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ACCURATE COMPUTATION OF THE FIELD
IN PIPPARD’S NONLOCAL

SUPERCONDUCTIVITY MODEL

TAO LIN AND ROBERT C. ROGERS

ABSTRACT. A Galerkin finite element method is analyzed
for a class of the Fredholm type integro-differential equations.
The method is applied to Pippard’s nonlocal superconductiv-
ity model. Optimal H1 norm error estimates are derived for
the finite element solution of the current potential. A class
of superconvergent post-processing techniques are developed
to obtain more accurate approximations to the magnetic field
from the finite element solutions. An H1 semi-norm actual
error indicator is derived and is used to generate an adaptive
grid refinement procedure. Several numerical examples are
presented.

1. Introduction. The purpose of this paper is to develop and
analyze the Galerkin finite element solution of the following boundary
value problem of a Fredholm type integro-differential equation:

(1.1) Du(x) +
∫ l

−l

K(x, y)u(y) dy = f(x), x ∈ (−l, l),

(1.2) a2(−l)u′(−l) = b0, a2(l)u′(l) = b1.

We assume throughout this paper that the kernel K : [−l, l]× [−l, l] →
R is such that the mapping K : L2(−l, l) → L2(−l, l) defined by

(1.3) L2(−l, l) � u �→ K u(·) :=
∫ l

−l

K(·, y)u(y) dy ∈ L2(−l, l)
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is compact. A sufficient condition for this is that K(x, y) ∈ L2((−l, l)×
(−l, l)), and thus K(x, y) can have a weak singularity at x = y. The
differential operator D is defined by

(1.4) Du(x) := −(a2(x)u′(x))′ + a0(x)u(x),

for given functions a0(x) and a2(x). The motivation of this work is
to numerically solve a nonlocal superconductivity model developed by
Pippard [21] (see also [2]). For an infinite slab of thickness 2l with
magnetic field strength H applied parallel to the slab, the model reduces
to

(1.5) −A′′(x) + C

∫ l

−l

K1(x − y)A(y) dy = 0, x ∈ (−l, l),

(1.6) A′(−l) = A′(l) = H.

Here A(x) is the current potential and

K1(x−y) :=
(
|x−y|

2ξ
− 1

2

)
e−|x−y|/ξ +

(
1− |x−y|2

2ξ2

)∫ ∞

|x−y|

e−u/ξ

u
du.

Compared with works on Volterra type integro-differential equations
(see Brunner [6] and the references there) there are relatively few
publications about the boundary value problems of Fredholm type
integro-differential equations. The available numerical methods can be
roughly divided into two classes: indirect methods and direct methods.
In indirect methods (see Baker [1] and Linz [20]) an integro-differential
equation is first transformed into an integral equation of Fredholm
type which is then solved by available numerical methods for integral
equations. In direct methods (see Delves and Mohamed [10], Espinosa
[11], Volk [25], and Garey [12]), certain projection methods such as
Galerkin finite element or collocation methods are applied directly to
the integro-differential equations.

However, efficient numerical approximations to the solution of the
nonlocal superconductivity model considered here cannot be generated
by simple applications of the above general approaches. The first
difficulty in using the conventional methods is that the kernel in
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the integral operator itself is given by an integration over an infinite
interval. A numerical method inevitably has to spend a lot of time
on forming the matrix involving this kernel, since many integrations in
multiple dimensions have to be carried out. Using an indirect method
will make this even worse because the kernel in the integral equation
solved by this indirect method is the integration of the kernel of the
integro-differential equation. The computational cost spent in forming
the matrix involving the integral kernel becomes more critical when
the more general nonlinear model developed recently by Brandon and
Rogers [3] is solved by Newton type iteration.

The second difficulty is due to our desire to model the magnetic pene-
tration depth of a superconductor. A superconductor in a weak applied
field can expel the magnetic field from its interior. Beyond a thin layer
from the surface of a superconductor, the magnetic field becomes close
to zero. The thickness of this layer is called the magnetic penetration
depth and is an important physical characteristic of superconductors.
Thus, we expect that the derivative of the solution to (1.5) and (1.6) is
close to zero in most of the interval, but tends to the H �= 0 quickly in
the vicinity of the boundaries. An accurate approximation of the field is
needed in this boundary layer to understand the magnetic penetration
depth of a superconductor. The conventional methods generate the
approximations to the field by numerically differentiating the approxi-
mate current potential. Typically the accuracy is lost in the numerical
differentiation. We present here a class of techniques to generate ap-
proximations to the field with better convergence rates by using the
superconvergence property of the finite element solutions.

The superconvergence of the approximations to A(x) for either inte-
gral and integro-differential equations can be found in [22, 7, 6, 23,
26]. For Fredholm type integro-differential equation, certain super-
convergence of the numerical solution to A′(x) based on a collocation
method was given in [13]. Brunner [4, 5] showed interesting local
superconvergence properties of the numerical solutions to A′(x) gener-
ated by some collocation methods for the second order Volterra type
integro-differential equations. However, we are unaware of any results
on how to use an approximation to the potential to generate an approx-
imation to the field A′(x) with a better global convergence rate. It is
our intention here to generate the interpolated finite element solution
developed in [14, 15, 16, 17, 18, 19] for partial differential equations



170 T. LIN AND R.C. ROGERS

to the Fredholm type integro-differential equations.

The outline of the next four sections is as follows. In Section
2, a Galerkin finite element method will be derived for (1.1) and
(1.2). The standard error estimate of this Galerkin method will be
given. Section 3 presents and analyzes several superconvergent post-
processing procedures which can generate better global approximations
to the field from a finite element approximation to the potential. The
first part of Section 4 presents some numerical examples to show the
effects of the post-processing techniques. The second part discusses
how the superconvergent approximations to the field can be used
to construct indicators for the actual errors and how to use these
indicators to form adaptive grid refinement procedures. The last part of
this section discusses how to implement the Galerkin method efficiently
for the Pippard’s nonlocal superconductivity model. Section 5 contains
conclusions.

2. Galerkin finite element solutions and error estimates. In
this paper we will use the standard Sobolev spaces Hr(−l, l) whose
norm is defined by

||v||r :=
( r∑

k=0

∫ l

−l

|v(k)(x)|2 dx

)1/2

,

and whose semi-norm is defined by

|v|r :=
( ∫ l

−l

|v(r)(x)|2 dx

)1/2

.

The weak formulation of (1.1) and (1.2) is: Find u(x) ∈ H1(−l, l) such
that

(2.7)
a(u, v) + (K u, v) = (f, v) + b1v(l) − b0v(−l),

∀ v ∈ H1(−l, l),

where

(u, v) :=
∫ l

−l

u(x)v(x) dx,
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and

(2.8) a(u, v) :=
∫ l

−l

a2(x)u′(x)v′(x) dx +
∫ l

−l

a0u(x)v(x) dx.

We begin with a standard abstract existence result.

Lemma 2.1. Suppose a2(x) and a0(x) are bounded and sufficiently
smooth, the operator K : L2(−l, l) → L2(−l, l) is compact, and the
bilinear form of D +K is V -elliptic, i.e., there exists a positive α such
that

(2.9) a(u, u) + (K u, u) ≥ α||u||1, ∀u ∈ H1(−l, l).

Then for any f ∈ L2(−l, l) the boundary value problem (1.1) and (1.2)
has a unique solution u(x) ∈ H2(−l, l).

Proof. Without losing generality, we assume that the boundary
value problem has a homogeneous boundary condition. Consider the
differential operator D and the integral operator K as operators in
L2(−l, l) with the same domain as follows:

(2.10) D := {v ∈ H2(−l, l) | v′(−l) = v′(l) = 0}.

Then K is compact and D is normally solvable, i.e., it is a closed
operator with closed range. Hence D + K is also normally solvable.
Therefore, we have

L2(−l, l) = R ⊕N ,

where R is the range and N is the null manifold of D + K . Because
of the V -ellipticity of D + K , N = {0}. This gives R = L2(−l, l),
consequently the result of this lemma.

We now describe the finite element approximation to the exact
solution. Let Πh be a partition of the interval [−l, l] formed by

−l = x1 < x2 < · · · < xn−1 < xn = l,

with
h := max

i=1,2,... ,n−1
|xi+1 − xi|
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being the largest diameter of the subintervals. With this partition, we
introduce the following standard Lagrange type finite element spaces:

(2.11) Sr
h := {v(x) ∈ C[−l, l] | v(x)|[xi,xi+1] ∈ Pr, i = 1, 2, . . . , n−1},

where r = 1 or r = 2 throughout this paper, and Pr stands for the
space formed by polynomials of degree at most r. Then Sr

h is a finite
dimensional subspace of H1(−l, l) with the following approximation
property [24]:

(2.12)
||v − Ir

hv||0 + h||v − Ir
hv||1 ≤ Chr+1||v||r+1,

∀ v ∈ Hr+1(−l, l),

where Ir
hv(x) is the interpolation of v(x) in Sr

h. The finite element
approximation uh(x) ∈ Sr

h is then defined by

(2.13)
a(uh, vh) + (K uh, vh) = (f, vh) + b1vh(l) − b0vh(−l),

∀ vh ∈ Sr
h.

The V -ellipticity of a(u, v) ensures that (2.13) has a unique solution
in Sr

h for sufficiently small h whose accuracy is stated in the following
theorem.

Theorem 2.1. Suppose that a2(x) and a0(x) are bounded, f(x) ∈
L2(−l, l) and the V ellipticity (2.9) is satisfied. If the exact solution
u(x) is in Hr+1(−l, l), then the finite element solution given by (2.13)
has the following error estimate:

||u − uh||0 + h||u − uh||1 ≤ Chr+1||u||r+1.

Proof. Since K is compact in L2(−l, l), the bilinear form a(u, v) +
(K u, v) is continuous. Then, because of the V -ellipticity of a(u, v) +
(K u, v) we can apply Cea’s lemma [9] and the approximation property
of Sr

h to obtain

(2.14) h||u − uh||1 ≤ Chr+1||u||r+1.
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The result of Lemma (2.1) ensures that the Aubin-Nitsche’s technique
can be applied to obtain

(2.15) ||u − uh||0 ≤ Chr+1||u||r+1

from (2.14). The result of this theorem is a combination of (2.14) and
(2.15).

3. Approximate the field by post-processing. The error
estimate given by Theorem 2.1 is optimal from the point of view of
the approximation capability of Sr

h. Consequently, the derivative of
uh(x) is a lower-order approximation to u′(x) than uh(x) itself as
an approximation to u(x). For example, if linear finite elements are
used, uh(x) is an O(h2) approximation to u(x), but u′

h(x) is only an
O(h) approximation to u′(x). More accurate approximation to u′(x) is
desirable since in our computation on Pippard’s model u′(x) represents
the field, which is an important characteristic in superconductivity
modeling. Conventionally, better approximations to u′(x) are obtained
by either the ‘h’ approach or the ‘p’ approach. In the ‘h’ approach,
smaller partition parameter h is used to maintain the accuracy, while
in the ‘p’ approach finite elements with polynomials of higher degrees
are used to maintain the accuracy. Each of these two approaches results
in more expensive systems to solve.

However, the finite element solution uh(x) does contain more infor-
mation about u′(x) which is not revealed by u′

h(x). This can be seen
from the following lemma.

Lemma 3.1. If all the conditions of Theorem 2.1 are satisfied, then

(3.16) ||Ir
hu − uh||1 ≤ Chr+1||u||r+1.

Proof. Notice first the following well-known weak superconvergence
result [8]:

(3.17) |a(u − Ir
hu, vh)| ≤ Chr+1||u||r+1|vh|1.
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Then the V -ellipticity and continuity of a(u, v) + (K u, v), the approx-
imation property of Sr

h, and Theorem 2.1 ensure

C||Ir
hu − uh||21 ≤ a(Ir

hu−uh, Ir
hu−uh) + (K (Ir

hu−uh), Ir
hu−uh)

= a(Ir
hu−u, Ir

hu−uh) + (K (Ir
hu−u), Ir

hu−uh)
≤ Chr+1||u||r+1|Ir

hu−uh|1 + Chr+1||u||r+1||Ihu−uh||0,

which consequently gives (3.16).

This lemma indicates that the first derivative of the finite element
solution uh(x) is a better approximation to (Ir

hu(x))′ than to u′(x) and
suggests that uh(x) contains some information about u′(x) that is not
in u′

h(x). The important question is how to extract more information
about u′(x) from uh(x). Notice that the derivative of the finite element
solution is a piecewise polynomial with a lower degree than that of
uh(x) and naturally does not have the same approximation capability
as uh(x). This leads us to consider using uh(x) to construct piece-wise
polynomials with higher degrees for better approximations to u′(x).
We present below several specific ways to realize this post-processing
idea.

The techniques in the first class are based on piecewise polynomial
interpolation. For a linear finite element solution uh(x), we first use
the nodes of Πh to form a coarser partition Π2h of [−l, l]:

(3.18) Π2h := {a = z1 < z2 < · · · < zm},

where

(3.19) m =
{

(n + 1)/2, if n is odd,
(n + 2)/2, if n is even,

and

(3.20) zi = x2i−1, i = 1, 2, . . . , m − 1, zm = xn.

Most of the elements of Π2h contains three nodes of Πh, for ex-
ample [zi, zi+1] contains x2i−1, x2i, x2i+1 if i ≤ m − 2. We then
define a function Iquh(x) on [zi, zi+1] to be the quadratic inter-
polation of (x2i−1, uh(x2i−1)), (x2i, uh(x2i)), (x2i+1, uh(x2i+1)). If n
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is odd, Iquh(x) in [zm−1, zm] can be defined in the same way as
in the other intervals of Π2h. For even n we define Iquh(x) in
[zm−1, zm] to be the restriction of the quadratic interpolation of
(xn−2, uh(xn−2)), (xn−1, uh(xn−1)), (xn, uh(xn)). The function Iquh(x)
defined here obviously has the following properties:

(3.21)
Iquh(x) ∈ C0[−l, l],

Iquh(x)|[xi,xi+1] is a quadratic polynomial,
Iquh(xi) = uh(xi), i = 1, 2, . . . , n − 1.

We note that Q. Lin, H. Wang and T. Lin [14, 15] used the same
procedure to post-process the linear finite element solution for partial
differential equations.

We can post-process the quadratic finite element solution by a similar
procedure which was developed for partial differential equations in
[16]. Assume that the midpoint xi+1/2 of each element [xi, xi+1],
i = 1, 2, . . . , n − 1, is also a node where the finite element space S2

h

has a nodal basis function. Let

zi = x(i+1)/2, i = 1, 2, . . . , 2n − 1.

Then we form a new partition Π3h/2 of [−l, l] as follows:

Π3h/2 := {−l = z1 < z4 < z7 < · · · < zm−1 < zm ≤ z2n−1 = l},

where

m =

⎧⎨
⎩

2n − 2, if mod (n, 3) = 0,
2n − 1, if mod (n, 3) = 1,
2n − 3, if mod (n, 3) = 2.

The subscript 3h/2 in Π3h/2 implies that Π3h/2 is a partition of
[−l, l] whose elements are formed by one and one half elements
of Πh except the element on the right. In each [zi−3, zi], i =
4, 7, 11, . . . , m, we let Icuh(x) be the cubic interpolation polynomial of
(zi−3, uh(zi−3)), (zi−2, uh(zi−2)), (zi−1, uh(zi−1)), (zi, uh(zi)). To finish
the construction of Icuh(x) over the rest of [−l, l], we let Icuh(x) be the
restriction of the cubic interpolation polynomial of (z2n−4, uh(z2n−4)),
(z2n−3, uh(z2n−3)), (z2n−1, uh(z2n−1)), (z2n−1, uh(z2n−1)) in [z2n−2, z2n−1]
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if mod (n, 3) = 0 or in [z2n−3, z2n−1] if mod (n, 3) = 2. It is easy to see
that this new function Icuh(x) has the following properties:

(3.22)
Icuh(x) ∈ C0[−l, l],

Icuh(x)|[xi,xi+1] is a cubic polynomial,
Icuh(zi) = uh(zi), i = 1, 2, . . . , 2n − 1.

The second class of post-processing techniques are based on spline
interpolation. Notice that the values of the first derivative of the exact
solution are available at the end points of the interval, and they can be
used to do post-processing by spline interpolation. For the linear finite
element solution uh(x) ∈ S1

h, we can define Iquh(x) to be its quadratic
spline interpolant such that

(3.23)
(Iquh(−l))′ = u′(−l), Iquh(xi) = uh(xi),

i = 1, 2, . . . , n.

The quadratic spline function satisfying (3.23) is uniquely defined and
satisfies (3.21). Obviously, the derivative condition in (3.23) can also
be imposed on the right end point of the interval [−l, l].

For the quadratic finite element solution uh(x) ∈ S2
h, we can define

Icuh(x) to be the unique clamped cubic spline interpolant of uh(x) such
that

(3.24)
Icuh(zi) = uh(zi), i = 1, 2, . . . , 2n − 1,

(Icuh(−l))′ = u′(−l), (Icuh(l))′ = u′(l),

where the zi’s are the nodes of the quadratic finite elements defined on
Πh. It is easy to see that this clamped cubic spline satisfies (3.22). The
natural cubic spline interpolation can also be used to post-process the
quadratic finite element solutions.

We now turn to the error estimates of Iquh(x) and Icuh(x). As prepa-
ration, we first list some properties of the post-processing operators. As
usual, the constant C in the following may have different values at dif-
ferent places.

Lemma 3.2. If the post-processing operators Iq and Ic are defined
by piecewise polynomial interpolation, then there exists a constant C
such that for any v ∈ H1(−l, l),

||Iqv||1 ≤ C||v||1, ||Icv||1 ≤ C||v||1.
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Proof. These can be obtained following the same arguments used in
[16].

Lemma 3.3. If the post-processing operators Iq and Ic are defined
by spline interpolation, then there exists a constant C such that

||Iqv||1 ≤ C||v||1, ∀ v ∈ S1
h ∩ H1

0 (−l, l),
||Icv||1 ≤ C||v||1,

for all v ∈ S2
h ∩ H1

0 (−l, l) if Icv is a clamped cubic spline, and for all
v ∈ S2

h if Icv is a natural cubic spline.

Proof. We only prove the case in which Icv is formed by the clamped
cubic spline interpolation. The other cases follow in a similar fashion.
In the clamped cubic spline case, Icv(x) has the following piecewise
representation:

Icv(x) = Aj
(zj+1 − x)3

6sj+1
+ Aj+1

(x − zj)3

6sj+1

+ Bj(x − zj) + Cj , ∀x ∈ [zj , zj+1],

for j = 1, 2, . . . , 2n− 2, sj+1 = zj+1 − zj and zj ’s are defined as before.
Then

|Aj | ≤
2n−1
max
i=0

|Di|, j = 1, 2, . . . , 2n − 1,

where

Dj =
6

sj + sj+1

{
v(zj+1) − v(zj)

sj+1
− v(zj) − v(zj−1)

sj

}
,

j = 2, 3, . . . , 2n − 2D0

=
6
s1

v(z2) − v(z1)
s1

,

D2n−1 = − 6
s2n−1

v(z2n−1) − v(z2n−2)
s2n−1

.

Using the relationships

Bj =
v(zj+1) − v(zj)

sj+1
− sj+1

6
(Aj+1 − Aj),

Cj = v(zj) − Aj

s2
j+1

6
,
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we have

||Icv||21 ≤ C

2n−2∑
i=1

∣∣∣∣v(zi+1) − v(zi)
si+1

∣∣∣∣
2

≤ C

2n−2∑
i=1

∫ zi+1

zi

(v′(z))2 dz

≤ C

∫ l

−l

(v′(z))2 dz,

which gives the result for clamped cubic spline interpolation.

Lemma 3.4. For any v ∈ H1(−l, l) and any x ∈ [−l, l], we have

IqI
1
hv(x) = Iqv(x), IcI

2
hv(x) = Icv(x),

where I1
hv(x) and I2

hv(x) are the interpolation of v(x) in the finite
element spaces S1

h and S2
h, respectively.

Proof. These are the consequences of (3.21) and (3.22).

Using these results, we can show that the first derivatives of Iquh(x)
and Icuh(x) have better convergence rates than u′

h(x) for uh ∈ S1
h and

S2
h, respectively.

Theorem 3.1. Under the same conditions as in Lemma 3.1, we have

(3.25) ||Iquh − u||1 ≤ Ch2||u||3,

for uh ∈ S1
h and u ∈ H3(−l, l), and

(3.26) ||Icuh − u||1 ≤ Ch3||u||4,

for uh ∈ S2
h and u ∈ H4(−l, l).

Proof. Again, we prove only (3.26) for the case in which Ic is defined
by the cubic spline interpolation. The other case has a similar proof.
First, for uh ∈ S2

h we have

(3.27) ||Icuh − u||1 ≤ ||Icuh − IcI
2
hu||1 + ||IcI

2
hu − u||1.
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Then, by Lemma 3.3 and Lemma 3.1,

(3.28) ||Icuh − IcI
2
hu||1 ≤ C||uh − I2

hu||1 ≤ Ch3||u||4.

According to Lemma 3.4 and the approximation capability of the cubic
spline interpolant,

||IcI
2
hu − u||1 = ||Icu − u||1 ≤ Ch3||u||4.

Applying the above and (3.28) to (3.27) yields (3.26).

4. Numerical examples and application.

4.1. Numerical examples for the superconvergence. To see the effect
of the post-processing techniques, we applied them to the following
boundary value problem defined in the interval x ∈ (−1, 1):

(4.29) − ((2 + sin(x))u′(x))′ + u(x)

+
∫ 1

−1

(1 + sin(x + y))u(y) dy = f(x),

(4.30) u′(−1) = b0, u′(1) = b1,

where f(x), b0 and b1 were chosen such that u(x) = sin(x) was the
exact solution of this boundary value problem. The errors in the H1

semi-norm of the numerical results by both the linear and the quadratic
finite elements are listed in Table 1 and Table 2, respectively. The post-
processing techniques obviously generated better approximations to the
first derivative. For example, the approximation to the first derivative
by post-processing the linear finite element solution is almost as good
as the derivative of the quadratic finite element finite element solution
(see the third column of Table 1 and the second column of Table 2).
Using the discrete Green’s function, we can also show that the results
in Theorem 3.1 are also true in uniform norm, i.e., we can show that

(4.31) ||(Iquh)′ − u′||L∞(−l,l) ≤ Ch2||u||3,∞, for uh ∈ S1
h

and

(4.32) ||(Icuh)′ − u′||L∞(−l,l) ≤ Ch3||u||4,∞, for uh ∈ S2
h.
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TABLE 1. Numerical results by linear finite elements.

h ‖u′ − u′
h‖0 ‖u′ − (Iquh)′‖0 ‖(Iquh)′ − u′

h‖0

2/6 0.13925066 0.06210226 0.12084604
2/10 0.06529805 0.02229592 0.06035870
2/14 0.03955717 0.01136743 0.03749395
2/18 0.02718226 0.00687463 0.02610515
2/22 0.02013842 0.00460136 0.01949615
2/26 0.01568580 0.00329419 0.01526757
2/30 0.01266199 0.00247418 0.01237208
2/34 0.01049849 0.00192620 0.01028793
2/38 0.00888780 0.00154199 0.00872923
2/42 0.00765058 0.00126224 0.00752768
2/46 0.00667593 0.00105225 0.00657841
2/50 0.00589196 0.00089062 0.00581305

TABLE 2. Numerical results by quadratic finite elements.

Icuh in the fourth and fifth columns are formed

by the clamped cubic interpolation.

h ‖u′ − u′
h‖0 ‖u′ − (Icuh)′‖0 ‖(u′ − (Icuh)′‖0 ‖(Icuh)′ − u′

h‖0

2/3 0.05990817 0.01589577 0.01380605 0.06020735

2/5 0.02103984 0.00346630 0.00299768 0.02105423

2/7 0.01065099 0.00126813 0.00109087 0.01064812

2/9 0.00642027 0.00059797 0.00051244 0.00641692

2/11 0.00428942 0.00032797 0.00028034 0.00428694

2/13 0.00306736 0.00019888 0.00016970 0.00306561

2/15 0.00230203 0.00012955 0.00011040 0.00230077

2/17 0.00179118 0.00008904 0.00007581 0.00179026

2/19 0.00143331 0.00006381 0.00005428 0.00143262

2/21 0.00117290 0.00004727 0.00004019 0.00117237

2/23 0.00097752 0.00003599 0.00003059 0.00097711

2/25 0.00082719 0.00002803 0.00002381 0.00082687
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Instead of repeating the same arguments as in the proof of Theorem
3.1, we just present the errors in the uniform norm of the numerical
results by both the linear and the quadratic finite elements in Table 3
and Table 4, respectively, where the norm || · ||∗∞ is defined by

(4.33) ||u||∗∞ :=
n−1
max
i=1

10
max
j=1

|u(xi,j)|,

xi,j := xi + (j − 1)hi, j = 1, 2, . . . , 10,

hi = xi+1 − xi.

Using linear regression one can easily see that the data in these tables
satisfy (4.31) or (4.32).

4.2. An adaptive grid refinement procedure. As in any other numerical
simulations, it is critical to know whether a particular finite element
solution uh(x) is within a given error tolerance tol > 0 before we
can make any further decision based on uh(x). Even though the a
priori error estimates given in Theorem 2.1 describe the asymptotic
behavior of the finite element solutions, they cannot tell us accurately
how large the actual error might be for a particular computation
because the constant C depends on the unknown u(x). Without losing
generality, we assume that the H1 semi-norm is used in checking the
error tolerance. The immediate question is how to measure the actual
error uh(x) − u(x) in the H1 semi-norm.

Notice that uh(x) is an O(hr+1) approximation to u(x), but u′
h(x)

is only an O(hr) approximation to u′(x). Let Gh(x) be either Iquh(x)
or Icuh(x). Theorem 3.1 has shown that G′

h(x) is a higher order ap-
proximation of u′(x) than u′

h(x). Therefore we can use the computable
quantity ||u′

h − G′
h||0 as an indicator to measure |uh − u|1 because

u′
h − u′ = (u′

h − G′
h) + (G′

h − u′)
≈ (u′

h − G′
h) + O(hr+1), for uh ∈ Sr

h,

i.e., u′
h − G′

h is the dominant part of the actual error |uh − u|1. A
comparison of the second columns with the last columns of Tables 1 4
confirms that the error indicators formed by using the post-processing
techniques in the above way are very accurate.
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TABLE 3. Numerical results by linear finite elements.

The norm || · ||∗∞ is defined by (4.44).

h ‖u′ − u′
h‖∗∞ ‖u′ − (Iquh)′‖∗∞ ‖(Iquh)′ − u′

h‖∗∞
2/6 0.13310356 0.03961181 0.10241148
2/10 0.08172053 0.01411752 0.07153395
2/14 0.05889190 0.00716220 0.05393553
2/18 0.04602173 0.00432334 0.04310547
2/22 0.03776503 0.00289987 0.03584794
2/26 0.03201928 0.00207639 0.03066412
2/30 0.02779058 0.00155866 0.02678232
2/34 0.02454831 0.00121250 0.02376906
2/38 0.02198343 0.00096983 0.02136322
2/42 0.01990375 0.00079323 0.01939845
2/46 0.01818351 0.00066100 0.01776392
2/50 0.01673695 0.00055953 0.01638298

TABLE 4. Numerical results by quadratic finite elements. Icuh in the fourth

and fifth columns are formed by the piecewise cubic interpolation.

The norm || · ||∗∞ is defined by (4.44).

h ‖u′ − u′
h‖∗∞ ‖u′ − (Icuh)′‖∗∞ ‖u′ − (Icuh)′‖∗∞ ‖(Icuh)′ − u′

h‖∗∞
2/3 0.04548986 0.01360068 0.00653876 0.04456780

2/5 0.01514414 0.00297448 0.00140638 0.01514020

2/7 0.00745968 0.00108656 0.00053553 0.00747676

2/9 0.00442348 0.00051136 0.00025479 0.00443348

2/11 0.00292334 0.00028000 0.00013903 0.00292886

2/13 0.00207434 0.00016956 0.00008361 0.00207753

2/15 0.00154779 0.00011049 0.00005476 0.00154973

2/17 0.00119891 0.00007607 0.00003769 0.00120016

2/19 0.00095594 0.00005455 0.00002696 0.00095677

2/21 0.00077997 0.00004043 0.00001990 0.00078055

2/23 0.00064847 0.00003077 0.00001517 0.00064888

2/25 0.00054761 0.00002396 0.00001183 0.00054791
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Once a finite element space is chosen, the accuracy of the finite
element solution can be maintained by using an appropriate partition.
From the point of view of both the accuracy and efficiency, more mesh
points should be put at the places where the exact solution changes
quickly than where the solution changes slowly. The superconvergence
property of Gh(x) not only allows us to know more accurately how
exact the solution changes, but also can be used in the error indicator
above to generate an adaptive grid refinement procedure for a given
error tolerance, tol .

Let us consider the quadratic finite element solution and the related
post-processing operator Ic. According to the optimal error estimate
(2.14), we can assume that for any subinterval [a, b] ⊂ [−l, l] there exists
a constant C such that

|(uh − u)|[a,b]|1 = Ch2,

where (uh−u)|[a,b] stands for the restriction of uh−u in [a, b]. We first
use a trial step size h̃ to form a trial partition Πh̃:

−l = x̃0 < x̃1 < · · · < x̃ñ = l,

with h̃ = maxñ−1
i=1 {xi+1 − xi}. Then we partition [x̃i, x̃i+1] into

smaller subintervals x̃i = xi1 < xi2 < · · · < xini
= x̃i+1, such that

xi(j+1)−xij = q(x̃i+1−x̃i) = qh̃i, j = 1, 2, . . . , ni, only if the restriction
of the actual error uh̃ −u in [x̃i, x̃i+1] seems to be larger than the error
tolerance tol , i.e.,

Ch̃2
i = |(uh̃ − u)|[x̃i,x̃i+1]|1 ≈ |(uh̃ − Icuh̃)|[x̃i,x̃i+1]|1 ≥ tol .

If we use {xij | i = 1, 2, . . . , n, j = 1, 2, . . . , ni} to form a new partition
Πh, then, by the superconvergence property of Icuh̃(x), the related
finite element solution uh ∈ S2

h satisfies

|(uh − u)|[x̃i,x̃i+1]|1 = C(qh̃i)2 = q2(Ch̃2
i )

= q2|(uh̃ − u)|[x̃i,x̃i+1]|1
≈ q2|(uh̃ − Icuh̃)|[x̃i,x̃i+1]|1.

Therefore, the parameter q which determines the new partition Πh from
the trial partition Πh̃ can be decided by

q ≤
(

tol
|(uh̃ − Icuh̃)|[x̃i,x̃i+1]|1

)1/2

,
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and the finite element solution uh(x) ∈ S2
h will approximately satisfy

|(uh − u)|[x̃i,x̃i+1]|1 ≤ tol .

Again, we can assess the accuracy of the numerical solution uh(x) by
checking the error indicator |uh − Icuh(x)|1. If |uh − Icuh(x)|1 is larger
than the error tolerance tol , then the above grid refinement procedure
can be repeated until the error tolerance is approximately satisfied.
The method presented here is only a simple way to control the actual
error by using the superconvergence property of the finite element
solution. More sophisticated procedures may be used together with
the error indicator here to generate more robust and efficient adaptive
methods. Obviously, similar grid refinement procedure based on the
post-processing operator Iq can be derived for the linear finite element
solution.

We applied this adaptive procedure to the following boundary value
problem:

−((2+cos(πx))u′(x))′ + u(x) +
∫ 1

−1

(1+cos(3πx)+y2)u(y) dy = f(x),

x ∈ (−1, 1), u′(−1) = b0, u′(1) = b1,

where f(x), b0 and b1 were chosen such that u(x) = sin(πx)e3x was
the exact solution of this boundary value problem. We started with
a uniform partition Πh̃ whose step size was h̃ = 1/19. The actual
error of the corresponding finite element solution in H1 semi-norm was
|uh̃ − u|1 = 0.6799. For the error tolerance tol = 10−2, the adaptive
procedure formed a new partition Πh with 146 mesh points which were
not uniformly distributed in [−1, 1]. We observed, as we expected,
that more mesh points were automatically added at the places where
the solution changed quickly. The actual error of the finite element
solution found in this new partition was |uh − u|1 = 0.003318. Since
the estimated actual error was |uh − Icuh|1 = 0.003283 which was less
than tol = 10−2, the program terminated the adaptive procedure. The
exact solution and the final numerical solution together with all the
partitions used were plotted in Figure 1.

4.3. Application to Pippard’s model. For the Pippard’s nonlocal
superconductivity model (1.5) and (1.6), we first notice that the kernel
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FIGURE 1. The dashed line is the true solution, the dotted line is the finite
element solution generated by the adaptive procedure. The longer vertical line
segments represent the trial partition, while the long and short vertical line
segments together represent the refined partition for the given error tolerance.

K(x, y) = K1(x− y) is in L2((−l, l)× (−l, l)) and is symmetric. Hence
the related integral operator is in compact in L2(−l, l). However, we
cannot easily claim that bilinear form a(u, v) + (K u, v) is positive
definite because both a(u, v) and (K u, v) are only positive semi-definite.
To avoid this, we can consider a modified boundary value problem as
follows:

(4.34)
−A′′(x) +

∫ l

−l

A(x) dx + C

∫ l

−l

K1(x − y)A(y) dy = 0,

x ∈ (−l, l),

(4.35) A′(−l) = A′(l) = H.

Lemma 4.1. The modified problem (4.34) and (4.35) has a unique
solution which is odd.
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Proof. Without losing generality, we assume that H = 0. The related
bilinear form of this modified problem is

(4.36)
ã(u, v) :=

∫ l

−l

u′v′ dx +
∫ l

−l

u dx

∫ l

−l

v dx + (K u, v),

∀u, v ∈ H1(−l, l),

where K 1 is the operator defined by the kernel K1(x, y). An easy
modification of the standard proof of Poincaré’s inequality shows that
there exists a positive constant C such that

∫ l

−l

u′u′ dx +
∫ l

−l

u dx

∫ l

−l

u dx ≥ C||u||21,

∀u ∈ H1(−l, l).

The bilinear form ã(u, v) is then positive definite since K 1 is positive
semi-definite. Thus (4.34) and (4.35) has a unique solution in H1(−l, l).
The operator T defined by

(4.37) (T u, v) := ã(u, v), u, v ∈ H1(−l, l),

is then strongly monotone and is also Lipschitz continuous. Therefore,
there exists a constant ε > 0 such that

(4.38) T εu := u − εT u,

is contractive. By Banach fixed-point theorem, the sequence

un+1 = T εun, n = 0, 1, 2, . . . ,

converges to the unique solution of (4.34) and (4.35) starting from any
u0 ∈ H1(−l, l). But it is obvious that if u0(x) is an odd function,
then every un(x) in the fixed point iteration sequence above is also
odd. Thus the solution of (4.34) and (4.35) which is the limit of {un}∞0
must be odd.

Since the solution of (4.34) and (4.35) is odd, we have
∫ l

−l
A dx = 0.

Thus A(x) is also a solution of (1.5) and (1.6). Since (4.34) has a
V -elliptic bilinear form, the techniques of the last two sections can be
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applied. Notice that the cost for solving (4.34) and (4.35) is comparable
to solving (1.5) and (1.6).

Now we consider some issues in implementing the Galerkin finite
element method for the nonlocal superconductivity model (4.34) and
(4.35). Let {φi(x)}N

i=1 be a basis of Sr
h associated with the partition

nodes. Then

(4.39) N =
{

n, for r = 1,
2n − 1, for r = 2,

and uh =
∑N

j=1 ujφj(x) with �uh := (u1, u2, . . . , uN ) determined by

(4.40) (Th + Kh)�uh = �Fh.

Here Th is the standard stiffness matrix of the finite element spaces,

(4.41) Kh := (Ki,j)N
i,j=1,

with
(4.42)

Ki,j :=
∫ l

−l

φi(x) dx

∫ l

−l

φj(x) dx +
∫ l

−l

φi(x)
(∫ l

−l

K1(x, y)φj(y) dy

)
dx.

Matrices Th can be formed in the standard way as in the finite element
method for differential equations. However, forming matrix Kh needs
special attention because this is the most time consuming part.

First, since Pippard’s kernel itself is defined through integration,
forming the entries of Kh involves triple integrals. Reducing the com-
putation cost in this part may greatly improve the whole computa-
tion efficiency, especially when we apply the techniques here to solve
the more general nonlinear model developed recently by Brandon and
Rogers [3]. Second, the kernel has a singularity at x = y which requires
special quadrature rules. These two difficulties can be treated together.
Let K̃j(x) :=

∫ l

−l
φj(x) dx+

∫ l

−l
K1(x, y)φj(y) dy, then the j-th column

of the matrix Kh is the load vector of the finite element space Sr
h with

respect to the function K̃j(x). The singularity in the kernel can be
avoided by using a quadrature rule for∫ l

−l

φi(x)K̃j(x) dx
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FIGURE 2. A linear finite element approximation to the current potential
in Pippard’s nonlocal superconductivity model. Here ξ = 0.1 and C = 2500.
The longer vertical line segments represent the trial partition, while the long
and short vertical line segments together represent the refined partition for the
given error tolerance.

which is different from those used for evaluating K̃j(x). For example,
Gaussian quadrature rules of different degrees can be applied. To match
the accuracy of O(hr+1) of the finite element space Sr

h, the Gaussian
quadrature rules which has the degree of precision greater than or equal
to 2r− 2 can be used on each element. Then the most time consuming
part is the evaluation of K1(x, y) at x and y which are Gaussian nodes
of different degrees of the elements, because K1(x, y) is also defined
by integration. For example, we generally have to evaluate K1(x, y)
2(n − 1)2 times if Gaussian quadrature rules of degree 1 and 2 are
used for the x and y integrations in Ki,j , respectively. But this may
be reduced dramatically. For example, if the partition is uniform, we
need to evaluate K1(x, y) only 2(n − 1) times. Also, the discussion
here indicates that the collocation methods might be more efficient
alternatives for computing A(x), and the related superconvergence
property desires further investigation.
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FIGURE 3. Approximations to the magnetic field in Pippard’s nonlocal su-
perconductivity model. The solid line represents the approximation based on
piecewise quadratic post-processing, the dotted line represents the approxi-
mation given by the linear finite element. The longer vertical line segments
represent the trial partition, while the long and short vertical line segments
together represent the refined partition for the given error tolerance.

Figure 2 contains the linear finite element approximation to the
current potential A(x). Figure 3 contains approximations to the
magnetic field A′(x) generated by the derivatives of uh(x) and Iquh(x),
respectively. At the place where the exact solution seems to be flat,
these two approximations to the field disagree very little. However, in
the vicinity of the boundary, the approximation to the field based on
the post-processing technique is obviously superior (see Figure 4). The
adaptive grid refinement procedure in Section 4.1 was used in the these
computations. We first used a uniform partition of 31 mesh points.
The adaptive procedure automatically generated a new partition with
95 mesh points by adding more mesh points in the vicinity of the
boundary than other places. To achieve a similar accuracy given here
by a uniform partition, one has to solve a much larger finite element
system.
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FIGURE 4. Approximations to the magnetic field in the vicinity of the left
boundary. The solid line represents the approximation based on piecewise
quadratic post-processing, the dotted line represents the approximation given
by the linear finite element.

5. Conclusions. In this paper we have shown that a Galerkin finite
element solution uh(x) to a class of Fredholm type integro-differential
equations contains information about u′(x) (the first derivative of the
exact solution), which is not revealed by u′

h(x). Several post-processing
techniques were then developed to extract more information about
u′(x) from a finite element solution uh(x). These superconvergent post-
processing techniques have the following features:

1. The first derivative of the post-processed results Iquh(x) and
Icuh(x) are higher order approximations to u′(x) than u′

h(x) itself, and
constructing Iquh(x) or Icuh(x) is less expensive than solving another
finite element system.

2. The superconvergence property of Iquh(x) and Icuh(x) stated in
Theorem 3.1 is global, i.e., (Iquh(x))′ or (Icuh(x))′ is a higher order
approximation to u′(x) than u′

h(x) almost everywhere in the interval
[−l, l]. This allowed us to generate more accurate approximations of
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the magnetic field over the whole domain for the Pippard’s nonlocal
superconductivity model, and to obtain a posteriori H1 semi-norm
error indicators to measure the accuracy of the finite element solutions.

3. However, the post-processing procedures themselves are local
because the construction of Iquh(x) and Icuh(x) at x ∈ [−l, l] involves
only two elements of Πh locally. This local property was used to derive
an adaptive grid refinement procedure which can control the actual
error of the finite element solution within a given error tolerance by
placing the mesh points appropriately.
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