ ≤ c, and ‖(I − KM
n )−1‖ ≤ c.

By Theorem 2.4, the approximation operator equation (2.4) is
uniquely solvable in V, or X.

We next provide error estimates between the exact solution of (2.1)
and the approximate solution of (2.4), and its corresponding iterative
solution (2.5).

Theorem 2.5. Assume that hypotheses of Theorem 2.4 hold. Then
there exist a positive integer N and a positive constant C such that
when n ≥ N

(2.18) ‖un − u‖ ≤ C‖(KM
n −K)u‖,

and

(2.19) ‖u′
n − u‖ ≤ C

[
‖Kn(KM

n −Kn)u‖ + ‖Kn(KM
n −Kn)‖

× ‖(KM
n −Kn)u‖ + ‖(Kn −K)u‖

]
.

Proof. It follows from equations (2.1) and (2.4) that

(2.20)
un − u = [(I − KM

n )−1 − (I − K)−1]f
= (I − KM

n )−1(KM
n −K)u,

which with Theorem 2.4 leads to the estimate (2.18).
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On the other hand, by equations (2.1) and (2.5), there holds

(2.21) u′
n − u = Knun −Ku = Kn(un − u) + (Kn −K)u.

Using (2.20), we have

Kn(un − u) = Kn(I − KM
n )−1(KM

n −K)u.

Since

Kn(I − KM
n )−1 = (I − Kn)−1(I − Kn)Kn(I − KM

n )−1

= (I − Kn)−1Kn(I − Kn)(I − KM
n )−1

= (I − Kn)−1Kn[I + (KM
n −Kn)(I − KM

n )−1],

we conclude that

(2.22)
Kn(un − u) = (I − Kn)−1Kn[I + (KM

n −Kn)(I − KM
n )−1]

× (KM
n −Kn)u + Kn(I − KM

n )−1(Kn −K)u.

It follows from (2.21) and (2.22) that

‖u′
n−u‖ ≤ ‖(I−Kn)−1‖‖Kn(KM

n −Kn)u‖
(2.23)

+ ‖(I−Kn)−1‖‖Kn(KM
n −Kn)‖‖(I−KM

n )−1‖‖(KM
n −Kn)u‖

(2.24)

+ (‖Kn‖‖(I−KM
n )−1‖ + 1)‖(Kn−K)u‖.

(2.25)

This with (2.17) and (2.11) leads to the estimate (2.19) of this theorem.

3. Discrete M-projection methods. In this section we apply
the general framework developed in the last section to discrete M -
projection methods including Galerkin methods and collocation meth-
ods for the second kind Fredholm integral equation

(3.1) (I − K)u = f,
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where K is a compact linear integral operator from Banach space
X = L∞(D) to its subspace V = C(D) defined by

(Ku)(s) =
∫

D

K(s, t)u(t) dt, s ∈ D,

D ⊂ Rl, l ≥ 1, is a bounded closed domain and K(s, t) is a function
defined on D × D. We assume that D is divided into Nn simplices
Δn := {En,1, . . . , En,Nn

} such that

D =
Nn⋃
i=1

En,i, meas (En,i ∩ En,j) = 0, i �= j,

and

h = hn := max{diam En,i : i = 1, 2, . . . , Nn} −→ 0, as n → ∞.

Let Xn ⊂ X be the piecewise polynomial space of total degree k − 1
related to Δn with a basis {φ1, . . . , φdn

}, where dn = dimXn. We will
describe concrete constructions of the approximate operators Pn and
Kn, which will lead to discrete M -Galerkin methods and M -collocation
methods. To do this, we remark that we follow [4] to define function
values u(t) for an L∞ function u at given points t ∈ D by using a norm
preserving extension of point evaluation functional from V to X.

1. Discrete M -Galerkin methods. Suppose that we have a numerical
integral formula

(3.2)
∫

D

u(t) dt ≈
qn∑

j=1

wju(tj), u ∈ X,

with wj > 0, j= 1, . . . , qn, and
∣∣∣∑qn

j=1 wj

∣∣∣ ≤ c for a constant c and any
n ∈ N. We assume that the numerical integral formula is convergent
on X̃, i.e., for u ∈ X̃,

(3.3)
∣∣∣∣

qn∑
j=1

wju(tj) −
∫

D

u(t) dt

∣∣∣∣ −→ 0, n → ∞,
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and the degree of precision of numerical integral formula (3.2) is d− 1,
that is, for any u ∈ W d

∞(D),

(3.4)
∣∣∣∣

qn∑
j=1

wju(tj) −
∫

D

u(t) dt

∣∣∣∣ ≤ c hd,

where c is a constant independent of u and h. Moreover, points
{tj : j = 1, . . . , qn} are chosen such that the rank of the matrix
Φ := [φi(tj)]dn×qn

satisfies

(3.5) rank Φ = dn.

We define the discrete inner product

(3.6) (x, y)n :=
qn∑

j=1

wjx(tj)y(tj), x, y ∈ X,

which will be used to approximate the L2-inner product (x, y) :=∫
D

x(t)y(t) dt. Let Pn : X → Xn be defined by

(3.7) (Pnx, y)n = (x, y)n, for all y ∈ Xn.

It is clear that Pn is well defined and is a projection from X to Xn. In
fact, for x ∈ X, we write

Pnx(s) =
dn∑

j=1

αjφj(s), s ∈ D.

Equation (3.7) can be written as the following linear system

(3.8)
dn∑

j=1

αj(φj , φi)n = (x, φi)n, i = 1, 2, . . . , dn.

It follows from (3.6) that the coefficient matrix is G := ΦWΦT , where
W := diag (w1, . . . , wqn

). Since G is a positive definite matrix, (3.8)
is uniquely solvable and Pnx is uniquely defined. On the other hand,
when x is replaced by Pnx in (3.7), there holds

(P2
nx, y)n = (Pnx, y)n, for all y ∈ Xn.
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It follows that, for any x ∈ X, P2
nx = Pnx, thus Pn is a projection

operator.

The following proposition shows that the projection Pn satisfies (H1)
and (H2).

Proposition 3.1. It holds that

(i) {Pn : n ∈ N} is uniformly bounded;

(ii) There exists a constant C > 0 such that for any n ∈ N and
x ∈ V,

‖Pnx − x‖∞ ≤ C inf
φ∈Xn

‖x − φ‖∞.

The proof is similar to that of Proposition 4.2 in [9].

We next define the operator Kn by

(3.9) Knu(s) :=
qn∑

j=1

wjK(s, tj)u(tj), u ∈ X.

In next proposition we show that the operator Kn satisfies the
hypotheses (H3) and (H4).

Proposition 3.2. Assume that the kernel function K(·, ·) ∈ C(D)×
L∞(D). Then the sequence {Kn} is collectively compact and pointwise
convergent to K on the set X̃.

Proof. By the assumptions on the numerical integral formula (3.2)
and the kernel K(s, t), there exists a constant c such that

|(Knu)(s)| =
∣∣∣∣

qn∑
j=1

wjK(s, tj)u(tj)
∣∣∣∣ ≤

∣∣∣∣
qn∑

j=1

wj

∣∣∣∣‖K‖∞‖u‖∞ ≤ c‖u‖∞.

On the other hand, for any s, s′ ∈ D and n ∈ N

(3.10)

∣∣∣∣(Knu)(s) − (Knu)(s′)
∣∣∣∣ =

∣∣∣∣
qn∑

j=1

wj [K(s, tj) − K(s′, tj)]u(tj)
∣∣∣∣

≤ c‖K(s, ·) − K(s′, ·)‖∞‖u‖∞,
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{Knu} is equicontinuous on D. Therefore, by the Arzela-Ascoli theo-
rem, we conclude that the sequence {Kn} is collectively compact.

Since the numerical integral formula is convergent, for fixed u ∈ X̃,
the sequence {Knu} converges pointwise on D to the function Ku as
n → ∞. Noting that {Knu} is equicontinuous on D and D is a compact
set, the sequence converges uniformly on D (see Problem 12.1 in [11]).
That is, for any u ∈ X̃, ‖Knu − Ku‖∞ → 0, as n → ∞, which means
that {Kn} is pointwisely convergent to K on the set X̃.

Using the approximate operators Pn and Kn, the approximate scheme
(2.4) leads to the discrete M -Galerkin method. We next analyze the
super-convergence of this method.

Theorem 3.3. Assume that (I − K)−1 exists on V (or X),
the numerical integral formula (3.2) satisfies (3.3) (3.5), the kernel
K(·, ·) ∈ Ck(D) × Wm

∞(D) with m := max{k, d}, and operators Pn

and Kn are defined by (3.7) and (3.9), respectively. Let u ∈ Wm
∞(D)

and un ∈ X be solutions of (3.1) and (2.4), respectively. Then there
exists a positive constant C independent of n such that

(3.11) ‖u − un‖∞ ≤ Chmin{3k,d}.

Proof. It follows from Theorem 2.5 that

(3.12) ‖un − u‖∞ ≤ C
[
‖(KM

n −Kn)u‖∞ + ‖Knu −Ku‖∞
]
.

By Proposition 3.1 (ii), we have that

(3.13)

‖(KM
n −Kn)u‖∞ = ‖(I − Pn)Kn(I − Pn)u‖∞

≤ c inf
φ∈Xn

‖Kn(I − Pn)u − φ‖∞

≤ c hk‖(Kn(I − Pn)u)(k)‖∞.
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From (3.9), (3.7) and (3.6) we conclude that for any y ∈ Xn and s ∈ D,

∣∣∣(Kn(I − Pn)u)(k)(s)
∣∣∣ =

∣∣∣∣
qn∑

j=1

wj
∂kK(s, tj)

∂sk
(I − Pn)u(tj)

∣∣∣∣
=

∣∣∣∣
(

∂kK(s, ·)
∂sk

, (I − Pn)u
)

n

∣∣∣∣
=

∣∣∣∣
(

∂kK(s, ·)
∂sk

− y, (I − Pn)u
)

n

∣∣∣∣
≤ c

∥∥∥∥∂kK(s, ·)
∂sk

− y

∥∥∥∥
∞
‖u − Pnu‖∞.

Thus we have that

(3.14)
∥∥∥(Kn(I − Pn)u)(k)

∥∥∥
∞

≤ c hk‖u − Pnu‖∞.

This with (3.13) leads to

(3.15) ‖(KM
n −Kn)u‖∞ ≤ c h3k.

On the other hand, since for any s ∈ D, K(s, ·)u(·) ∈ W d
∞(D), we

conclude from (3.4) that there exists a constant c such that

(3.16) ‖(K −Kn)u‖∞ ≤ c hd.

Combining (3.15) and (3.16) completes the proof.

The following theorem shows that the corresponding iterative solution
given by (2.5) has higher order of convergence.

Theorem 3.4. Assume that conditions of Theorem 3.3 hold. Let u′
n

be the iterative solution defined by (2.5). Then there exists a positive
constant C independent of n such that

‖u − u′
n‖∞ ≤ Chmin{4k,d}.

Proof. It follows from Theorem 2.5 that

(3.18) ‖u′
n − u‖∞ ≤ C

[
‖Kn(KM

n −Kn)u‖∞ + ‖Kn(KM
n −Kn)‖

×‖(KM
n −Kn)u‖∞ + ‖(Kn −K)u‖∞

]
.
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Using (3.9), (3.7) and (3.6), we have that for any y ∈ Xn and s ∈ D,∣∣Kn(KM
n −Kn)u(s)

∣∣ = |(K(s, ·), (I − Pn)Kn(I − Pn)u)n|
= |(K(s, ·) − y(·), (I − Pn)Kn(I − Pn)u)n|
≤ c‖K(s, ·) − y(·)‖∞‖(I − Pn)Kn(I − Pn)u‖∞.

This with (3.13) and (3.14) yields

(3.19)
‖Kn(KM

n −Kn)u‖∞ ≤ c hk‖(I − Pn)Kn(I − Pn)u‖∞
≤ c h3k‖u − Pnu‖∞
≤ c h4k.

The above inequality also leads to

‖Kn(KM
n −Kn)u‖∞ ≤ c (1 + p)h3k‖u‖∞,

which means that

(3.20) ‖Kn(KM
n −Kn)‖ ≤ c h3k.

Combining (3.18) (3.20), (3.15) and (3.16) yield the estimate (3.17) of
this theorem.

2. Discrete M -collocation methods. In this subsection, for simplicity
we assume that D = [a, b], En,i = [Ti−1, Ti] with T0 = a, Ti = a + ih,
h = (b − a)/n for i = 1, . . . , n, n ∈ N.

Let {sij} be Gauss-Legendre zeros of degree k − 1 on each interval
En,i, that is,

sij = Ti−1 + qjh, j = 1, . . . , k, i = 1, . . . , n,

where qj , 0 < q1 < · · · < qk < 1, are the Gauss-Legendre zeros on [0, 1].
We choose Pn to be the interpolation projection from X onto Xn with
respect to the nodes {sij}, that is, for x ∈ X

(3.21)
Pnx ∈ Xn, and Pnx(sij) = x(sij), j = 1, . . . , k, i = 1, . . . , n.

It is clear that {Pn} satisfies the conditions (H1) and (H2). We remark
that Pnx ∈ Xn may be discontinuous at the knots Ti, i = 1, . . . , n− 1.
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We next introduce numerical integral operators Kn. We choose a
numerical integral formula with q quadrate nodes in each En,i:

(3.22)
∫

D

u(t) dt ≈
n∑

i=1

q∑
l=1

wilu(til), u ∈ X,

where wil = h�l with �l > 0, l = 1, . . . , q, i = 1, . . . , n. We require
that the quadrature formula (3.22) has the same properties of (3.2)
(with j = (i − 1)q + l and qn = nq), that is, the numerical integral
formula is convergent, and the degree of precision is d − 1. We then
define

(3.23) Knu(s) :=
n∑

i=1

q∑
l=1

wilK(s, til)u(til), s ∈ D, u ∈ X.

We assume the kernel function K(s, t) ∈ C(D) × L∞(D); then, ac-
cording to the similar analysis of Proposition 3.2, we know that {Kn}
satisfies the conditions (H3) and (H4).

The scheme (2.4) with operators Pn and Kn defined by (3.21) and
(3.23) leads to the discrete M -collocation method. We now analyze the
super-convergence of this method.

Theorem 3.5. Assume that (I − K)−1 exists on V (or X), the
kernel K(·, ·) ∈ Ck(D) × Cd(D) with d ≥ 2k, and operators Pn and
Kn are defined by (3.21) and (3.23), respectively. Let u ∈ Cd(D) and
un ∈ X be solutions of (3.1) and (2.4), respectively. Then there exists
a positive constant C independent of n such that

‖u − un‖∞ ≤ Chmin{3k,d}.

Proof. We first consider the error between u and its polynomial
interpolation of degree k: for t ∈ [Ti−1, Ti],

u(t) − Pnu(t) = hkH

(
t − Ti−1

h

)
u[si1, si2, . . . , sik, t],

where H(s) = (s − q1) · · · (s − qk) and u[si1, si2, . . . , sik, t] is Newton
divided difference of u of order k. Let

gs,i(t) :=
∂kK(s, t)

∂sk
u[si1, si2, . . . , sik, t], t ∈ [Ti−1, Ti], s ∈ [a, b],
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then

[Kn(I − Pn)u](k) (s) = h

n∑
i=1

q∑
j=1

�j
∂kK(s, tij)

∂sk
[u(tij) − Pnu(tij)]

= hk+1
n∑

i=1

q∑
j=1

�jgs,i(tij)H
(

tij − Ti−1

h

)
.

Since for any s ∈ [a, b], u ∈ C2k(D) and ∂kK(s, ·)/∂sk ∈ Ck(D), gs,i(t)
can be written as

gs,i(t) =
k−1∑
l=0

1
l!

(t − Ti−1)lg
(l)
s,i(Ti−1) +

(t − Ti−1)k

k!
g
(k)
s,i (ξ),

where ξ ∈ (Ti−1, Ti). By the assumption that the degree of precision
of numerical integral formula ≥ 2k − 1, and the fact∫ 1

0

tl(t − q1) · · · (t − qk) dt = 0, 0 ≤ l ≤ k − 1,

we have that

| [Kn(I− Pn)u](k) (s)| ≤ c h2k max
i

‖g(k)
s,i ‖∞ ≤ c h2k‖K‖k,k,∞‖u‖2k,∞,

where for integer α, β ≥ 0,

‖K‖α,β,∞ =
α∑

i=0

β∑
j=0

∥∥∥∥ ∂i+j

∂si∂tj
K(s, t)

∥∥∥∥
∞

,

and

‖u‖α,∞ =
α∑

i=0

‖u(i)‖∞.

Therefore, we have

(3.24)
‖(I − Pn)Kn(I − Pn)u‖∞ ≤ c hk‖ [Kn(I − Pn)u](k) ‖∞

≤ c hkh2k‖K‖k,k,∞‖u‖2k,∞
≤ c h3k.
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On the other hand, the numerical integral formula has a degree of
precision d − 1; this means

(3.25) ‖Ku −Knu‖∞ ≤ c hd.

Therefore, by Theorem 2.5, (3.24) and (3.25), we have the error
estimate

‖u − un‖∞ ≤ C
[
‖KM

n u −Knu‖∞ + ‖Knu −Ku‖∞
]

≤ Chmin{3k,d}.

This completes the proof.

Theorem 3.6. Assume that the conditions of Theorem 3.5 hold, and
K(·, ·) ∈ C2k(D) × Cd(D). Let u′

n be the iterative solution defined by
(2.5). Then there exists a positive constant C independent of n such
that

(3.26) ‖u − u′
n‖∞ ≤ Chmin{4k,d}.

Proof. Since

Kn(I − Pn)u(s) =
n∑

i=1

q∑
j=1

wijK(s, tij)(I − Pn)u(tij) ∈ C2k(D),

it holds that
(3.27)
‖Kn(I − Pn)Kn(I − Pn)u‖∞ ≤ c h2k‖K‖k,k,∞‖Kn(I − Pn)u‖2k,∞

≤ c h4k‖K‖k,k,∞‖K‖2k,k,∞‖u‖2k,∞
≤ c h4k.

On the other hand, Knu ∈ C2k(D), and we have

‖(I − Pn)Knu‖∞ ≤ c hk‖[Knu](k)‖∞ ≤ c hk‖K‖k,0,∞‖u‖∞;

it follows that

(3.28) ‖Kn(I − Pn)Kn(I − Pn)‖∞ ≤ c [(1 + p)‖Kn‖∞]hk.
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According to a similar analysis of (3.24) and (3.25), we have

(3.29) ‖(KM
n −Kn)u‖∞ = O(h3k) and ‖(Kn −K)u‖∞ = O(hd).

By Theorem 2.5, (3.27), (3.28) and (3.29), we obtain the error
estimate

‖u′
n − u‖∞ ≤ C

[
‖Kn(KM

n −Kn)u‖∞ + ‖Kn(KM
n −Kn)‖

×‖(KM
n −Kn)u‖∞ + ‖(Kn −K)u‖∞

]
≤ Chmin{4k,d}.

The proof is complete.

4. Numerical examples. In this section we present numerical
examples to illustrate the super-convergence estimates obtained in the
last section.

Consider the second kind Fredholm integral equation

u(s) −
∫ 1

0

K(s, t)u(t) dt = f(s), s ∈ [0, 1],

where K(s, t) = 1/2est. The exact solution is given by u(s) = e−s cos s.

Let Xn be the space of piecewise constant functions (k = 1) with
respect to the uniform partition

0 <
1
n

<
2
n

< · · · <
n − 1

n
< 1

with h = 1/n. We choose two-point Gaussian quadrature formula,
which is exact for all polynomial of degree ≤ 3, that is, d = 4.

For the discrete M -Galerkin method, the quadrature points can be
given by

ti =
{

(i − (1/
√

3))/2n if i is odd,
(i − 1 + (1/

√
3))/2n if i is even,

for i = 1, . . . , 2n, and the quadrature weights are given by wi = 1/(2n),
i = 1, . . . , 2n.
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For the discrete M -collocation method, the quadrature points can be
given by

tij =
{

(2i − 1 − (1/
√

3))/2n j = 1,
(2i − 1 + (1/

√
3))/2n j = 2,

and the quadrature weights are given by wij ≡ 1/(2n). Collocation
points are given by

sij =
2i − 1

2n
, j = 1, i = 1, 2, . . . , n.

In the following tables, we present the errors of the approximation
solution and the iterated approximation solution under the discrete M -
Galerkin method and the discrete M -collocation method, where we use
q and q′ to represent the corresponding orders of convergence of the
methods respectively.

TABLE 1. Discrete Galerkin methods.

n ‖u − un‖∞ ‖u − u′
n‖∞ q q′

4 6.305319E-04 3.679775E-05 2.9978150 3.9907278

8 7.893595E-05 2.314688E-06 3.0130615 3.9976755

16 9.778065E-06 1.449012E-07 3.0363477 3.9994184

32 1.191848E-06 9.059982E-09 3.0810786 3.9998546

64 1.408393E-07 5.663059E-10 3.1804736 3.9999565

TABLE 2. Discrete collocation methods.

n ‖u − un‖∞ ‖u − u′
n‖∞ q q′

4 5.618522E-04 5.054708E-05 3.0347879 3.9912413

8 6.855828E-05 3.178430E-06 3.0350225 3.9977897

16 8.364251E-06 1.989564E-07 3.0532831 3.999446

32 1.007621E-06 1.243955E-08 3.1024674 3.9998615

64 1.173171E-07 7.775468E-10 3.2236993 3.9999536

From the two tables above, we can see that the numerical results
agree with theoretical estimates given in the last section.
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