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SUPERCONVERGENCE OF PIECEWISE POLYNOMIAL
COLLOCATIONS FOR NONLINEAR WEAKLY
SINGULAR INTEGRAL EQUATIONS

ARVET PEDAS AND GENNADI VAINIKKO

ABSTRACT. The piecewise polynomial collocation method
is discussed to solve nonlinear weakly singular integral equa-
tions. Using special collocation points, error estimates at the
collocation points are derived showing a more rapid conver-
gence than the global uniform convergence in the interval of
integration available by piecewise polynomials. For instance,
using piecewise linear collocation, the convergence rate at col-
location points is O(h*) if the singularity of the kernel is suf-
ficiently mild (the global convergence rate is O(h2)).

1. Introduction. Numerical methods for linear Fredholm integral
equations of the second kind have been studied extensively during the
last 20 years. More recently, much of this analysis has been extended
to nonlinear integral equations, either to Hammerstein equations or
to general Urysohn equations. For a comprehensive description of the
literature see, for example, a survey paper by Atkinson [1].

Special attention has been paid to collocation methods for solving
Hammerstein equations. A new-type collocation method was presented
by Kumar and Sloan [8] and its superconvergence properties were
studied by Kumar [6]. The connection between Kumar and Sloan’s
method and the iterated spline collocation method was discussed by
Brunner [3]. Two discrete collocation methods were presented by
Kumar [7] and Atkinson and Flores [2]. A spline collocation method
and a product integration method for the weakly singular Hammerstein
equation were studied by Kaneko, Noren and Xu [4].

Numerical methods for multidimensional weakly singular integral
equations were studied by Vainikko [14]. Global convergence estimates
have been derived, whereas the superconvergence effect at collocation
points has been analyzed only for linear equations.
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380 A. PEDAS AND G. VAINIKKO

The purpose of the present paper is to study the convergence rate of
the piecewise polynomial collocation method at the collocation points
for nonlinear weakly singular Urysohn equations. The error analysis
is based upon the certain regularity properties of solutions of Urysohn
equations (Section 2) presented by Vainikko [14] and proved to a full
extent by Pedas and Vainikko [9]. After some preliminaries (Section
3) the main result of the paper is formulated in Section 4 (Theorem
2). Using special collocation points, error estimates at the collocation
points are derived that show a more rapid convergence than the global
uniform convergence in the interval of integration available by piecewise
polynomials. To avoid some inconvenience in the arguments caused by
a possible discontinuity of the approximate solution, we make use of
the framework of discrete convergence theory. Corresponding notions
and results are presented in Section 5. The proof of the main result
(Theorem 2) itself is presented in Section 6. In Section 7 we give two
numerical examples to illustrate the theoretical estimates.

2. Smoothness of the solution. Consider the integral equation

b
(1) u(z) = /0 K(z,y,u(y))dy + f(z), 0<az<b

The real-valued kernel K = K (x, y, u) is assumed to be m times, m > 1,
continuously differentiable with respect to z,y,u for z,y € (0,b),
z #y and u € (—o00,00). We assume that there exists a real number
v € (—o0,1) such that, for nonnegative integers i, j and k with
i+ j + k < m, the following inequalities hold:

o\ /o o\ /a\*
) \(a?) (3 *a) (3) K
1 ifr+1i<0,

<bi(lul){ 1+|loglz—y|| ifrv+i=0,
|z —y|™ if v+i>0,
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o\ /o o\ /o)
(3) ‘<6—$> (8_m+8_y> <%> K(z,y,u1)
aN/o oV o\
- (%) (3 55) () K
b max{|u1| luz|})[u1 — el
ifv+i<0,

1+|log|w—y|| ifv+:i=0,

lx—y| vt ifv+i>0.
The functions by : — [0,00) and by : [0,00) — [0, c0) are assumed
to be increasing.

We see that the kernel K may have a weak singularity on the diagonal
r=y,1=7=k=0,0<v < 1. In the case v < 0, the kernel K is
bounded but its derivatives may be singular.

We remark that the asymmetry of (2) and (3) with respect to « and y
is only apparent. Actually, using the equality 0/0y = (8/0z+ 0/0y) —
0/0z, we can deduce from (2) a similar estimate for

(2) (8 () e
()23 () e

1 ifv+1i<0,
< const by(Ju|) ¢ 1+ |log|z —y|| fv+:=0,
|z —y| vt ifv+i>0.
Introducing the weight functions,
1 if A <0,
" wa(z) = { (1+[logp(x)))~" if A=0,
p(z) ifA>0,

O0<x<b AeR,
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where
p(z) = min{z,b—z}, 0<z<b.

Define the space C™¥(0,b) as the collection of all m times continuously
differentiable functions u : (0,b) — R such that

m

(5) lullm = sup (Wi (@)|u (2)]) < co.

i=0 V<<

In other words, an m times continuously differentiable function v on
(0,b) belongs to C™¥(0,b) if the growth of its derivatives near the
boundary points 0 and b can be estimated as follows:

1 ifi<1—uv,

(6) |u(z)| < const { 1+ |logp(z)| ifi=1-v,

p(z)t—v—1 ifi>1-v,
O<x<b 0<i<m.

The space C"™¥(0,b), equipped with the norm (5), is complete (is a
Banach space).

Note that C™[0,b] € C™¥(0,b). On the other hand, a function
u € C™¥(0,b) can be extended up to a continuous function on [0, bl;
this extension we denote again by u and in the sequel we always assume
that this extension is done.

The following result, see [14, p. 37; 9], states the regularity properties
of solutions of equation (1).

Lemma 1. Let f € C™"(0,b), and let the kernel K satisfy conditions
(2) and (3). If integral equation (1) has a solution u € L*°(0,b), then
u e C™"(0,b).

We remark that similar results for linear weakly singular integral
equations of second kind are presented in [15, 17, 14]. The regularity
properties of a weakly singular Hammerstein equation are investigated
in [4]. The behavior of tangential and nontangential derivatives of
solutions of multidimensional weakly singular Urysohn equations is
discussed in [14, 10].
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3. Error estimates for the piecewise polynomial interpola-
tion. We introduce the following 2N + 1 grid points, N > N > 1, in
the interval [0, bl:

b7\
m]-:x;N):i(%), j=0,1,...,N,

N N )
xN+jExgv+)j:b—x5V2j, j=1,...,N.

(7)

Here r € R, r > 1, characterizes the degree of the nonuniformity of
the grid. If » = 1, then the grid points (7) are uniformly located; if
r > 1, then the grid points (7) are more densely located towards the
end points of the interval [0, b]. We see also that zo = 0, zxy = b/2 and
the grid points (7) are located symmetrically with respect to zny = b/2.
Note that another analogous partition considered in [5] is possible. We
refer also to Rice [11], who seems to have been the first to study graded
grids for approximation of functions with singularities.

In the standard interval [—1,1] we choose m interpolation points

517"' 7£m:
(8) 1< <<€ <1

By the transformation

(9)

we transfer the points &i,...,&, into the intervals [z;,z;41], j =
0,1,... ,2N — 1.

To a function u : [0,b] — R we assign a piecewise polynomial
interpolation Pyu : [0,b] — R as follows: on every interval [z}, zj41],
0 < j < 2N —1, Pyu is a polynomial of degree m — 1 and Pyu

interpolates u at points §;i1,...,&jm. Thus, Pyu is uniquely defined
in each interval [z;,z;1] independently and may be discontinuous at
points x =z, j = 1,...,2IN — 1. We may treat Pyu as a two-valued

function in these points; in the sequel, the uniform error estimates
concern both possible values of Pyu.

We denote by Ey the range of the interpolation projector Py, i.e.,
the set of all piecewise polynomial functions on [0,b] which are real
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polynomials of degree not exceeding m — 1 on every interval [z, z;t1],
0 <j <2N — 1. We introduce also the notation

h = b/N.

The approximation properties of Pyu on grid (7) are considered in [16,

17, 14] and elsewhere. These results can be summarized as follows,
cf., [14, p. 115].

Lemma 2. Assume that u € C™"(0,b). Then the following
estimates hold:

ifm <1—v, then

(10) Jnax, |u(z) — (Pyu)(z)| < const A™  forr > 1;
ifm=1-—v, then

(11) max |u(z) — (Pyu)(z)| < const

h™(|logh| +1) forr =1,
0<z<b

h™ forr >1;

if m>1—v, then

(12)
BT for 1 <r < m/(1—v)
0<e<b fu(z) = (Pyu)(z)] < const {hm forr>m/(1—v)

and, for 1 < p < oo,

llu — PNUHLP(o,b)

pr(1=v+(1/p)) for1<r<m/(1-v+(1/p)),
m>1—v+1/p,

h™(L+[log )% for r =m/(1—v+ (1/p)),
m>1—v+1/p,

h" forr>m/(1-v+(1/p)),
r > 1.

< const

We remark that an estimate maxo<z<p |u(z) — (Pyu)(z)| < const h™
is the best that holds for a smooth function u without singularities.
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For u € C™"(0,b), the influence of singularities of its derivatives can
be compensated for using larger values of r.

4. Main results. We look for an approximate solution uy € Ex
to integral equation (1). We require that uy(x) should satisfy the
equation (1) at the collocation points (9):

b
@ [ Kevuo)a-se] <o

t=1,...,m; j=0,1,... ,2N — 1.
The conditions (13) form a system of equations whose exact form is

determined by the choice of a basis in F. Some examples for such a
choice are given in Section 7.

We denote by en the maximal error of the approximate solution
uny € En at the collocation points (9):

(14) ev = max o fun(§i) - u(gi)l

j=0,1,...,2,N—1
Since w and Pyu coincide at the points (9), we have

(15) EN S H’U,N — PNUHL“’(O,b)-

The following theorem [14, p. 143] states the global convergence rate
for the collocation method (13).

Theorem 1. Let the following conditions be fulfilled:
1. The kernel K satisfies (2) and (3).
2. feC™¥(0,b).

3. The integral equation (1) has a solution uy € L*(0,b) and the
linearized integral equation

Ko(I ) aK(I Yy, u )/au]u uo(y)»
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has in L*°(0,b) only the trivial solution v = 0.
4. The collocation points (9) are used.

Then there exist Ng > 0 and §y > 0 such that, for N > Ny, the
collocation method (13) defines a unique approzimation uy € En to ug
satisfying ||lun — uo||L=(0,p) < do- The following error estimates hold:

(17)  sup Jun(z) — uo(z)|

0<z<b
r>m/(1—v) ifl—v<m,
< const A for ¢ r>1 ifl—v=m,
r>1 ifl —v>m,
and
(18)
r>m/(2(1-v)) ifv>0,
en <const A™ for < r>m/(2—v) if —=(m—2) <v <0,
r>1 fr<—(m-—2),v<0.
Now we assume that &1, ... ,&n, see (8), are the knots of a quadrature
formula
1 m
pf)dE~ ) wip(&),
) IRG > wip(e)

_1§£1<"'<£m§17

which is sharp for polynomials of degree m + p, 0 < p < m — 1. Using
transformation (9) we obtain the quadrature formula

Tjt1 Tig1— T LA
[ elayde m T S e,
Tj i=1

(20)
j=0,1,...,2N — 1,

which remains to be sharp for polynomials of degree m + pu, 0 < p <
m—1. Actually, the weights ; will not be used in our algorithms. The
existence of a quadrature formula (19) which is sharp for polynomials
of degree m + p is used in the convergence analysis (the proof of
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Theorem 2) in Section 6. The case p = m — 1 corresponds to the
Gauss quadrature formula and is of the greatest interest in the following
theorem which contains the main result of the paper.

Theorem 2. Assume that the following conditions are fulfilled:

1. The kernel K(z,y,u) and OK (z,y,u)/0u are m+p+1 (p € Z,0 <
p<m—1), m > 1, times continuously differentiable with respect to z,
y and u for z,y € (0,b), = # y, u € R, and satisfy (2) and (3) with
itjitk<m+p+l.

2. f € CmTHTLY((, b).

3. The integral equation (1) has a solution uy € L*°(0,b), and the

linearized equation (16) has in L*°(0,b) only the trivial solution v = 0.

4. The collocation points (9) are generated by the knots (8) of a
quadrature formula (19) which is sharp for polynomials of degree m+p,
0<pu<m-—1.

5. The scaling parameter r = r(m,v, ) > 1 satisfies the conditions
exposed in (17), but strengthened to the strict inequality r > m/(1 —v)
ifl —v < pu+1, and the following additional conditions:

(21) {rz(m+l—u)/(2—z/) ifl—v<p+1,
r>m+p+1)/2—-v) ifl—v>p+1.

Then

(22) en < const h™7,(h)

where h = b/N and

h if v <0,
(23) T,(h) = ¢ h(1+|logh|) ifv =0,
g if v > 0.

Now assume additionally that

6. v <0, 0 >1,and for 0 < j < min{pu—1,-v}, 0 < k <
min{y — 1, —v}, the derivatives

(24) <a%>j<%>k+lf((m,y,u)
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are bounded and continuous on (0,b) x (0,b) X (—p, p) with any p > 0,
including the diagonal x = y.

Then
(25) en < const k"o, ,,(h)

where h = b/N and

pi+1 ifl-v>p+l,
(26) opu(h) =< R+ |logh|) ifl—v=p+1,
i ifl—v<pu+1.

The proof of Theorem 2 is given in Section 6. Section 5 contains
necessary preliminaries for the proof.

Remark 1. (Comment to condition 6 of Theorem 2). For v < 0,
Assumption 1 of Theorem 2 guarantees the boundedness and continuity
of the derivatives (24) for j < min{p—1, —v}, j+k < m+p+1, on any
set (0,b) x (0, b) X (—p, p) from which the diagonal z = y is excluded; for
j=—-vwithv e Z, —v < p—1, alogarithmical singularity may occur.
Condition 6 bans this possible singularity and states the equality of
left- and righthand limits of the derivatives of K (z,y, u) at the diagonal
x = y. It is possible to weaken condition 6 so that the boundedness
and continuity of (24) on (0,b) x (0,b) x (—p,p) is assumed only for
j < min{g—1, —v} but then an additional multiplier 14| log h| appears
in the estimates (25) forv € Z,1 —v < p+1:

s if 1 — 1
ey < const ™S 1 v>ptl
Rt="(1+|logh|) ifl—-v<p+1.
Notice also that, for all v < 1 and p > 0, we have o, ,(h) < 7,(h)
whereby the equality holds in the cases v > 0 and p = 0.

Remark 2. An estimate supy_,. |un(z) — u(z)] = O(R™) is of
optimal order even for a function u € C*[0,b]. Theorem 1 shows
that, for the collocation method (13), the optimal accuracy O(h™) can
be achieved using sufficiently great values of . There are possibilities
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to reduce r restricting ourselves to uniform estimates at the collocation
points only, see (18). Furthermore, Theorem 2 states a convergence
rate ey = o(h™). In other words, the superconvergence phenomenon
at collocation points takes place.

Remark 3. Under conditions 1-5 of Theorem 2,

sup |in(z) —uo(x)| < const h"™7,(h)
o<z<b

where
i (z) = / K (2, y,un(y)) dy + f(z).

Under conditions 1-6 of Theorem 2,

sup |y (z) — uo(x)| < const h™a, ,(h).
0<z<b

Remark 4. For special Hammerstein equations with 0 < v < 1, the
estimate (22) coincides with the corresponding result from [5]. The
case v < 0 is not analyzed in [5].

5. Approximation of a nonlinear equation. In this section we
present some results from [12, 13] used in the proof of Theorem 2.
Let E and Ej, 0 < h < h, be Banach spaces (all real or all complex),
and let P = (pn)och<hs Pr : £ — Ep, be a family of linear bounded
operators (we write p, € L(E, E})) satisfying the condition

lpnulle, — ||lullz as h— 0, Yu€E.

A family (un)g<p<j of elements uy, € E}, is called discretely converging
to an element u € E (or P-converging) if

llup, — prul| — 0 as h — 0;
we write up— — u. A family (up)g.pop Of elements u, € Ej, is called

discretely compact if any sequence (uy,, ), formed by the elements of the
family with h,, — 0, contains a discretely convergent subsequence. A
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family (T7%)g<p<p of linear bounded operators T}, € L(E}, Ey) is called
discretely converging to T' € L(E, E) if the following implication holds:

(27) Ep,>up,— —u€ E = Thup— — T'u;
we write T,— — T. Finally, we say that the discrete convergence
Tp— — T is compact, or Tp,— — T compactly, if in addition to (27),

the following implication holds:

(28) lim sup ||up || g, < 00 = (Thup) is discretely compact.
h—0

Now we consider the equations

(29) u=Tu+f
and
(30) up = Thun + fn

where f € E, f, € B, and T : Q — E, Ty, : Qp, — Ej are nonlinear
operators defined on open sets Q C E and §2;, C Ep,, respectively. We
recall that T : 2 — E is called Frechet differentiable at u® € 2 if there
exists a linear operator 7"(u") € L(E, E) such that

17w = T = ' () (u = w)|| /||u = ]|z — 0

as |ju —u’||g — 0.

Lemma 3. Let the following conditions be fulfilled:

0

(i) Equation (29) has a solution v € Q, and the operator T is

Frechet differentiable at u®.

(ii) There is a positive 6 such that the operator Tj,, 0 < h < h, is
Frechet differentiable in the ball ||up, — ppu®||g, < § which is assumed
to be contained in Qyp, and for any € > 0 there is a d., 0 < §c < 4,
such that, for all h € (0,h), ||T} (un) — T} (pru®)||E, < € whenever
un — pru’||g, < 6.

(111) HThph’u,O —phTu0||Eh — 0 as h — 0.
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(iv) T} (pru®)— — T (u") compactly whereby T} (pru®) € L(En, Ep)
is compact and the homogeneous equation v = T"(u®)v has in E only
the trivial solution.

(V) |fn —prfllE, — 0 as h = 0.

Then there exist hg > 0 and dg, 0 < §g < §, such that, for 0 < h < hyg,
equation (30) has a unique solution ul) in the ball ||up — prul| < &.
Thereby ug— — u® and the error estimate

(31) cien < ||u?l —phuoHEh < csen, 0< h < ho,
holds where

en = |lpru’ — Thpru’ — ful e,
= |(phTu’ — Thpru®) + (pnf — fr)llEn

and ¢, and co are positive constants independent of h and f.

We refer to [12, 13] where this lemma is proved in a more general
setting.

6. Proof of Theorem 2. The proof of Theorem 2 is based on
Lemmas 1-3. Let conditions 1-5 of Theorem 2 be fulfilled. We denote
by BC(0,b) C L*>(0,b) the space of bounded continuous functions on
(0,b),

lullsoo) = sup [u(@)| = |lullLe(op)-
0<z<b

Let ug € L*(0,b) be a solution to equation (1). Due to Lemma 1,
ug € C™THHLY(0,b) C BC(0,b). We consider equation (1) as equation
(29) in the space E = BC(0,b),

(Tu)(z) = / K (2, y,u(y)) dy.

It is clear that the operator T : E — E is Frechet differentiable at
ug € F,

b
(T o)) = [ LD ) g,

0
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Further, the collocation conditions (13) can be represented as the
equation uy = PyTuy + Py f where Py is the interpolation projector
introduced in Section 2. Thus, (13) can be treated as equation (30)
whereby Ej, = Ex (the space of piecewise polynomials defined in
Section 2 and equipped with the supremum-norm), up = uy, pp, = Py,
Tn = PNT, fr, = Pnf, h=>b/N. It is easy to check, cf., [14, 17], that
the operators T : BC(0,b) — BC(0,b) and PyT : Ey — En satisfy
the conditions (ii)—(iv) of Lemma 3. The condition (v) of Lemma 3
is fulfilled too: ||Pyf — Py flley = 0 as N — co. Now estimate (31)
yields

lun — Pnugllzee(0,5) < c2l|[PNT Pyug — PnTuol| Lo (0,5)

< e3||TPrnuo — Tug|| o= (0,5)

or, using (3), see also (14) and (15),

en < c3 sup

[ ey, Py ) - K u00)] dy\
0<z<b 0

/b aK(I, Y, uO(y))
0 Ou

+ callug — PrugllFee o )

(32)
< c3 sup
0<z<b

(Pruo)(y) — uo(y)] dy‘

We shall use the notations
Ko(z,y,u) = 0K (z,y,u)/0u,
yj:($j+$j+1)/2, jZO,l,...,QN—l,
and denote by

.1 04
KOs(xayvuo(y)) = Zaa_yq

q=0

Ko(z,y,uo(y)) B _(y —y;)?

the Taylor expansion of Ky(z,y,uo(y)) with respect to y at the point
yj; the value s € Z will be chosen later. Fix z € (0,b). We get from

(2)

(33) / Ko (2, 3, u0(y))| dy < const 7, (h),
S(z,h)
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where 7,,(h) is defined in (23) and
S(:E,y) = (Oab)m{[oah] U [m—h,m—i—h] u [b_ hab]}

We have

(34) /zj+1 Ko(z,y,u0(y))[uo(y) — Pnuo)(y)] dy

Tj

= [ ol v 000) = Kaele v, wou))uoly) — (Puo) )] dy

J

where 0 < s < p and PI(\?) is an interpolation projector similar to
Py but corresponding to the space of piecewise polynomials of degree
m+u—q and m + g + 1 — g interpolation knots in [—1,1]-the
knots 1, .. ,&y of the quadrature formula (19) and additional knots
Em+1- - »Emtp+t1—q; the choice of the last ones in [—1,1] is arbitrary,
but we assume that they are somehow fixed. To establish (34), it
suffices to notice (see Assumption 4 of Theorem 2) that

With the help of (34) we have

b
(35) /0 Ko(z,y,u0(y))[uo(y) — (Pruo)(y)] dy = 7i(2) +72(x) +73(2)
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where
Tjt1
VI(I) = Z KO(Ia:%UO(y))
jilzj,xj41]NS(w,h)#D Zj
- [uo(y) — (Pyuo)(y)] dy,
Tj+1
n@= Y[ K un) - Koo, u()
jilzg,zi41]NS (z,y)=2 © ¥
- [uo(y) — (Pnvuo)(y)] dy,
Tj+1
Ja(z) = = / (e, w(0)
jilj 0 1] (2 h)=2 =0 T y=y;
(v = 97) uo(y) — (P uo) ()] dy.
Due to (33),
(36) 71(z)] < const 7, (h)|luo — Pnuol|Le(op), « € (0,0).

Let us consider y2(x). We have, for ¢ € N, cf. [9],

(37)
8(11(0(377 yauo(y)) 01 K,
== —
ayq ayq 0(377 yau)

u=uo(y)

q 91! 8
+ U T,Y,u
< ) o(y Y) gyi=T gg Ro(@¥ )u:u0<y)

() fior s et

! 2 8(172 82
+(uo(y)) aye 2 WKO(%%U)

q " 9973 6
(D)W g g Ko

" ! 8q73 62
+3ug (y)uo(y) 5yi—3 wKo (z,y,u)

u=up(y)

u=uo(y) }

u=uo(y)

u=uo(y)
9173 93
) s oo
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R (q> {ugq)(y)%Ko(x,y,U)

q

u=u0(y)

uﬂmw}

In order to estimate |Ko(z,y,uo(y)) — Kos(z,y,uo(y))| we must es-
timate (37) for ¢ = s+ 1. As a first step, we note that, for
any ug € C™THFTLY(( D), the singularities of the terms (ug(y))?,
(uhy ()T 2ull (y), - . ., uh(y)u™ (y) in (37) are weaker than the singu-
larity allowed for u'? (y) by the definition of the space C™*+#+1¥(0, b):

01
Tt (ug(y))q%KU(mayau)

1 if v <0,
[(ug(9))?] < const { (1+[logp(y))? if v =0,
p(y) 1 if v >0,
and, for g > 2,
|(ut (1)) 72 - ug ()]
1 if v < -1,
1+ [log p(y)| ifv=-1,
< const { p(y)~v~! if -1<v<0,
ply) ™ M1 +|logp(y)|)?? ifv =0,
ply)la— =)= if v >0,
and, for g > 3,
fup (w)ug’ " (v)
1 ifv<2—q,
1+ |log p(y)| ifv=2-g,
< const { p(y)>v—4 if2—g<v<O0,
ply)* 711+ log p(y)]) if v =0,
p(y)2—v)=a ifv >0,
and 1 ifv<1-g,

[uf? (y)| < const { 1+ [logp(y)| ifv=1-gq,
p(y)t=v=1 ifr>1-—gq.
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Therefore, it is sufficient to estimate only the terms

P Kownn)|] i) et 2 Koe, )
- HLolT,Y,u s Wo a .1 a Ho\bY, )
Oy1 w=uo(y) Oy1~+ Ou w=uo(y)
0172 9
"
uo(y)—f—Ko(m,y,u) PRI
ayq 2 Ou u=uo(y)

0
u((Jq) (y) %KO (I, Y, u)
u=uo(y)

in (37). Using (2) we obtain for y € [x;, x;41] with [z;,x;41]NS(z, k) =
@ the estimate

|K0(Ia Y, uO(y)) - KOs(xa Y, uO(y))‘
s+1
S chs+1 sup 6 KO(IayaUO(y))

2€(y,y;) 6ys+1 y=z
1 fr+s+1<0
<At sup 1+|log|lz —z|| fv+s+1=0
z€(Y,Y; .
() |t —2]7v"* 1 fr+s+1>0
1 ifr+s<0 1 ifr<0
+ ¢ 1+|loglz —z|| ifv+s=0 1+|logp(z)] ifv=0
|z —z|7Y"%f v+4+s>0 p(z)~" ifr>0
1 ifvr<0 1 ifr+s<0
+-- 4 < 14]loglz—=2|| fv=0 1+|logp(z)] ifv+s=0
|z — 2|7 ifv>0 p(z)7v—s ifv+s>0
1 fr+s+1<0

< "htt 1+|loglz —y|| ifv+s+1=0
|t —y|7v=*7! ifr4+s+1>0

1 ifr+s<0 1 ifvr>0
+ ¢ 1+|loglz—y|| fv+s=0 1+|logh| ifv=0
|z —y|7v—® ifr+s>0 h™v ifvr>0

1 ifr<o0 1 ifv+s<0

+oo+ { 1t|loglz —y|| fr=0 3 1+|logh| ifv+s=0
|z —y|™ ifvr>0 h—v—s ifr+s>0
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Therefore,

397

/ Ko(@, 9, uo(y)) — Kos(@, 3, uo(y))| dy
(0,6)\S(z,h)

1 if v+ s <0,
<"R¥TH S 14 |logh| ifv+s=0,
h=v—s ifr+s>0.

This enables us to estimate vo(x) as follows

(38) |y2(x)| < const ||lug

hs+1

- PNU0||L°°(0,b)
hlfu

Let us turn to v3(z).

h*+1(1+4|loghl)

ifr+s<0
ifv+s=0p, z€(0,b).

fvr+s>0

In a similar way as above we obtain for

y € [xj,xj41] with [z;,2;41] N S(x,y) = D the inequality

07Ko(z,y;,uo(y;))

(39) L
1 ifr+¢g<0
< const 1+|log|lz—y|| ifv+g¢g=0
|z —y|~v 9 ifr+¢>0

1 ifr4+¢-1<0 1 ifr<o0

+¢ 1+|loglz—y|| ifv+g—1=0 p{ 1+|logh| ifv=0

lw—y|==@D ity +g-1>0) Lpv if v >0

1 ifr<0 1 ifr+¢-—1<0

o4 { 14|loglz—y|| ifr=03{ 1+|logh| ifv+q—1=0

lz—y|™" ifr>0 hl=v—a ifr+qg-1>0

Using (39) we can estimate v3(z). Furthermore, now (32) and (35)—(39)
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yield
(40)
en < callug — Pnuol|7 e o)

+ ¢slluo — Pnuol| Lo 0,0 7w (R)

hstl ifr+s<0
+ colluo — Pnuol[Loeop) § Rt (1+|logh|) ifv+s=0
hl-v ifvr+s>0
+c7 th - sup / |uo(y) — P](\?)uo(y)|
= o<e<bJp)\S(.h)
1 ifr+¢g<0
1+[loglz—y|| ifv+q=0
|e—y|~v 1 ifr+g>0
1 ifr+qg—-1<0

+ q Ht|loglz—yl| ifr+g-1=0
le—y|7v==Y ifr4qg-1>0

1 ifvr<o0 1 ifr<o0
1+|logh| ifv=0p+--+ ¢ 1+[loglz—y| ifv=0
h™v ifv>0 lz—y|™" ifvr>0
1 ifr+q-1<0

1+|logh| fv4+g—1=0 dy.
ht—v—4 ifr+¢g—1>0
We put

s=pu ifl—v>up+1,
s=[1—-v] fl-v<p+l,

where [1 — v] is the integer part of 1 — v. Therefore, see (26),

hstt ifv+s<0
R*t1(1 4 |logh|) ifv+s=0 p <const g, ,(h).
A1V ifv+s>0

Due to (21) and (10)-(12) we have [[ug — Pnugl/z~(0,) < const A™,
and, since o, ,(h) < 7,(h), the first three terms on the right side of
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(40) fit into the error estimate (22). The integral terms in (40) can be
estimated on the basis of (12) adapted for P](\?):

lluo — Pj(\?)UOHLp(o,b) < const pTH/P)=Y)
m+pu+1l—gq

1+ (1/p) —v’
rl+1/p—v)<m+p+l—-¢q, 1<p<oo.

(41) forl<r<

A detailed argument can be found in [14, p. 130] where the following
estimate is proved for the main integral term in (40):

woswp [ Ju() - (PP )
0<z<bJ(0,6)\S(z,h)

1 ifr+¢<0
1+|loglz—y|| ifr+qg=0 dy.
|z —y|=v ¢ ifr+¢>0
< const R0, ,(h).
It is easy to establish the same estimate also for other integral terms

of (40). Since o, ,(h) < 7,(h), we have established the error estimate
(22).

Now we assume 1-6. To establish the error estimate (25) we only
have to prove that in this case

|71(z)| < const o, ,(h), =z € (0,b);

for other terms in (40) we already established estimates of order o, ,, (h)
(whereby we did it without Assumption 6). Let us divide 71 (x) into
three parts

m(z) = > /EHI Ko(z,y,u0(y))[uo(y) — Prnuo(y)] dy

jilej.zip1]NS(z,h) £ ¥ ¥

=61 (z) + d2(z) + 03(x), =z € (0,b),

where

Ok(z) = Z/

S [ Kol v uou) o) ~ (Pruo) )] du,

z € (0,b), k=1,2,3,
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Ji=A{j:[zj,zj] N[z —h,z+h] # 2},
Jo=A{j: [xj, 2] N[0, h] # 2,5 & J1},
J3={j: [zj,xjp1]N[b—h,b #@,j ¢ Ji}.
For 5 € J,UJ3 we apply the estimates derived on the basis of expansion

(34). For j € J; we apply a similar expansion of Ky(z,y,u(y)) with
Yy =x:

/”'”“1 Ko(z, y, uo(y))[uo(y) — Prnuo)(y)] dy
= /”-”J'*l[Ko(m, y,uo(y)) _ K(’)S(x,y,uo(y)]
[uo(y) — (Pyuo)(y)l dy

1 09
+ qg@ a (')—yq Ko(z,y,uo(y))

. / - ) luo) — (PPuo)(v)] dy

J

y=z

where s is sufficiently small, so that (07/0y?)Ko(z,y,uo(y)), ¢ < s,
remain continuous at z =y,

S

i) = 3 oy Kov )| w-or
We put
()s=p—-1ifl—v>p+1;
(i) s=v|-1lifl-v<pu+1,vel
(i) s=[v]ifl-v<pu+1l,v¢Z

Then, respectively, (i) v +s+1 < 0, (i) v +s+1 =0, (iii) 0 <
v+s+1<1,in all three cases s+ 1 < 1 — v, and we see from (6) that

|u(()i) ()] < const, i = 0,1,...,s+ 1. Now (37) and (2) together with
Assumption 6 yield

8 q
(42) <6_y> KO(Iaya’U'O(y))‘ S COIlSt,
z,y € (0,b), ¢=0,1,...,s;
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(%)S+1Ko(x,y,uo(y)>

(43) 1 cases (i) and (ii)
< const .
|z —y| v+ case (iii)

z,y € (0,b),z #y.

Using the integral form of the remainders

Ko(m, Y, ’I,L()(y)) - K(,)s (.Z', Y, UO(y))
-/ t(1-9) 9P Ko(,y, uo(y)

s! Ays+1 dé(y — $)S+17

y=z+{(y—x)

K()(w, Y, uo(y)) — Ko, (l’, Y, uo(y))
- [y w)

s! Oysti

dé-(y - yj)s+17
y=y;+§(y—v;)

estimates (41), (42), (43) and |lug — Pyuo||lr=(op) < const h™, it is
easy to check that

71(z)] < [61(2)] + [62(z)| + |d3(x)| < const 7y, (h), = € (0,b).
We refer to [14, p. 131] for details concerning the estimation of d;; for

02 and d3 the argument is similar.

The proof of Theorem 2 is completed.

7. Piecewise linear collocation. In the case m = 2 there are two
choices of the interpolation points (8) of an interest.

1) & = —1, & = 1. In this case the approximate solution uy € Ey
to equation (1) can be represented in the form of a continuous piecewise
linear function:

2N
un(z) = Zczw(fﬂ), 0<z<b,
=0

where ¢;(z), I = 0,1,...,2N, are basic linear splines corresponding
to grid points (7), ie., ¢;(r) is linear on every interval [z;,z;t1],
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j =0,1,...,2N — 1, gi(zx) = 0 for | # k and pp(zr) = 1,
k = 0,1,...,2N. Collocation method (13) leads to the nonlinear
system with respect to ¢, = un(zx), K =0,1,...,2N:

2N

k= /ObK<$k,y,ZCl<Pl(y)> dy + f(zk),

=0
k=0,1,...,2N

The error estimate (18) of Theorem 1 takes the form

r>1/(1-v) ifv>0,

44 < t h?  f
(44) N = cons o {er ifv <0,

where h = b/N and ey = maxo<k<an |ck — wo(zx)|. Theorem 2 cannot
be applied since there exists no quadrature formula [ il p(§)d¢ =~
w_1¢(—1) + w1p(1) which is sharp for polynomials of degree 2.

2) & = —1/V/3, & = 1//3 (& and &, are the knots of the Gaussian
quadrature formula fil 0(&)d¢ =~ p(&1) + ¢(&)). In this case the
approximate solution uy € En can be represented in the form

2

(45) un (@) =Y anpu(@), € [w, mi4al,
k=1

where @i (z) is on |27, 2;41] a linear polynomial satisfying ¢ (&) =
ki, i = 1,2, (Ok; is the Kronecker symbol). By knots &, = &, = 1//3
we find the collocation points (9) (m = 2) and the collocation conditions
(13) take the form of a nonlinear system to determine the coefficients
car =un(&k), k=1,2;1=0,...,2N —1. From Theorem 1 we obtain,
for the approximate solution (45), the estimate (44) where h = b/N
and

(46) N max o fun (&) = wo(n)l-

T k=1,2=01.... 2N

From Theorem 2, m = 2, u = 1, we obtain the following estimates for
the error (46) (see (22) and (25)):

h if v <0,
(47) en < const h?{ h(1 +|logh|) if v =0,
hl=v if v >0,
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or (in conditions 1-6 of Theorem 2)

h? ifv < -1,
(48) en < const h* ¢ h2(1+ |logh|) ifv=—1,
hi=v ifv> -1,
provided that
r>1 if v <=2,
49 r>4/(2-v) if —2<v< -1,
(49) r>B-v)/2-v) f-1<v<l-+v2,
r>2/(1-v) if1-v2<v<l.

Now we present two examples.

Example 1. Consider the integral equation

1
60 u@) = [ -yl @), <ol
0
where
512
_ 52 15/2 (1 . \B/2
fa) == 45045 (1-)
2 10 20
. [gms + 7(1 —z)z* + 3(1 —z)%2®
20 10 2
(1 - 3.2 (1 - 4 2 (1= 5 .
+11( z)%x +13( x)m+15( )

It is easy to check that ug(z) = 2°/2 is the exact solution to equation
(50) and Assumptions 1-3 and 6 of Theorem 2 are fulfilled with
v=-3/2,m=2,pu=1.

Example 2. Consider the integral equation

1
(51) u@w=A|x—m*”Mwww+fm» 0<a<l,
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where
1
f(z) = [z(1 — z)]Y? + %Wz +222(1 — z)Y/?
4 2
+oz(l— )32 4 2(1 — z)5/2
3 )
4 3 N2 200 32
x 2z(1 — z) (1—xz)°/".
3 3
It is easy to check that uo(z) = [z(1 — z)]'/? is the exact solution

to equation (51) and Assumptions 1-2 of Theorem 2 are fulfilled with
v=1/2,m=2u=1

The equations (50) and (51) were solved numerically by the collo-
cation method {(45),(13),m = 2}. In both of these two cases, the
Gaussian points &, = —¢&; = 1/4/3 were used for determining colloca-
tion points (9). In the first case we have chosen r = 12/10 (r > 8/7, see
(49)) and in the second case we have chosen r = 41/10 (r > 4, see (49)).
The coefficients c;x = un (&), k =1,2,1=0,1,... ,2N — 1, were cal-
culated from (13) (m = 2) by the Newton method. All the integrals,
which are needed for the construction of the system (13), were found
analytically. Some results of the numerical experiments are presented
in the following Table 1 where ey is defined in (46). The experiments
were carried out on the computer IBM 4381 (in double precision).

From Table 1 we can see that the numerical results are consistent with
the theoretical estimation which is ey = O(h?), see (48), for equation
(50) and ey = O(h®/?), see (47), for equation (51), h = 1/N.

TABLE 1.
N ey for (50), r=1.2 EN/2/24 ey for (51), r=4.1 EN/2/25/2
2 0.13E-3 0.69E-2
4 0.86E-5 0.79E-5 0.16E-2 0.12E-2
8 0.60E-6 0.54E-6 0.23E-3 0.28E-3
16 0.84E-7 0.37E-7 0.29E-4 0.40E-4
32 0.56E-7 0.52E-8 0.71E-5 0.51E-5

Notice that the number of collocation points (the number of un-
knowns) is 4N. It is surprising that a high accuracy at collocation



SUPERCONVERGENCE 405

points has been achieved already for relatively small V.

For greater r (r > 12/10 for equation (50) and r > 41/10 for equation
(51)) the computations gave the same convergence rates but somewhat
worse results. This can be probably explained by larger constants in
the error estimates for greater r.
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