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GALERKIN APPROXIMATION WITH QUADRATURE
FOR THE SCREEN PROBLEM IN R?

R.D. GRIGORIEFF AND L.H. SLOAN

ABSTRACT. We study a Galerkin method with quadra-
ture for the single-layer equation on a two-dimensional plate
I" which has the form of a union of rectangles. The trial space
consists of piecewise constant functions on a partition of I into
rectangles, which is assumed to be quasi-uniform. A semi-
discrete scheme is obtained by approximating the L?(T") inner
product in the definition of the Galerkin matrix elements by
composite quadrature rules. More precisely, the integral over
each rectangular element is replaced by a composite quadra-
ture rule, obtained by subdividing the rectangle into M? con-
gruent subrectangles of the same shape as the original, and
applying a scaled version of a basic quadrature rule to each
subrectangle. The basic quadrature rule is required to have
only interior nodes; in this way possible singularities which can
be present on the boundary of the rectangles of the partition
are not encountered. High precision of the quadrature rules
is not necessary. The stability of the semi-discrete scheme
is proved, under appropriate conditions, if the subdivision of
each rectangle of the partition is fine enough; more precisely,
if M > My, with Mg independent of the partition when the
basic quadrature rule is exact for polynomials of degree 1.
Error estimates are derived which show that the semi-discrete
Galerkin approximations will converge at the same rate as the
corresponding Galerkin approximations in some norms.

1. Introduction. This paper is concerned with a semi-discrete
Galerkin method for solving the single-layer equation

(1) Vu=f

for a plane plate. More specifically, the equation is

(2) Vu(z) = i/ _uly) dy, ze€T,

dm Jr |z -y ’

where I' € R? is a bounded region which is the union of a finite
number of rectangles, with all the rectangle edges either parallel or
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perpendicular to each other. The solution of (1) is closely related to
the so-called Dirichlet screen problem for the Laplacian in R3*\T' with
boundary data f on I' (see [8, 21]). The unknown function u has the
physical meaning of the charge density on the plate. It is well known
that V is a positive definite operator (see (4)), from which it follows
that the solution of (1) is unique.

Our method is a semi-discrete Galerkin method with an approximat-
ing subspace S; of piecewise constant functions on a quasi-uniform
partition of I' into rectangles, where the L%(T') inner products in the
Galerkin matrix are replaced by quadrature formulas. If we use a 1-
point quadrature formula on each rectangle, then our method is equiva-
lent to a collocation method, for which there is as yet no general stabil-
ity proof (but for the case of a uniform grid and bilinear trial elements
see [6]). Our aim is to show that nevertheless the method becomes
stable if the quadrature formula is sufficiently refined. (The colloca-
tion method is of historical interest: James Clerk Maxwell in 1879, see
[16], used an ad hoc improvement of the piecewise-constant collocation
method for the case f = 1 to estimate the electrical capacitance of a
conducting plate.!)

A corresponding problem in the 2-dimensional case with ' a closed
Lipschitz curve has recently been studied by Sloan and Atkinson [20]
(and extended to higher order piecewise polynomials by Ainsworth,
Grigorieff and Sloan [1]), who proved error estimates for the semi-
discrete solution up € Sy, of the form
(3) lu — wnllme(r) < C higascllull e ()
for s,t satisfying —1 <t <s,t <1/2,ifu € H*(T) with 0 < s < 1.
Here H'(I') denotes the usual Sobolev space on the curve I'. The
bounds (3) were derived by a perturbation argument from the existence
of stable Galerkin approximations uf € Sp. (For the stability of the
Galerkin approximation see Costabel [5]). The perturbation argument
is based on the assumption that the basic quadrature rule is exact
for constant functions and has a sufficiently small Peano constant.
The latter assumption is closely related to the rule having enough
quadrature points.

In higher dimensions the application of quadrature rules to functions
in the range V'(S}) is somewhat delicate. Whereas the quadrature error
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was analyzed in H'(I') for the case of I' a closed Lipschitz curve, this
approach is impossible in the higher dimensional setting, because of
the well known fact that in H'(R?) point evaluation is not a bounded
linear functional. The approach we follow in the present work is to
analyze the quadrature rule only in its application to the much more
limited set V'(Sp).

Functions in V(Sy), with S, consisting of piecewise-constant func-
tions, in general have singularities on boundaries of the rectangles in the
partition of I". Singularities in the integrand have been dealt with in the
literature in different ways. In the analogous lower-dimensional setting,
where I' is a smooth closed curve and S;, contains piecewise-constant
functions on a partition into intervals, Hsiao, Kopp and Wendland [13,
14] treat the principal convolutional part of the operator exactly, and
the quadrature is applied only to a smooth perturbation of the original
kernel obtained by subtracting the principal part. Penzel [17], who
studies a fully discrete approximation to the Galerkin method for the
3-dimensional screen problem for a square plate, performs first a co-
ordinate transformation to those integrals which contain a singularity
to obtain a smooth integrand before applying the (composite) Simp-
son rule. Wider in scope is the work of Hackbusch and Sauter [12]
and Sauter [18], who handle the singular and nearly singular integrals
in the Galerkin method by employing first four-dimensional rotations
onto the 4-simplex, and then generalized Duffy transformations to re-
move singularities and map to the 4-cube. In combination with the so-
called panel-clustering technique (see [11, 10]) efficient fully discrete
schemes are developed based on a computational work of O(N log® N)
operations for some « > 0 for a matrix-vector multiplication with the
discretized Galerkin matrix, where N denotes the number of trial func-
tions.

In the present work, in contrast, the focus is entirely on semi-discrete
methods, in which the “inner” integrals V' xj, for X;, € S}, are assumed to
be evaluated exactly, whereas we apply quadrature rules to approximate
the integral defining the L?(T") inner product. Apart from the simpler
structure of the resulting discretization, another advantage in avoiding
transformations as in [17] is that one can use explicit formulas for
calculating Vv for vy, € Sp. For the case of plane elements and
piecewise constants the evaluation of such elements is easy. For more
general plane elements analytical results of Maischak [15] are available.
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Problems with possible singularities lying on the boundary of the
rectangles are circumvented in the present paper by using quadrature
rules with interior quadrature points only. The rules can differ from
rectangle to rectangle. The “richness” of the quadrature rules which we
need as a stabilizing device as in [20, 1] is obtained by using composite
rules based on a further partition of the rectangles defining the global
partition of I' into M? congruent subrectangles.

The main results are given in Theorems 7.1 and 7.2. The results are
in two parts: first, it is shown that if M is large enough (where M is the
number of subdivisions on each element edge in forming the composite
rule) then the method is stable; and second, that if the method is stable,
then the error estimate

s—t

Ju— Uh”f{t(r) < Chipaxl| fllz=+1(r)

for -1 <t <s<0,s>—1/2, holds if f € H**}(I") and the partitions
are quasi-uniform (for the definition of the function spaces and norms
see Section 2). Compared with the result (3) for the planar case, the
range of admissible s,t is restricted, reflecting the lower regularity of
the solutions u of (1) compared with the case of a closed surface, and
also the non-well-posedness of applying quadrature formulas to H*(I')-
functions in the case of a two-dimensional surface piece I'. In the range
of admissible s,t there occurs no degradation of the convergence rate
compared with the Galerkin approximation.

Quadrature formulas satisfying the additional assumption of integrat-
ing polynomials of degree 1 exactly have, compared with the general
case, an improved stabilizing property. For these formulas we prove (see
Theorem 7.2) that a value of the multiplicity M? of the composite rule
guaranteeing stability of the semi-discrete scheme can be chosen inde-
pendently of the size of hyax. In contrast, in the general case covered
by Theorem 7.1 our estimates indicate that M might have to increase
proportionally to |log hmax|- Note that the requirement of integrating
polynomials of degree 1 exactly is easily satisfied: for example, it is
satisfied by the basic 1-point rule, if that single point is positioned at
the center of the rectangle. Equally, it is satisfied by any rule with
inversion symmetry in the center, if the weights sum to 1.

A deficiency in the stability analysis is that we do not know, in either
case, how large M needs to be in order to ensure stability. The reason
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is that the analysis contains constants of unknown size. In particular,
it is for this reason that we do not know whether or not the simple
mid-point collocation rule (corresponding to M = 1) is stable in all
cases. What we do know is that if M is large enough then the method
is stable; and if the underlying quadrature rule integrates polynomials
of degree 1 exactly, then M can be chosen independently of h.

The scope of the present work is restricted to a piecewise constant
approximating space on a rectangular mesh. In future work we hope
to introduce greater flexibility by extending the method to the case of
a triangular mesh.

The Galerkin method is described in Section 2 and our semi-discrete
scheme is defined in Section 3. In Section 4 a general formula for the
quadrature error is derived which is applied in Section 5 to functions
in the range of V' when acting on the trial space S;,. The error between
the semi-discrete scheme and the Galerkin method is then estimated in
Section 6. This is the basic tool used to derive the results in Section 7.

2. The Galerkin scheme. For convenience let us first recall the
definition of the spaces H*(I') and H*(T') for s € R (see [17,19]). The
Hilbert space H*®(R?) is the completion of C§°(R?) with respect to the
inner product

(ra)s= [ F© a0 +1eP)" de.

where “” indicates the Fourier transform, i.e.

f@:Af%m@m ¢ e R

Then H*(T) is defined as the closure of the subspace C5°(T') in H*(R?).
The dual space to H*(T") is denoted by H*(T"), where the norms are
defined in the usual way by duality:

(,9)ol

Ifllzr=ery = sup =2, f e CF(T),
0#£g€Ce (T) HQHHs(F)

(functions in L?(T') are extended by zero outside of I and can then be
considered as elements in L?(R?)). For |s| < 1/2 one has H*(T) =
H*(T") algebraically and topologically.
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It is known (see [9]) that the Fourier transform of the regular dis-
tribution S := 1/|z| is given by S = 27/|¢|. Thus the operator V is
a pseudo-differential operator of order —1, and hence maps H-1/2 (1)
into H/2(T") continuously. It is also known that V' is positive definite
in H='/2(T") (see [8]), in fact, the coercivity inequality

1 =
(4) (VU,U) > @HUH?}—UZ(FV veEH 1/2(F)7

holds. Here (f,g) := (1/(47%))(f, g)o is the usual L*(I') inner product
for f,g € L?>(T"). In the present case of a plate, the forementioned
properties can be readily established by Fourier transformation. For
example, equation (4) can be seen to hold as follows. If ¢ € C§°(I)
then Vo = (1/(47))S * ¢, where S % ¢ denotes the convolution of S
with . Hence, (4) can be directly obtained by Fourier transformation:

1 1
(Vo.s) = gz |, il de

1 1
> AR T
> 5 /L. e lel %

It follows that
V:H YY) — HY*(D)

is bijective and has a continuous inverse. More generally, it is known
(see [19, Theorem 4.1]) that

(5) V:HT) — H(), -1<s5<0,

is continuous and bijective and has a continuous inverse.

We now describe the underlying Galerkin method for solving (1). Let

(6) r=Jr:

be a finite partition of I' into pairwise disjoint rectangles I'y. Each 'y,
can be written in the form

(7) Trh={z==",2®): 2=z, +hpoy,y 0,1},
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where zj, is the bottom left corner of I'y, hy = (h,(cl), h,(f)) is the side
length vector of 'y, in the (1) and z(?) directions, respectively, and the
product hy oy denotes the componentwise product (h;cl)y(l), h,(cz)y@)).

As trial space S;, we choose the space of piecewise constant functions
on the partition (6). The spaces S), are subspaces of H*(T") for s < 1/2.
Let f € H'/2(T) be given. The Galerkin approximation u§ € Sy, is then
defined as the solution of

(8) (Vu$,x) = (f,X) VX € Sh.

It follows from (4) that there exists a unique solution u§’ of (8) and the
quasi-optimal error estimate

©) Ju = g2/ < C imf flu= vl ey

holds. For example, if the solution of (1) satisfies u € H*(T') for
some s € (—1/2,1] then it follows from (9) with the aid of the known
approximation power of Sj that

(10) lu = u | 120y < C il oy

The corresponding estimate for the case s = —1/2 and u € H'/2(I")

is obtained from (9) by taking v, = 0 there. More generally, a duality
argument based on (5) (see [7]) delivers the estimate

(11) = | ey < C hinaiellul| 2=y

for -1 <t<s<1,s>-1/2,t<1/2,if w e H*(T) and the partition
is quasi-uniform. One can take s = —1/2 in (11) if H*(T") is replaced
by H*(T). (For —1 < t < —1/2 < s < 1 the assumption of quasi-
uniformity is not needed.) According to (5) we can in general expect,
even for smooth data f, only u € H 5(T) with s < 0, and consequently
the error estimate

(12) | — USHHt(F) < C hipaxl | s +1 (),

when f € H*t'(T) (and hence u € H*(T)) is obtained only for the
range of indices -1 <t <s <0, s> —1/2.
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We rewrite the Galerkin equations (8) as a projection method
(13) PyVui] = Puf,

where P, is the orthogonal projection in L?(T") on Sj. By representing
uf in the form

(14) uff =Y cf xi,
l

where X; denotes the characteristic function of I';, equation (13) can
be equivalently written as the linear system

(15) > AGef = fi VE,
1
with
(16) AG = (VX Xa), fr = (f,Xe) Yk,

3. The semi-discrete scheme. Our semi-discrete scheme is
obtained from (15) by approximating the matrix elements A$ by
quadrature formulas. Let Q be a finite set of basic quadrature formulas
with interior points. By this we mean that each g € @) is a quadrature
formula of the form

J
(17) af = > wif(&) ~ /[ /() da,

71]2

where &; € (0,1)? are the quadrature points and w; € R the corre-
sponding weights. The number J € N of quadrature points, and also
the weights and quadrature points, may vary for different ¢ € Q. We
always assume that constants are integrated exactly, i.e.,
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A simple example is where @) consists of just one rule, e.g., the midpoint
rule

(19) af = f(1/2,1/2),

or any other product Gauss rule. Consider now a rectangle I'(z, h)
with bottom left corner z and side length vector h = (h(Y), h(?)). For
q € Q of the form (17) we then obtain by translation and scaling the
quadrature rule

J
20 aren () = DEDI Y wiiG+ho&) ~ [ fa)ds

j=1 F(z7h)

where |T'(z, h)| := h(VA3),

We are now prepared to define our approximation Ay to AY. It
is based on approximating the inner product integral in (16) by a
composite quadrature rule. Let M2 € N denote the multiplicity of
the composite rule. More precisely, each T'y is subdivided into M?>
congruent rectangles 'y,,, m = 1,..., M?, with side length vector

1
21 — hg.
(21) a7
Then, for any k& <[ choose a rule ¢ € @ and define

M2

(22) Ay = Z qr,... (VXi).

m=1

For k > [ the matrix elements are defined by symmetry (in this
way computational work is saved, and at the same time the desirable
property of a symmetric coefficient matrix is kept also in the semi-
discrete case). Thus for k > [ we define

M2
Ag = A = ar,,.(VXk).

m=1

The coefficients ¢; of the semi-discrete approximate solution

(23) up = ZC[XI
l
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are then given as the solution (if it exists and is unique) of the linear
system

(24) Y Auc=fi Yk
!
which is an approximation of (15). These equations can also be
equivalently written in an operator form corresponding to (13),
(25) Vhup = tha

where V}, : S, — S}, is defined by
1
(26) Vp = ZCle — Vhop = Z m <2Akl Cl>Xk-
1 k l

The aim of the following sections is to prove, under suitable condi-
tions, the existence of a unique solution wup of (25) and related error
estimates. As a preparation we begin with some nonstandard error
estimates for quadrature rules.

4. A quadrature error estimate. In this section I'(z,h) de-
notes the rectangle with bottom left corner z and side length vector
(R, h2). For example, if e := (1,1) then I'(0,e) is the unit square.

By I'(z, h) we denote the interior of I'(z, h).

Lemma 4.1. Let q € Q, and let qr(, ) denote the corresponding

quadrature rule (20). Then, for f € LY(T'(z,h)) N C’l(f‘(z, h)) the
following error estimate holds:

(27) \ [ e acens
T'(z,h)

J 1

1

<Ml [ e [ e Dse+ho s dsin
j=1 0 §.7'17— ng,-r

where T'¢, - :=T((1 —7)&;,7e) and

(28) \ho Df|y == hW|of /02| + h?|0f /022
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Remark. For 7 € (0,1) the square I'¢, - is contained within the unit
square, and contains §;. Since its edge length is 7, the square I'¢, ,
vanishes as 7 — 0, and fills the unit square as 7 — 1.

Proof. Let E(f) denote the quadrature error. After transforming the
integral to the unit square through the substitution x = z + h o t, and
taking condition (18) into account, we obtain

jile/ <f(Z+h°t)f(z+ho§j)>dt‘.

(29) |E(f)| < [T(z,h)|

(0,1)2

The mean-value theorem in two variables with integral remainder term
gives, for t € (0,1)?,

|f(z+hot)= f(z+hog)
1
= ‘/ Df(Z+ThOt+(1—T)h0§j)d7'[ho(t—§j)]‘
0
1
§/ |hoDf(z+Thot+ (1 —7)ho&;)|idr,
0
and the estimate (27) follows easily from (29) by replacing ¢ by the new

variable s = 7t + (1 — 7)¢;, which implies dt = 77 ?ds = |T¢, " ds.
o

Corollary 4.2. For f € C1(T'(z,h))

(30
J
[ i@ e arenf < TEDILY [l sw DF@
T'(z,h) j=1 z€l'(z,h)

where ||y == ™M) + h?) and |Df|o = max(|0f/0zV)],|0f /0x?))).
Proof. The bound (30) follows immediately from (27). O

Lemma 4.3. Let ¢ € Q and let gr(.n) be the corresponding
quadrature rule (20). Assume that q integrates polynomials of degree 1
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ezactly. Then, for f € C*(I'(z,h)),

(31) \ / ERCLET

J
1
< 4IPG BB Y | sup

zel'(z,

D% f ()] oo,
h)

Jj=1

where ' '
|D?f|so := max{|0?f /02D 029 | 4, = 1,2}.

Proof. We start from the bound (29) and use the Taylor expansion
of the integrand with respect to the center of (0,1)2 up to second order
terms. Since the first order terms are integrated exactly, we obtain (31)
by suitably bounding the error term in the Taylor expansion. ]

5. Error in approximating the Galerkin matrix elements.
Our main aim in this section is to bound the error in approximating
the matrix elements A§) from (16) by Ay;. We first want to estimate

(32) Ekl = / VXl dx — qr,. (VX[)
T

in the case where I'; is in an arbitrary position with respect to I'y. (Note
that Ey; is for k <[ the error AkGl — Ay, for the case in which m = 1.)
We will impose a bound p for the nonuniformity of the partition, i.e.,

hmax
33 <
( ) hmin — p)

where

homax 1= max{h\’, i =1,2, Yk},  huin :=min{h\", i =1,2, Vk}.

A sequence of partitions (6) is said to be quasi-uniform if (33) holds
with some fixed p for all partitions in the sequence.

Lemma 5.1. The following estimate holds for all k,1:

(34) |Ert| < C1|Tk||hkl1,
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J .
(35) = gzwﬂ[,mm min (g;ﬂ,l,g;i))}

Proof. We want to apply the error estimate (27) to the integral in
(32), and hence need the first order derivatives of

dy
(36) f(z) :=4nVxi(z) = -
Assume first ¢ T;. Then
of _ / 0 ( 1 > ay
oz r, 0z \ |z — y|
0 1
[ ()
2@ 4 p(® )
B « [|x - a:l(l)el — yPey
_ 1 duy®
@ — (@} + hi)er — yes| ’
where e; := (1,0), ex := (0,1). The last expression is valid also for

x € I'y, as can be seen by calculating the derivative via the limit of the
finite difference quotient. (After an appropriate shift of the integration
variable y!) in one of the resulting terms, the difference reduces to an
easily estimated integral over narrow strips at the left and right ends
of T;.) A similar formula holds for 9f/dz(

We are now going to apply (27) to the integral of f over Iy, with f
given by (36). It is sufficient to consider the case z; = 0. Assume for
the moment that

(37) 2V +n" <o,

so that I'; lies to the left of I'y. For any 7 € (0,1), and any j with
1 < j < J such that §; € (0 ,2]2 let

i of
T; = h,(c)/n (ax(i))(hkos)

ds, i=1,2,
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where for brevity we write I', for L¢, . Note that hpy o'y CT'g. In
estimating 77 one has to deal, for example, with the integral

iy
s
r 2 lhios—aMey — y@ey|

T l
This can be viewed as (up to scaling) the potential of a straight
uniformly charged line segment with endpoints x; and x; + hl(2)62 in the
Newtonian potential field of a uniformly charged plate hy o I'; C T'.
It follows from classical potential theory that the potential will be
increased by moving the wire closer to hy o I'; (specifically we imagine
moving it to the line () = 0 and then adjusting its vertical position
so that it finishes in a symmetric position with respect to hyoI';). The
potential will be further increased if one takes the length of the line
segment to be phg), which cannot be surpassed as a consequence of
(33). A similar argument applies to the other term in 8f/8z("). Thus

we have proved

1
neon [ ([t w)a
r, 1 |hgos—oesl

I:= [P 7@ — 1op{) pB72) L Lpp(]

where

and Tq(,i) denotes the midp'oint of the interval Ig), with Ig) being the
projection of I'; on the z(¥-axis.

Since &; € (0,1/2]2, the same bound trivially holds also in the case
that I'; lies to the right of T'y, i.e.,

(38) 2 > .

For s fixed it is easy to see that

©)
l Phk /2 1
i T
1 |k 05 — oes —phM) /2 |h,(€)s(1)el — oeg|

and the last integral is independent of s(2). Consequently, after per-
forming the trivial integration with respect to s we find

phid /2 1
T < 2|hk|1 T/ / ) ds(l) do
—ph{M 210 by sMey — oes

dvdy

R, V24 p?’

:2|hk|17'
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where R, := {(v,p) : v € ™, |u] < p/2}. In the Appendix we show
that the last integral is bounded by 2p7/ §J(-1). Thus

-1

P o 2| e (0) (i)
T1§4|hk|1£(—1)7' < 4plhi|r7 ilgg(é} ; 1=¢7)

J

With similar reasoning the same bound as for 77 holds for T5. If (37)
or (38) does not hold but k # [ then one has to interchange the role of
the variables z(!) and z(® in the argument given above to see that T},
1 = 1, 2, satisfies the same bound. The bound holds also for the three
other possible locations in (0,1)? of the quadrature point ¢;. Now (27)
gives, with T := T} + T5,

Bl < =0 S ) [ Sy
LS [ L
RIS kj=1 j 07_27'

<2, |hk|2|wj[mm<a< 1]

j=1
so that (34) is proved for k # [. Finally, the bound (34) can be seen to

hold also for k = I, with no essential change in the argument. O

We now give an alternative error bound to (34) for the case that I,
and T'; have a positive distance. Then VX; € C?(T), and we can apply
(30) or (31), respectively, to obtain the following estimates.

Lemma 5.2. Assume T, NI, = @. Then

dy

(39) |Ekl| < 02 |Fk| |hk‘1 max y|2,

Z‘EFk IV |"'E7

where

1 J
(40) Cy:= 4—2ij\.
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Lemma 5.3. Assume Iy NI, = @ and that the quadrature rules
q € Q integrate polynomials of degree 1 exactly. Then

d
(41) |Bul < Ca |Tu| |3 max | ———.
€l IV |‘/'E - y|

6. A bound for P,V — V. We are now in the position to prove
an estimate for the error in approximating the Galerkin operator P,V
by the semi-discrete operator V.

Lemma 6.1. For vy, € S},

1
(42) [(PnV = Vi)vnllo Smgme\Asz — Agal[|vnlfo-
l

Proof. For

Uh:ZCle €Sy
l

we obtain with (26) and the explicit representation of the orthogonal
projection P
1
BV =V = 3 [ 3246 - wja]
!

k

We derive, with the aid of (Xg,X;)o = 472 (Xk, X;) = 472 |Tx| bk, and
the Cauchy-Schwarz inequality,

1 2
1PV — ViJuall? < 4WZZM(Z|A,3 ~ Aul148 —Akl|1/2cl|)
k l

1
<4r®y o S IAG = Al Y 1AG — A lev|?
k l

l/
1
< 472 — A — A
<Adr <m]?,x T, El | Ay kl|>

1
> W|AkGl — Agl||Tuler?
kg 1

2
1
< — AS — A 2
. <mgx o 2145 m) o,
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where in the last step we use the symmetry of A% and A. O

Theorem 6.2. Assume that the sequence of partitions (6) is quasi-
uniform, and that M?-fold composite quadrature rules of the form (22)
are used. Then

4 PV — < 1
(1) 1PV =iyl < 022 (1

+1>||Uh||0, vp € Sh.

Proof. We recall the subdivision of I'y into the union of congruent

rectangles 'y, m = 1,... , M?2. Correspondingly, we can write
M2

(44) Xk =Y Xkm,
m=1

where X, denotes the characteristic function of I'g,,. We then derive
from (42) and the definitions of AS and Ay, the estimate

(45)  [I(PnV = Vi )onllo

M2
1
< max — VXin dx — qr,,,, (VXin
Smax T2l 2 (‘ | in 8 = @ (Vin)

I m,n=1

+ VXtmdz — qr,, (VXkm) > v lo-

Lin

We now want to apply the error estimates (34) and (39). The partition

(46) I'= U Lrm

is also quasi-uniform with the same nonuniformity bound p as in (33).
We introduce the notion that I';, is close to 'y, if

hmin
4 ist (I'y,,, T .
(47) dist (T, T ) < Wi

We fix k and m and then split

(48) PIDIIED DEED P
I n=1
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where E' contains exactly those terms for which Iy, is close to I'gp,.
It can be seen from condition (47) that the close rectangles Iy, form
on each side of I'g,, a single layer of not more than p + 2 rectangles,
and therefore altogether (including the central rectangle) there are not
more than 4p + 9 close rectangles. Then it follows from (34), where we
take 'y, and Iy, in place of 'y, and I'; respectively, that

|hk|1

i
(49) Z VXln dr — QT rem (VXln) (4p + 9) |ka‘

Lim

For bounding the second sum in (48), i.e., the sum over the terms for
which TI'y,, is not close to 'k, we use (39), and derive

"
(50) 3 \ Vi d — v, (VXin)

ka
h d
| k|1|ka\Z max/ %
r

€k In |I - y|2 )

For further discussion of the last integral we assume without loss of
generality that [y, is centered at the origin. With this choice we
claim that

(51) 4)0‘3/ - I‘ > |y‘) T e ka, y e Fln,

when T, is not close to I'yp. In fact, |z| < hmayx/(V2M) < hax/M
for € 'y, and, consequently, if |y| > 2hmax/M then |y| > 2|z| and
hence 2|y — z| > |y|. Otherwise, taking into account that (47) does not
hold,
hmln hmax . 2hmax

> M if [y < ——.

v ==l =500 Z 300 2 1 M
Now it follows with the aid of (51) that

" d d

Z max/ y2§16p2/—y2
€l km J Ty |.’L' - | Ry ‘y|
(52) y
< 3271p%In ( p diam F),

where

hmln
Ry, = {y i <yl < dlamr}
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We use (52) in (50) and then combine with (49) to obtain an estimate
for the corresponding sum (48). After summing with respect to m we
arrive at

5>

I mmn=1

/ VXin dz — qr,,, (VXin)
ka

hmax hmax

+1).

The remaining part of (45) is bounded in a similar way. We split the
sum as in (48). Corresponding to (49) we obtain for k£ and m fixed

’ / h
Z ‘/ VXkm dx — QF,"(Vka)‘ < 012 < !l |Fln|>
l—‘ln

< Up+9)C 2,

(54)

where in the last inequality we used |[';,| < p?|[gm| for all l and n. In a
similar way to (50) and (52) we obtain, again under the assumption that
Tk is centered at the origin, and taking (51) with z and y interchanged
into account in the second inequality (but noting that z and y have now
exchanged meanings),

(55) Z"‘

Vka dr — qr,, (Vka)‘

|ht]1 / dy )
<C Iy, -2
<G ( T max | 8

thax 6P
S C |ka|2 <F1n| max |$|2 >

zelin
n
max ‘ka|z / a
r, WP

max + 1> .
In the third inequality we used

MS1+|y | 1+\/_ max_
|| |z M |z|

< 1+2\/§p7 xayerlna

Lin

S C ]n\;x ka|< In
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where the last step comes from |z| > hmin/2M, because © & Tgp.
Altogether, after summing (54) and (55) with respect to m, the estimate

(56) > >

I mn=1

Vka dx — qry, (Vka)
Lin

h
< C|T%|

max hmax
U ( In 7 + 1>
is established, which together with (53) proves the assertion. O

Theorem 6.3. In addition to the assumptions of Theorem 6.2 let
the quadrature rules q € Q be exact for polynomials of degree 1. Then

h

(57) H(PhV — Vh)vh||0 < c JH\;X ||Uh||0, Vp € Sh.

Proof. The only change compared to the proof of Theorem 6.2 is to
use the estimate (41) in place of (39). The logarithmic factor does not
occur in the analogue of (52). o

Remark 6.4. A close inspection of the proof shows that Theorems
6.2 and 6.3 already hold under the assumption that the sequence of
partitions is merely locally quasi-uniform, i.e., that there exists p > 0
such that

W <p ij=12, #TuNTi#0.

7. The main result. Our results on the existence of a solution
up, € Sp, of the semi-discrete method (25) and corresponding error
bounds are based on the estimates proved in Section 6 and the quasi-
optimality of the Galerkin method.

Theorem 7.1. Consider a quasi-uniform sequence of partitions of
the form (6). Then there exists a constant k > 0 with the following
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property. If the multiplicity M? of the composite quadrature rules is
large enough to satisfy

1 hmax
(58) i ( In =2

)

then for each f € L*(T) there exists a unique solution up € Sy of (25).
If-1<t<s<0,s8>-1/2, and f € H*TY(T) in (1), then u € H*(T)
and

max max

(59)  llu— unllgery < Chiaillul gery < Chaaillf L+ r)-
Ifu e H(I) = L*(T") and —1 < t < 0, then

(60) llw = unll ge(ry < Chuaxllullo.

max

A stronger result holds if the quadrature rules are exact for polyno-
mials of degree 1.

Theorem 7.2. Consider a quasi-uniform sequence of partitions of
the form (6). Assume that the quadrature rules ¢ € @ are exact for
polynomials of degree 1. Then there exists an integer My > 0, with M
independent of huax, such that for all M > My and for each f € L*(T)
there exists a unique solution up € Sy of (25), which satisfies the same
error bounds as in Theorem 7.1.

The proof of Theorems 7.1 and 7.2 will be given after some prepara-
tory lemmas.

Lemma 7.3. Assume the sequence of partitions to be quasi-uniform.

Let —1/2 < s < 0. If the solution u of (1) lies in H*(T), then the

Galerkin approrimation uf can be bounded by

(61) 1ui || zo ry < Cllull e ry-
If we additionally assume —1/2 < s <0 and f € H*TY(T) in (1), then

(62) i 1 ey < CS s (oy-
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Proof. Choose an optimal simultaneous approximation v, € S} (see
[3, 4]) such that

lu— vnll g-1r2my < Chiatllull gy

lonll =y < Cllull g«(ry-

Then, with the aid of the inverse inequality (see [2]),

max

63)  onllieqy < Chizillonll ey, on € Shy —1<t<s <0,

and the quasi-optimality of u§ in H~1/2(T'), it follows that, for —1/2 <
s <0,
[ | gy < 1wl = vall gory + 1vall gory
< ChpsiP|lufl - vnll g-vrr2qry + lonll ge(r)
< Cllull ge(r)-
For —1/2 < s < 0 we can use (5) to obtain

(64) [0l 7ory < ClIVOll ey, v € H(D).

Hence, with Vu = f, (62) is an immediate consequence of (61). o

The next two lemmas establish a useful stability property in the finite
dimensional space Sp, first for the Galerkin operator P,V', and then for
the corresponding operator V}, in our semi-discrete method.

Lemma 7.4. Assume the sequence of partitions to be quasi-uniform.
For —1/2 < s < 0 the following estimate holds:

(65) vl g1y < Chpax | PnVvrllo,  vn € Sh.
()

Proof. Let v, € Sp, be given. Then, for all f € H*T(T'), since V
and P, are symmetric in L?(I'), with the aid of (13) and the inverse
inequality we obtain

|(on, £)] = [(PaVon, uf))|
< C|PaVonllo hinaxluf | oy
< Chiax [1PAVonllol| fl =41 ().
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where (62) has been used. This proves (65). o

Lemma 7.5. Let the assumptions of Theorems 7.1 and 7.2 hold with
k small enough or My large enough. Then, for —1/2 < s <0

(66) [onllg-s-1(r) < ChipaxVavnllo,  vn € Sh.

ax|

Proof. With the aid of (43) and (57), respectively, we obtain from
(65)

vl g-s=1(r) < Chiax(I[(PaV = Va)vnllo + [[Vavallo)
< Chiax (Chllvnllo + | Vivallo),
S C(h;elGCthhHﬁ*S*l(F) + h;axHthhHO)?

where

M M

hmax hmax
(67) Ch = ( In i

hmax
+ 1> or Cj:= ——

respectively, and we have again invoked the inverse inequality. Under
the assumptions of Theorems 7.1 and 7.2 we see that C;, < Khpax Or
Ch < hmax/My, respectively. Since x can be chosen small enough or
M chosen large enough, the result follows. ]

Proof of Theorem 7.1. Since V}, is a map in the finite dimensional
space Sh, the existence and uniqueness of uy for s sufficiently small
both follow from (66). Restrict ¢ to lie in —1 < ¢ < —1/2. We then
apply (66), where we take s = —t — 1 and vj, = up, —u$, to obtain with
the aid of (25), (13), Theorem 6.2 and the inverse inequality (63)

lun — g || ey < Chaex Vi (un —uf)lo
= ChZ!ZH(PV — Vi)ud
(68) ma): ||( Gh h)uh ||0
S Cnhr;axuuh ||0
< Orhtllui | oy

max
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if —1/2 < s < 0. The estimate (68) also holds for —1/2 <t < s, since
we can take the result for t = —1/2, which we have already proved, and
then apply the inverse inequality. The assertions now follow from (68)
by taking (62) or (61) into account together with the known accuracy
(11) of u§. o

The proof of Theorem 7.2 is similar, but uses Theorem 6.3.
APPENDIX

Here we obtain an upper bound on a two-dimensional integral arising
in Section 5. In less specific notation the integral may be written as

dx dy

where R is the rectangle

R={(z,y):c<z<d, |y <p/2}, and ¢ > 0.
Letting m and a be defined by

m:= (c+d)/2, a:= p(rm)~1,
we introduce elliptical coordinates r, ¢,
T = TCos P, y = arsin ¢, r>0, —wm<o¢<m,

and define an elliptical strip

S :={(rcos¢, arsing) : ¢ <r <d, || < w/2}.

The elliptical strip and rectangle have the same area, since

\S|:/dx dy:/ardrdgb
s s

d
= aﬂ'/ rdr = amm(d —c¢) = |R)|.
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It is clear that
(372 + y2)1/2 > min(l,a_l)(a2m2 + y2)1/2’
so that

dz dy < max(1,a) de dy

/332 + y R a2x2 + y2
dx dy dx dy
= max(1, a)
RnS v/ a?z? + y? R\S v a2z? + ¢

Now with the aid of (a?z? + y?)'/? = ar we have

inf (a?z% + y*)'/? = ad = sup(a®az?® + y*)'/?,
R\S S\R

thus with |S| = |R| it follows that

_dzdy ax(1, ( _dzdy dz dy )
<max(1,a & G
Rz +y RnS v/ a?x? + y? S\R y/a’x? + y?
dx dy
= max 1 a

/a2x2+y
— max(1,a) / ar dr dé
S

ar
= rmax(1,a)(d — c),

which is the desired result.

In the application in Section 5 we have
c=(1- 7)5](-1) and d=(1- T)£](-1) +,

so that
d—c=r, m:(l—T)§](1)+T/2,

from which it follows (on recalling §](-1) € (0,1/2)) that §J(-1) <m <1/2,
and hence, since p > 1,

>

BN
l\DI»—t

o P
m
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Thus

———— <21 =" < .
R, \/V? + p? m §](~1)

dv du 2pT < 2pT
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ENDNOTES

1. “I am not aware of any method by which the capacity of a square can be found
exactly. I have therefore endeavored to find an approximate value by dividing the
square into 36 equal squares and calculating the charge of each so as to make the

potential at the middle of the square equal to unity.”
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