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COUPLED VOLTERRA EQUATIONS
WITH BLOW-UP SOLUTIONS

W.E. OLMSTEAD, CATHERINE A. ROBERTS AND KENG DENG

ABSTRACT. A pair of coupled nonlinear Volterra equa-
tions are examined for possible blow-up solutions. The system
is motivated by certain models of explosion phenomena in a
diffusive medium. Criteria for a blow-up to occur as well as
bounds on the time of its occurrence are derived for a gen-
eral class of nonlinearities. Specific results are obtained for
two special cases involving power law and exponential non-
linearities. Also, the asymptotic growth rate near blow-up is
determined for these two special cases when the kernel behaves
like that of the one-dimension heat equation.

1. Introduction. We examine a pair of coupled nonlinear Volterra
equations, which are motivated by certain models of a diffusive medium
that can experience explosive behavior. The particular models of
interest are described by the vector integral equation,

(1) u(t):Tu(t)E/O k(t — s)Flu(s) + h(s)]ds,  £>0,

where the components of the solution u = [u1,us] and the given data
h = [hy, ho] are real functions. The nonlinear operator T = [T, 15|
is defined by the real components of the function F' = [F}, F;] and
the real scalar kernel k(¢ — s). The kernel is taken to be continuously
differentiable and have the properties

(2) k(t—s) >0, E'(t—s) <0, t>s>0,

which are characteristic of problems involving diffusion.

The arguments of the component functions Fj, j = 1, 2, are restricted
so that

(3) Fl :Fl[UQ+h2], FZZFQ[Ul—Fhl].
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Furthermore, each component is taken to be twice continuously differ-
entiable with the properties that

(4) Fj(v) >0, Fi(v) >0, Fi'(v) >0, v>0, j=1,2,

which are typical of problems modelling explosions.

The given functions hj(t), j = 1,2, typically are determined by the
initial data of an explosion problem. We will assume that

(5) 0<aj <hj(t)<b; < oo, h;(t) > 0, t>0, j=1,2.

Our goal is to explore general conditions for blow-up solutions of
(1) and to derive explicit criteria for the special cases of power law
and exponential nonlinearities. We will also establish the asymptotic
growth near blow-up for each of these special cases when the kernel
is that associated with the one-dimensional diffusion equation. The
techniques of our analysis will be analogous to those employed in [9]
and [10] for a scalar equation like (1).

The connection of (1) with certain systems of nonlinear initial-
boundary value problems for parabolic partial differential equations
should be noted. The first example of such related problems is

O<z<L, t>0

ow; ow;
- f— —_— = >
(7) p. (0,t) =0, p (L,t) =0, t>0,
(8) wj(z,0) = w)(z), 0<z<L, j=1,2

Here the delta function acts to localize the nonlinear effect at a specified
position z =1, 0 < [ < L. This type of problem can serve as a model for
combustion phenomena in which ignition leading to thermal run-away
is confined to a very thin zone (e.g., [1]). A single component version
of (6)—(8) has recently been investigated in [8]. Considerable attention
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has been given to the single component version of (6)—(8) without the
localizing effect of the delta function; see [7] for a review of that field.

The conversion of (6)—(8) to a vector integral equation in the form of
(1) is accomplished by utilizing the Green’s function G(z, t|, s) derived
from the linear heat operator with Neumann boundary conditions. It
takes the form in spectral and image representations, respectively, as

1,2
G’(m,t|§,s):H(t—s){Z+EZcosnTﬂfcos?
n=1

9

®) _ _H(t-5s) - {exp[_(x—f—QnL)2]
2(t — s)t/2 —_ At —s)

o (z+&—2nL)?
*ep[ it —s) ]}

It follows that

(10) w;(z,t) = A G(z,t| &, 8)0(€ — 1) Fj[ws—;(&,s)] d€ ds
+ hj(z,t), j=1,2,

where

(11) et = [ Gt €.0jw(e) de.

Then set © = [ in (10) and use the sifting property of the delta function
to obtain

t
w®) = [ G119 (5)+ha i(s)]ds.
(12) 0
t>0, j=1,2,
where, in this example,

(13) ui(t) = w;(l,t) — h;(t), hj(t) = hy(1,1).
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Clearly (12) is an example of (1) in component form, where the kernel
G(l,t | 1, s) is of difference type and satisfies the properties of (2). It is
assumed that the properties of the initial data w? (z), 7 =1,2 are such
that (5) is satisfied.

Another example of a parabolic system that can be reduced to (1) is
given by

(14) o_0 i(z,t) =0 O0O<z<L, t>0
ot 922 )T v ’ ’
aw]' - 6wj - ] ]
(15) 8—3}(0’1;) 0, W(L,t) = FJ [’LU3_J (L,t)],
t>0,
(16) wj(z,0) =w(z), 0<z<L, j=1,2

Single component versions of (14)—(16) have been considered in [3] and
[6], while the system form has been examined in [4] and [5].

The conversion of (14)—(16) to (1) utilizes the same Green’s function
(9) to obtain

w; (1) = /0 Gla,t | L, s)Fylws_ (L, )] ds + by (, 1),

J=12,

(17)

where h; is again given by (11). Evaluation of (17) at = = L yields

wy(t) = /0 G(L,t | L, ) Fjlus—;(s) + ha_j(s)] ds,

t>0, j=12,

(18)

where, in this example,
(19) uj(t) = wi(Lyt) = hj(t),  hj(t) = hy(L,1).

Here (18) is another example of (1) in component form, where the kernel
G(L,t | L, s) is again of difference type and satisfies the properties of

(2)-
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2. Properties and existence of the solution. Here we will
examine some basic properties of the solution to (1) and establish both
the existence and uniqueness of a bounded solution for 0 < ¢ < ¢*. This
will provide a lower bound ¢* on any blow-up that might occur. The
general approach is similar to that used in [9] for a scalar equation.

The nonnegative property of the solution to (1) is established through
examination of its components. By noting that u;(0) = 0 and h;(0) >
0, it follows that w;(t) + h;(t) > 0, j = 1,2, at least on some common
small interval 0 < t < {. Then the properties of the nonlinearity and
the kernel insure that w;(¢t) > 0 for 0 < ¢ < t. This argument can be
extended indefinitely to demonstrate that u = [uy,us] is such that

(20) wi(t) >0, t>0, j=12,

as long as (1) has a solution.

To demonstrate the monotone growth of the solution, we consider the
derivative of (1) in component form,
(21)
w;(t) = k(t)Fj(as—;)

+Amwwﬂmﬁ@+MAMMﬁ@+%ﬁ@wa
t>0, j=1,2.

Since u;(0) = 0 and u;(t) > 0, then w(t) > 0, j = 1,2, at least on
some common small interval 0 < ¢ < t. Assume, for example, that

u} () =0, u4(¥) > 0. Then, from (21) with j =1,
0 = k(t)Fi(az)

22 t
2 +/0 k(t — s) Fi[ua(s) + ha(s)][uz(s) + ha(s)] ds.

Clearly this is a contradiction since the right side of (22) must be
positive for ¥ < oo. Thus, u}(¥) # 0, and analogously it follows that
uh(t) # 0. Hence, no such ¢ exists, and consequently, v’ = [u],u}] is
such that

(23) uj(t) >0, 0<t<oo, j=1,2,

as long as (1) has a solution.
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To establish the existence of a unique solution to the system (1), we
consider the vector space C° of pairs of functions continuous on [0, 00).
The properties of T" are such that we can restrict our attention to the
closed subset X C C° where

(24) X ={u=[us,us] |0<u;(t) <M <o00,0<t<t, j=1,2},

with each u;(t) continuous on the given interval. For u € X C C, we
use the norm

(25) lull = sup {lui(t)] + [uz(t)]}-
0<t<it

The goal is to find the limitation on £ under which the operator T is a
contraction mapping of the closed subset X into itself.

Given the properties of the kernel and the nonlinearities, it follows
from (1) that for each component

(26) 0 <wu;(t) < Fj(M +bs_;)I(t), i=12,

where
(27) I(t) = / "kt — 5) ds.

In order to insure that T maps X into itself, then  must be such that

(28) I()<M/m, m= jn:%{pj(M +b3_j)}

To establish the contraction property of the operator T', defined by
the right side of (1), we consider u,v € X, whereupon it follows that

Tu—Tv= / k(t — s){F[u(s) + h(s)] — Flv(s) + h(s)]}ds
(29) ’

= /0 k(t — s)F'[0(s) + h(s)][u(s) — v(s)] ds.

Here the mean value theorem implies that 8 = [#1, 6] is such that 6;
lies between u; and vj, j = 1,2. Given the properties of (4), it follows
from (29) that

(30) || Tu — To|| < max{Fj(M +bs—;)}(#)[[u - v]|.

j=1,2
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Thus, T is a contracting mapping of the closed subset X into itself
provided that

(31) I(t) <1/m, 7= max{F/(M +bs_;)}.

j=1,2

To determine a bounding value on # for which existence holds, it is
convenient to define

(32) I(t*) = sup In,
M>0

where, for each M > 0,
(33) Iny = min{M/m,1/m}.

This insures that both (28) and (31) are fulfilled for 0 < < ¢*.

Thus, we are able to conclude that there exists a unique, continuous
solution u(t) of (1) which is nonnegative and increasing for 0 < ¢ < t*,
where t* is given by (32). This ¢t* represents a lower bound on any
possible blow-up of the solution to (1).

3. Nonexistence of the solution. Here we determine conditions
under which the solution of (1) can experience a blow-up. In particular,
we will derive criteria that establish a t** < oo, such that (1) cannot
possess a continuous solution for ¢ > ¢**.

We begin by assuming that (1) has a continuous solution for 0 < ¢ < t.
It then follows from (1) and (2) that the individual components of u
satisfy the inequalities,

]
—
~
SN—r
Il
ol
~—~

>
|
~
SN—r
5
<
w
d.
—
~~
SN—r
+
>
w
d.
—
=

(35) !
0<t<i j=1,2
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Then, combining (34) and (35) yields the coupled pair of differential
inequalities

(36) Ji(t) > k(f — t)Fj[Js—;(t) +as—5],  J;(0) =0,

0<t<it, j=1,2
If we demonstrate nonexistence by reason of blow-up for either of
the J;(t), then (34) implies a nonexistence for the corresponding u;(t).

To investigate the possibility of such behavior of J;(t), we introduce a
comparison problem for the coupled differential equations,

VI(0) = k(i — OF V()] Vi(0) =a; 5> 0,

(37) X
0<t<i, j=1,2

where § > 0 is taken to be sufficiently small to insure the positivity of
the initial conditions. To establish that J;(t) +a; > V;(t), j = 1,2, we
define

(38) Ujt) = J;(t) +a; = Vi(t),  j=1,2.
It then follows from (36) and (37) that

Uj(t) > k(t — ){F;[Js—;(t) + as—;] — Fj[Vs—; ()]}

B MO0, GO =5, =12

where, by the mean value theorem, 0~j lies between J; +a; and Vj, both
of which are positive. Integration of (39) gives

Uj(t) Z 1) + /Ot k‘(f— S)F;[ég,j(s)]Ug,j(s) dS,

0<t<it, j=1,2

(40)

By recombination of the two inequalities of (40), it follows that

(41)

Uit) > 8
+ / k(f—snF;(égj(s)]{a n / K(E-OF) 6;(01U5(0) dc} s,
t

0<
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From (41) it is clear that U;(t) > 0 for all § > 0, and hence
(42) Ji(t) +a; > [Vi(H)ls=o, 0<t<i j=1,2
Thus, we are able to conclude that

(43)  u;(t) = J;(t) = [Vi(t)]s=0 — aj, <t<t j=12

0
so that a nonexistence by blow-up of either V}(t) implies a nonexistence
for the corresponding u;(¢).

To investigate the differential system (37), it is convenient to define
the anti-derivatives G;(V') as

_ 4G,
T dv
We can then put (37), with § = 0, into the equivalent form

(44) Fv)=S3v),  j=12

G VO = k(E ~ OF Vs 5 ()5 V(0]
Vi) =a; j=1.2

(45)

In view of the invariance of the right side of (45) with j = 1,2, it follows
that

(46) Go [‘/1(75)] — Gl[‘/é(t)] = Gg(al) — Gy (ag), 0<t< i.

Moreover, the positivity of the F;(V) with V' > 0 insures that the
G, (V) are strictly increasing and hence invertible so that

(47) Vj(t) = G5 {G5[Vaj(t)] — Gjlas—j) + Ga—j(a;)},  j=1,2,

The system (37), with 6 = 0, can now be decoupled into

(48) Vi(t) = k(t — ) F5[G; H{Gs[V; ()] - G3—j(a;) + Gj(az—;)}],
V;(0) = aj, 0<t<t, j=1,2.

Each of the equations (48) can be solved independently in an implicit
form for each of the V;. This yields

V;(t) dz

/ 1 = I(t)a

a;  Fi{G; (Gs-j(2) — Ga—j(a;) + Gj(as—;)]}
0<t<t, j=1,2

(49)
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From (49) we can infer criteria for the blow-up of V; and hence for
uj. It is convenient to define
. /°° dz
(50) T Sy F{GTY[Gso(2) — Gs_j(a;) + Gj(as—;)]}
j=1,2.

Thus, whenever the smallest of the «; is in the range of I(¢), then (49)
implies that the corresponding V; must blow-up. Consequently, it is
clear from (37) that, if either V; experiences a blow-up, then so does
the other. That is, if there exists a t** < oo such that

61 106°) = min
then
(52) Vi(t) — 00 ast — t*, j=1,2.

In view of (43), the implication of (52) is that each of the wu; will
experience blow-up. Moreover, when one component of u = [uy, us]
ceases to exist as some t., the continuity of (1) implies that the other
component must also cease to exist at the same t.. Thus, if (51) is
satisfied, then

(53) u(t) — oo as t— tg,
where
(54) <t <t

4. Applications. Here we will apply the results of Sections 2
and 3 to two specific classes of nonlinearities F(v) that are frequently
encountered in problems with blow-up solutions. In particular, we
examine a case of power law nonlinearities and a case of exponential
nonlinearities.

For the power law nonlinearities, we consider F = [F}, F3] to have
the form

(55) Fj(v) = [U]pj) p;j > ]-a ] = 1527
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where p; > p2 without loss of generality. For simplicity, we set
alzazza,blzbzzb.

For the lower bound ¢t* on blow-up developed in Section 2, it follows
from (32) and (33) that

(56) I(t*) = [(pr = 1) /6]~ (1) ™7

Assuming that the right side of (56) lies in the range of I(t), it follows
that (1) has a unique, continuous solution for 0 < ¢ < t*.

To apply the nonexistence results of Section 3, it is first noted from
(44) that

(57) Gj(v) = et j=1,2.

It then follows from (50) that
(58)

oo
Kj = i/ [zP3-itl _ gps—sitl 4 g~ Pi/(PitD) g,
T J '

o ( pj+1 )pj/(pj+1) 5 = p3—j+1apj+1 j=1,2
J p3_]+1 ) J p]+1 ) )

Convergence of the integrals x; necessitates that p;ps > 1, which is
assured by (55). These integrals can be evaluated in terms of the
hypergeometric function o F; as

_ (pj+1)alPs [ P; p1+ P2+ 2012
Kj = 1 1; :

(59) (p1p2 — 1) pi+1" (1 +1)(p2+1)
1 Pt gpasps j=1,2.
Ps_j T1 ) )
It then follows from (51) that
(60) I(t™) = j:i1r,12 Kj.

Assuming that the right side of (56) lies in the range of I(t), it follows
that (1) has no continuous solution for ¢ > ¢t**.
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For the exponential nonlinearity, we consider F' = [F}, F3] to have
the form
(61) Fj(v) = €7, v >0, =12,

where ; > 7, without loss of generality. Again for simplicity, we set
a; = az = a, blzbgzb.

For the lower bound ¢* on blow-up developed in Section 2, it follows
that
o L (1tmb)
(62) I(t*) = —e "o,
gi!

Assuming that the right side of (56) lies in the range of I(t), it follows
that (1) has a unique, continuous solution for 0 < ¢ < ¢*.

To apply the nonexistence results of Section 3, it is first noted from
(44) that

1
(63) Gj(v) = —e?, j=1,2.
Vi

It then follows from (50) that

o) . -1
kj = gl / <e"’3ﬂ'z —evga g B e"““) dz,
(64) Y a Y

ji=12.

Evaluation of the integrals yields

) an — V3—j
Kj = (73-;€7* — y;€7°77%) ! [('Yj —v3—;)a — log —'J} ,

(65) Vi
j=1,2.

It then follows from (51) that

(66) I(t™) = Jnin, .

Assuming that the right side of (65) lies in the range of I(t), it follows
that (1) has no continuous solution for ¢ > t**.
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5. Growth rates near blow-up. The asymptotic behavior of the
solution near blow-up is highly dependent on the explicit form of the
nonlinearity, as well as certain specific properties of the kernel. We will
present results here for a kernel which behaves like that associated with
the parabolic problems (6)—(8) and (14)—(16). For those problems, the
kernel takes the form

(67) k(t—s)=G(,t|l,s), 0<s<t,

as given by (9). Using the image representation in (9), it was shown
in [8], for a single equation, that the leading order contribution to the
asymptotic analysis arises from the n = 0 term. This allows (67) to
be replaced by a similar specification, namely that the kernel has the
asymptotic behavior,

(68) k@—gwéh@—grﬂa as t—> s,

Kernels with this type of asymptotic behavior were treated in a slightly
more general context in [10] for a scalar equation. For kernels that
behave like (68), we will determine the growth rate near blow-up for
the two types of nonlinearities considered in Section 4.

Our analysis parallels that of [10] for a scalar equation. We assume
that blow-up occurs simultaneously for each component of u = [ug, us],
so that

(69) uj(t) — o0, as t—t.<oo0, j=1,2.

To carry out the asymptotic analysis of (1), it is convenient to
introduce the transformation,

n=(tc—t) " —no, mo = (te) ", wj(n) = u;(t),

70

0 i=L2

whereupon (69) implies that

(71) wj(n) — 00, as np— o0, j=1,2.

Our analysis does not determine t., but rather demonstrates an asymp-
totic balance as n — oo for (1) whereby the leading order growth rate
near blow-up is determined.
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In terms of the transformation (70), the components of (1) take the
form,

w;j(n) = /0" k{(n = ")[(0" +mn0)(n +m0)] 7' }&;(0") do”,

J=12,

(72)

where
(73)  ®;(n) = (n+mo) *Fi{ws—j(n) + ha—j[te — (n+m0) ']}

Our analysis of (72) as n — oo is based upon certain techniques
developed in [2] for the asymptotic expansion of integrals, as adapted
in [10] for scalar integral equations like (1). By setting ¢’ = n7 in (72)
and utilizing (68), it follows that

qy w L = [ =) )
as n — 00,
where

¢i(n7) = (07 +m0) /2@ (nT)
(75) = (7 +m0) "2 F{ws_;(n7) + ha—jlte — (n7 +m0) 1},
j=1,2.

To investigate the asymptotic behavior of I;j(n) as n — oo, the
technique of [2] is to employ the Parseval formula for Mellin transforms
to convert that integral to a more suitable form. It follows from [10]
that (74) becomes

c+ioco _ 2
win ~ g [ ey M)A,

as n—o0, j=12,

(76)

where the Mellin transform is defined by

(77) Mlpj(r); 2] = / () dr.
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In (76) the vertical path of integration in the complex z-plane lies
within the strip of analyticity of the integrand. The advantage of (76),
as demonstrated in [2], is that the asymptotic behavior of the integral
is determined by the asymptotic behavior of ¢;(n) as n — oco. It follows
from (75) that

(78)  j(n) ~n 3 2Fjlws_;(n)], as n-— o0, j=1,2.

To proceed further requires that the explicit form of the nonlinearity
be given.

For the case of the power law nonlinearities (55), we have

0i(m) ~ 073 lws_; ()P4, py > 1,

(79) :
as n—o0, j=1,2,

where p; > ps. Then, to achieve an asymptotic balance to leading
order in (76), we assume that

(80) w;(n) ~ Aj(n), as n—o00, j=1,2.
It then follows that

@j(n) ~ Agij(n)pjl?x—j*ii/z,

(81)
as n—o0, j=12

From (81) it can be determined (see [2]) that My ;2] has a simple
pole at z = 3/2 — p;ls_; and

e (AP
(82) Mes s~ = R pt)

3
as z — 5 *pjl:}—ja ] = 1,2

To compute the asymptotic behavior of the integral in (76), the vertical
path is displaced to the right. In doing so, the pole implied by (82) is
encountered before that of I'(1 — z) at z = 1 whenever

(83) 3/2 - pjl?)—j <1, J=12,
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and hence it provides the leading order contribution. Thus, for (80),
the asymptotic equality (76) takes the form

o Tlglsy 1/2)
Al ~ APF —MT8=5 T2 \pilz——1/2
J(n) 3—J 2F(pjl37j) (77) )
as n—o0, j=12

(84)

The asymptotic balance of (84) requires that

(85)
pjt+1
lj = o7 i\
2(p1p2 — 1)
A — {2P1+1F(pjlg—j) [ I'(ps—;l;) ]pj}l/(plp2_l) j=1,2
P T Tt~ 1/2) [T(os— 1 -1/2) ’ ’

These results verify that the restriction of (83) is appropriate.

Thus, for the case of the power law nonlinearities (55), it follows that
the growth rates near blow-up for u = [u1, us] are given by

uj(t) ~ Aj(t, — t)~ Pt/ Cprpz—1)

(36) .
as t—t.,, J=12,

where A; is given by (85).

For the case of the exponential nonlinearities (61), we have

@i(n) ~n~3 2 explyjws_j(n)], ;> 0,

(87) :
as n—o0, 1=1,2,

where vy; > 72. Then to achieve an asymptotic balance to leading order
in (76), we assume that

w;(n) ~ log(A;n") ~ Ijlogn + log A;,

(88) )
as n—o0, j=12

It then follows that

SOJ (77) ~ (Ag_j)yj (77)7]'[3—]'*3/2,

(89) :
as n—o0, j=12,
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and analogous to (82), we have the principal pole of M{p;; z] given by

3 (Az_;)7
2= (3//2 = jls—5)’
as Z—)3/27"/jl3_j, ]:1,2

Mpj; 2] ~

(90)

Again the asymptotic behavior of the integral in (76) is found by
displacing the vertical path to the right. In order for this to yield
a logarithmic term to balance (88), it is necessary for the pole implied
by (90) to coalesce with that of I'(1—z) at z = 1. Thus we must impose
the conditions

(91) 3/2—jls j=1, j=1,2

Thus the asymptotic equality (76) takes the form

Ay ) _
(92) ljlognw(zﬂ_ilj/)zlogn, as n—ro00, j=12.

It follows from (91) and (92) that an asymptotic balance is achieved
with

1 al/2\ Vs
93 I, = , A; = (—> .
(93) T 23 ! Vi

Thus for the case of the exponential nonlinearities (61), it follows that
the growth rates for u = u[uy, ug] near blow-up are given by

1 1
4 (t) ~ 1 t—st., j=1,2.
O )~ g () j
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