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ON THE INTEGRAL EQUATION
f(@)—(¢/L(z)) [F) f(y) dy=g(x) WHERE L(z) =min{az, 1}, a> 1.

JYRKI PIILA AND JUHANI PITKARANTA

ABSTRACT. In the present paper we consider a function
f which is a solution of the integral equation

c L(z)
f(z) - () /0 f(y)dy = g(=).

Here g is a given, smooth function defined on the interval
[0,1], ¢ € (0,1) is a constant, and L is a continuous piecewise
linear function through the points (0,0), (a~1, 1), (1,1), where
also a > 1 is a constant. We mainly focus our attention on the
regularity properties of f. Away from the origin the regularity
is analyzed by applying the Banach fixed point theorem, while
near the origin we get a singular expansion for f by using the
Mellin transform techniques.

1. Introduction. The aim of the present work is to study the
integral equation

C

L(z)
L) @)= / f(w) dy = g(z) € C[0, 1],

where

ifo<z<al
(1.1b) L(w):{aac f0<zx<a ",

1 ifael<a<l,
and a and c are constants such that
a>1, 0<ec<l.

The work is motivated by certain problems of linear elasticity theory.
As observed recently, an integral equation very similar to (1.1) arises
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in the asymptotic membrane theory of hyperbolic shells [2]. Here
the integral equation is the key to the regularity properties of the
asymptotic displacement field at the corners of the shell. In [2], the
main part of the regularity analysis was carried out, but the more
detailed behavior of the solution in the vicinity of certain types of
corners of the domain was left as an open problem. There one needs to
study a two-by-two system of integral equations resembling the scalar
equation (1.1). We present here, in a simplified context, an analysis
technique based on the Mellin transform. This technique applies to the
original problem in [2] as well, as will be demonstrated in a forthcoming
paper [3].

We note that, for ¢ € (0,1), the operator (l.la) is a C]0,1]-
contraction, so the solvability in C]0, 1] is obvious. However, when
the derivatives of f are considered, two kinds of irregularities are ob-
served even if g is smooth: 1) f*) is discontinuous at points zj=a"7,
j=1,...,k, and 2) at the origin f contains algebraic irregularities of
the form z%, where o may be real or complex. The aim is to verify
these properties and show in detail how the derivatives of f behave.
For previous, somewhat related work, cf. [1] and the references therein.

The plan of the paper is as follows. In Section 2 we resolve the
behavior of f and its derivatives away from the origin, using basically
only the contraction mapping theorem. In Section 3 and in the related
Appendix, we derive a full singular resolution of f at the origin. Here
we use the Mellin transform techniques. It turns out that the leading
irregularity is of the form z®, where « is the only positive root of
ca® = a+ 1. In Section 4 we present some numerical results for the
case g(z) =z, a =10, c=1/4.

2. Some immediate regularity results. The aim of this section is
to give some basic continuity results and growth estimates for f and its
derivatives. As usual, C[0, 1] denotes the Banach space of continuous
functions on [0,1], supplied with the maximum norm. By C™(I),
I c (0,1), we mean the vector space of functions with n continuous
derivatives on I. As a natural “solution space” for Equation (1.1), we
may take

W ={feC[o,1]| feC"(0,a"],
fecC a1 a*, k=0,...,n},
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where n € {0,1,2,...} := N is at our disposal. We supply W with
the weighted norm

llny = max sup o @)
=U;...sn z€(0,1)\{a~*|k=1...n}

where v > 0 is a real parameter, and denote the resulting Banach space
by W7, We shall choose v € [0, ), where o = a(a,c) is the unique
(see the Appendix) positive root of the equation

(2.1) ca® =a+1.

In the above notation, we have the following

Theorem 2.1. (i) Given g € C[0,1], Equation (1.1) admits a unique
solution f € C[0,1].

(ii) Ifge W2, then f e W, ne N.
(ili) If g € W7, where 0 < v < a, then f € W27, and there is a
finite constant C' = C(a,c,7,n) such that

£ llwp < Cllgllwp-

Proof. Set

¢ L(z)
(22) (0@ = 5157 [ vi@an

so that (1.1) may be rewritten as f(z) — Ko(f)(z) = g(z). Since the
norm of Ky in C[0,1] equals ¢ < 1, (i) follows from the contraction
mapping theorem. Assertion (ii) then follows easily as well, starting
from

1
at<z<1l = f(z)=g(x)+ c/o f(y) dy = g(x) + const.,

and then applying the recursive differentiation (see (1.1))
o= (@)P() = (29) (@) + e (),
k=1,2,3,....

r<a

(2.3)
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Finally, to prove (iii), we note first that the norm of K, in C'[0, 1] equals
(take f =1 in (2.2))

ca”

1+

Hence, K, is a contraction in C[0,1] when 0 < v < «. But this is
equivalent to stating that Kj is a contraction in W27, so (iii) follows
from the contraction mapping theorem when n = 0. For n > 1, (iii)
then follows using again (2.3) recursively. O

1 [ =

3. Singular expansion of f at the origin. So far we have shown
that if g € W and if g®) = O(z7 %) as # — 0 for k < n, where
0 < 4 < a, then the solution f to (1.1) has similar behavior. By
expanding both g and f at the origin, we could further show that the
bounds ¢ (z) = O(1 +z7=%), k = 0,... ,n, would also imply similar
bounds for f)(x) when 0 < v < a. This stronger result follows as a
byproduct of the analysis of this section. Our aim here is to present
a detailed singular resolution of f at the origin when g is sufficiently
smooth. More specifically, we assume that g € CVN11[0,1], where N is
an arbitrary integer such that N > a. (We could assume more generally
that g € CNVF0,1] + WNFLNFL))

The core of the analysis in this section is based on the Mellin
transform

(3.1) M(f)(z) = / T (2 de = £(2).

To begin with, let us list some well-known (cf. [4]) properties of this
transform.

Lemma 3.1. (i) M : L?>7"1/2(0,00) — L?*{z € C : Rez = 7}
isometrically, where L?7(0,00), v € R, is the weighted L?-space
supplied with the norm f v+ ||z7 f|]12(0,00)-

ii) Let f € Lt _(R.y), and let the numbers 1 and o be given by
loc + Y Y

y1 =sup{By | f(z) = O(z™P) as  — 0+},
vo = sup{Ba | f(z) = O(z?2) as © — oc}.

If v2 > 71, then the Mellin transform integral (3.1) converges uniformly
for v1 < Rez < 72 and defines an analytic function there.
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(iii) For any compact subinterval I of (y1,72), the function

K(f,1,y) = sup |f(z + iy)|
zel

s continuous with respect to y and satisfies

lim K(f,I,y)=0.

y—Foo

(iv) For vy <« < 7y the inversion formula

fz) = - /R e =M (D@

- 2m

1is valid.

Since g € CN*+1(0,1], we have the Taylor expansion

N
3.2 g(@) =) guz* + 0= t) as z—0+.
(3.2) (@) =)
k=0
Set
(@ +1)ga
_ T e ey
(ot )@ @
k
3.3 z) = k#a (k + l)gkx .
(3.3) fo(@) +ZkSN—k+1—cak ifae{l,...,N},
k
Zszo % otherwise.
—ca
Then by (1.1) and (2.1),
N
(3.4) fo(z) — Ko(fo)(z) =Y _gra® for z<a™l.
k=0
Next, set

(3.5) fi=f—fo— <(a +1) /Ol(f — fo)(®) dt> z®.
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Then, since
(3.6) z* — Ko(t*)(z) =0 for z<a*
by (2.1), it follows from (3.2)—(3.6) that

(3.7) fi(z) — Ko(fi)(z) == g1(z) = O™ ) as = — 0+,
' g1€C0,1], g1 eCN0,aY], g eCNTHa Tl 1]
Moreover, by (3.5),
1
3.8 dz = 0.
(3.8) /0 fi(z) dz

In applying the Mellin transforms below, we assume all the functions
to be extended by zero outside the interval [0,1]. Note that equation
(3.7) then remains valid for x > 1 as well, because of (3.8). Also
note that by (3.7) and by Lemma 3.1, the Mellin transform §; of gy
is analytic when Rez > —N — 1. Finally, note that by (3.7) and by
Theorem 2.1, fi(z) = O(z?) for any 0 < v < a as z — 0+, so by
Lemma 3.1, fl is analytic when Rez > —a, and hence the inversion
formula

(3.9) fil@) = —— /R Rt

211

is valid for any v > —a.

Apply now the Mellin transform to (3.7) to obtain

where we also used (3.8). By the Fubini theorem, this can be rewritten

as

~ ca % ~

fi(z) + P 11(2) = 91(2),
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or equivalently,

oy (=Dafq(z) - G G(2)
(3:10) hiz) = (z—1Da*+c ~ (z2—1)a*+c  h(z)’

Since G is analytic when Re z > —N —1, all the poles of fl in this region
are roots of h(z) = 0. These are analyzed in the Appendix, where it
is shown that in addition to the simple pole at z = —a, there is a
numerable set of poles zx, k = 1,2,3,..., such that —a; = Rez; < —«
for all k and o — oo as k — oo (see Lemma Al). Let v € (—«,0)
be arbitrary. Then by Lemma Al, there are no zeros of h(z) with
Re z =+, so by (3.9) and (3.10),

(3.11) fi(z) = L /R ) xzigi dz.

T 2mi

The asymptotic expansion for f; near the origin will be derived by
pushing the integration line to the left. Let I' = I'yI'sI'sI"y be the
closed curve where

Ty ={z=v+in:|n <R},
Ty={z=€+iR: a-p<E<n),
3 ={z=-a-p+in:|n| <R},
Fy={:=(—-iR:a—p< &<},

where further p € (—a+ N +1/2,—a+ N +1) is such that o +p # oy
forany k =1,2,3,..., and R is such that (see Lemma Al, (iv)) the set

{{+in: &€ [-a—p,]|nl > R}

contains no zeros of h(z). Then by the residue theorem,

1 —zg(z) - ag(_a) —2p g(Z )
(3.12) %/Fw n2) dz == (o) + 2Re a<a;a+pac Tz:)

Further, by (3.10) and Lemma 3.1 (iii),

. 1 _,G(?) .
1 lim — AT —2.4
(3.13) roveo 2mi Jo. T h(z) 0, =24
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FIGURE 1. f (at left) and R (at right) for a = 10, c = 1/4, g(z) = =.
and by Lemma 3.1 (i),

(3.14) R(z):= — lim ! -:9(2) dz € L»~7P71/2(0, 0).

Collecting the results of (3.11) through (3.14), we see that

= z° g(_a) e T g(Zk) T
(3.15) fulz)= W (—a) R a<a;a+p h(zk) R,

Re L»~*7P71/2(0,00).
As to the behavior of the residual term R, we note that for large p the

inclusion R € L%»~2~P~1/2(0, 00) means rapid decrease near the origin
(see also Figure 1). To study the derivatives of R, we derive a recursive
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differentiation formula from (3.7). Note that since both «* and z~
in (3.15) are solutions to the homogeneous equation f — Ko(f) = 0 for
z < a™', it follows from (3.7) and (3.15) that

(@R)"™ (2) = (291)"™ (2) + ca™ ROV (az),

m=12,...,z<a” ",
or
RO () — @9 (@) + ca™ R (az) — mR™ D a)
(3.16) - ’
r<al.
N+1—-m

Since (zg1)™(z)/z ~ = near the origin and since R €
L» 2~ P~1/2(0, 00), it follows recursively from (3.16) that

(3.17) R™ g [Bmamp=1/2mg =™y 1 =0,1,2,... .

Recalling that « + p+1/2 > N + 1, (3.17) together with the Sobolev
imbedding theorem implies that

(3.18) ReC™0,a™™'], R™((0)=0, 0<n<N.

The results of this section are finally collected in

Theorem 3.1. Near the origin f has an expansion
(3.19)
f(z) = Agz® + Z [Ag cos(Bx In(z)) 4+ By sin(Bg In(z) )]z
a<ap<atp
+ fo(z) + R(x),

where a and z, = —ay + 1Bk, k = 1,2,... are defined by Lemma Al,
fo by (3.2) and (3.3),

_ 1
Ao == @) [ 7= fo)de
_ G(zk)
Ak = 2Re h’(zk)’
B G(zk) _
Bk_zlmh,(zk), k=1,2,...,
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where G and h are defined by (3.10), p € (—a+ N +1/2,—a+ N +1)
is such that o + p # ay for any k = 1,2,..., where further N > « is
an arbitrary integer, and finally the residual term is characterized by
(3.17) and (3.18).

Remark 3.1. Above the coefficients as well as the exponents can be
calculated by numerical methods. This is done in Section 4, where we
also show that in general Ay # 0.

4. A special case. In this final section we focus our attention on
the special case where in (1.1)

c=1/4, a=10 and g(z)==x.

We are mainly interested to study the nature of the residual term R in
(3.19). We have now fy(xz) = —4z, and thus by (3.5) and (3.7),

(4.1) 91(55)—{5x+p/4_(F+2)(a+l)w“ if z > 1/10.

Here the parameter «, i.e., the solution to (2.1), has the numerical
value
a = 0.87507973046664 . . . ,

whereas F' := fol f(z) dz is unknown as yet. Some of the other roots of
(z — 1)a® + ¢ = 0 are listed below. There each §, is found by solving
numerically (Al) (see Appendix), and then «ay from (A2).

TABLE 1.

2, = —ay + Pk
—1.1854527 + 13.1473487
—1.4110356 + 25.9730768
—1.5616821 + 28.7446860
—1.6741196 4 ¢11.497958
—1.7636787 + 114.242715

O W N =

30 | —2.5190466 + 182.526262
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By (4.1) and (3.10), we conclude that

1-10"*"1 1-10"*
g(z)z(zl)lOZ{S 0 pt= 10

z+1 4z

1-107*¢«
—(F+2 1)———
(F+ 2@+ )T ],

and accordingly, the coefficients in the expansion (3.19) are known in
terms of F'. To compute F' approximately, we set

fn = ZK(];:(Q),
k=0

so that, by the Banach fixed point theorem,

Cn

(4.2) f = fallze@1) < e c|\f1 — follz=(o,1) =614

By a straightforward computation,

1
/ fs(z) dz = 0.657686,
0

where all the decimals are correct, and thus, by (4.2),
F =0.657686 £ 0.000003.
With this knowledge, we have
Ay = 4.843107

(where again all the decimals are correct), and some other coeflicients
of (3.19) are listed below:

TABLE 2.

Ay + 1By
0.04680 — ¢0.16191
0.01125 — ¢0.07806
0.00456 — ¢0.05193
0.00232 —¢0.03904
0.00134 —¢0.03132

T = W N =

30 | 0.00000 — ¢0.00534
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Using all the values of k from 1 to 30 in our expansion (3.21), it
follows from Theorem 3.1, that

ReC"0,10™7Y,  R™@©)=0, n=0,1,2.

In Figure 1 we have sketched the solution f as well as the remainder
R in (3.19) in three different scales. From the global scale we see the
expected jump in the derivative of f (and R) at x = 1/10, whereas the
smaller scales reveal the algebraic singularity at £ = 0 quite clearly.

APPENDIX

The roots of (z — 1)a® + ¢ = 0. The aim is to find the zeros of
h(z) = (z — 1)a® + ¢. The result is the following.

Lemma Al. Assume that 0 < c¢ <1 and a > 1. Then
(i) the roots of (z — 1)a* +c=0 are

-a <0, pe(0,1), 2p = —ay + 1B,
Zr = —ag — 1P, k=1,2,3,...,

where —a and p are the two real roots of (x — 1)a® + ¢ = 0, By is the
unique root of

(A1)
r(y) := ycos(yIn(a)) + {log,(cy " sin(yIn(a))) — 1} sin(yIn(a)) = 0

on the interval (2kw/In(a), (2k 4+ 1/2)7/In(a)), k =1,2,3,..., and

(A2) ar = —log, (B, sin(Bk In(a))).

(il) ar > a for any k=1,2,3,..., and o, — 00 as k — oo.
(iii) All the roots have multiplicity 1.

)
(iv) For any y1, v2 € R, there exists M = M (y1,72) > 0 such that
the set

{z+iy:m <z <,y > M}

contains no roots.
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Proof. Writing h(z) = (x — 1)a® + ¢, z € R, we have
K(z) >0 <= x> (In(a)—1)/In(a), and
(A3) K(z) <0 <= z<(In(a)—1)/In(a).

Hence, h has at most two real zeros. On the other hand,

11111 h(z) =¢ >0, h(0) =-1<0, h(1l) =¢ >0,

so h has exactly two real zeros, —a < 0 and p € (0,1).
Next, writing z = z + 4y, h(z) = 0 is equivalent to
{ a*((xz — 1) cos(yIn(a)) — ysin(yIn(a))) = —c
a*((z — 1)sin(yIn(a)) + y cos(yIn(a))) = 0,
which is further equivalent to
le—1)=— In
(44) { Z””;m: cs)in(y IIi(C;)S)(.y )
by the lower equation (A4) we have

(A5) z = log,(cy ™" sin(yIn(a))),
so (A2) holds. When (A5) is substituted to the upper equation in (A4),
we obtain Equation (Al) for y.

The solutions to (A4) occur in pairs (z,y), (z, —y), S0 we may assume

that y > 0. From the lower equation (A4) we conclude that for some
keN,

y € (2kn/In(a), (2k + 1)7/In(a)).
Note also that in (A5), the right side is necessarily less than 1, so
r(y) < 0in (Al) if y € [(2k + 1/2)7/In(a), (2k + 1)7/In(a)). Hence,
we are looking for the roots of (y) = 0 on the intervals

y € (2km/In(a), (2k + 1/2)7/In(a)), k=0,1,2,....

Let us show that there is a unique zero of r on each interval except the
first one (k = 0). To this end, note that
lim r(y) = 2kn/1n(a), k=0,1,2,...,
y—(2kn/In(a))+ (y) / ( )
In(a)
lim r(y) =lo —— ] - 1<0,
y—((2k+1/2)7/ In(a))— ) 8a ((2k + l/2)71'>
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Hence, it suffices to show that r’ is negative on the intervals considered.
But since

we are done provided ry is negative for any y € (2km, (2k + 1/2)7),
k=0,1,2,.... Assume first that k > 1. Thenify € (2kn, (2k+1/2)m),
we find that

o (S0 y (Bl0)) <Dl

<In <2i> <In(e™?) = -2,

me

and, accordingly, r1(y) < 0. Finally, if £ = 0 and y € (0,7/2), we have

In <w> <In (Ch;ﬁ> <In(c/e) < -1,

ay
so that
r1(y) < cos(y) — (y +y~ ") sin(y)
_ ycos(y) — (y* +1)sin(y)
Y
_ r2(y)
Y
Clearly,
r2(0) = 0, ro(m/2) <0,
and

ry(y) = —y®cos(y) — 3ysin(y) <0

for any y € (0,7/2), so r; < 0 also in this case. We have thus found
all the zeros of h(z) as asserted in (i).

(ii) If (z,y) solves (A4), where

(A6) y € (2km/In(a), (2k + 1)7/In(a)), k>1,
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then by the first equation in (A4), a®(z — 1) € (—¢,0). This rules out
the possibility that z € [—a, p], so it remains to show that z < p. To
this end, note by (A5) and (A6), that

cln(a) c
< — .
(A7) z < log, ( Cy ) <5 forany a>1

Then if a < 27,

cln(a) c cln(a) c
— =1 1 — ) =

so x < p by (A7). On the other hand, if a > €27, then by (A3) and
(A7),

p>

In(a) -1 _ 2r—1
1 > > x.

n(a) ~ 2w

Thus, we have shown that if (z,y) solves (A4), then z < —a provided
y # 0. Hence, ap > o, k = 1,2,.... Since By > 2kn/In(a) — oo as
k — oo, it follows from (A2) that oy, — 00 as k — co.

(iii) We have h/(z) =0 only at z = (In(a) — 1)/ In(a), where h is not
zero. Hence all the zeros of h are simple.

(iv) The assertion follows immediately from the lower equation in
(A4). O
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