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A BOUNDARY ELEMENT METHOD FOR
A NONLINEAR BOUNDARY VALUE PROBLEM
IN STEADY-STATE HEAT TRANSFER

HOUDE HAN

ABSTRACT. A new boundary variational formulation is
presented for the steady-state heat equation with radiation,
and a boundary element method is presented for its solution.
Furthermore, an optimal error estimate for the boundary
element approximation is given.

1. Introduction. We consider the numerical modeling of steady-
state heat transfer with radiation. This phenomenon is mathematically
represented by the following nonlinear boundary value problem

(1) Au =0, inQ,

(2 O = fa), on

where Q C R? is a bounded domain with sufficient smooth boundary T,
~ is a positive constant associated with the body’s emittance [15], and
f is a given function on I'. In the engineering literature, the nonlinear
boundary value problem (1)—(2) was studied by several authors using
boundary element methods [5, 9, 14]. Recently Ruotsalainen and
Wendland [13] have considered the potential problem with boundary
condition

@ o () = J(a), on,

and have given an analysis of a boundary element method for problem
(1)=(3). They assume g : I' Xx R — R is a Caratheodory-function, i.e.,
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g(+,u) is measurable for all u € R, and g(z,-) is continuous for almost
all z € T, and (8/0u)g(z,u) is Borel measurable satisfying

0
(4) 0<l§%g(x,u)§L<oo, Veel, ueR.

Ruotsalainen and Wendland reduced problem (1)-(3) to a nonlinear
integral equation on the boundary I' and proved existence and unique-
ness of a solution to the problem. Furthermore, the boundary element
approximate solution and its optimal error estimate are given under
assumption (4) on g(z,u). As pointed out by the authors boundary
condition (2) does not satisfy the assumption (4). In 1990 Atkinson
and Chandler discussed numerical methods for the nonlinear boundary
integral equation given by Ruotsalainen and Wendland. Two numer-
ical methods are proposed and analyzed for the discretizing integral
equation [2].

In this paper the nonlinear boundary value problem (1)—(2) is reduced
to a new boundary variational problem. Furthermore, a boundary ele-
ment approximation of this problem is given and the rate of convergence
of the approximation solution is obtained.

2. An equivalent boundary variational problem. Assume that
u € H'(Q) is the weak solution of problem (1)—(2). Then, in the
domain €, we have Au = 0. Let p = (Ou/0n)|r € H-/?(T). As
usual, let W™?(Q2) and W*P(T') denote the Sobolev spaces on the
domain 2 and the closed boundary curve I' with norms || - ||m .0 and
|| - [la,p,r- Note that W™2(Q) = H™(Q), W**T) = H*(T), and
WO¢(T') = L,(T') with integer m, real numbers a and p > 1 [1]. By
Green’s formula, we have

(5) wu(z)= 9G(,y) y y)ds, — /G z,y)p(y) dsy, Ve,

T 3ny

where G(z,y) = (1/27) log |z — y| is the corresponding fundamental so-
lution of equation (1); n, denotes the outward unit normal to boundary
I’ at y € I'. From the jump relations of the double-layer potential and
normal derivatives of the simple-layer potential as x approaches the
boundary I', we obtain the following two relationships between p and
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ulp [T, 11]:
(6)1 0G(z,y) y

iu(a:) = ). " on, /G z,y)p(y) dsy, Ve el,
(7)1 0?G(z,y) G (z,y)

§p(m) = ' Onadn, (y)dsy — - on, p(y) dsy, Vo e,
where

g 6;%;7’1?!) dsy dsz / G(z dsy, Ve el.

Let

H,Y3(T) = {q | ge H™Y*(T) and /qus=o}.

Multiplying (6) by a function q € H, 1/2 (T") and integrating over I, we
obtain

(8) —b(q,u) + ao(p,q) =0,  Vqe H,*I),

~ [ [ Gttty
g u) = /uqd-//“g;yy )a(a) ds, ds..

Multiplying (7) by a function v € H'/2(I") and integrating by parts,
we get

where

du d
(9) L) b = [ pods,  voe HVAD),

ds’ ds r
On the other hand, it is straightforward to check that problem (1)—(2)
is equivalent to the following variational problem: Find u € H'(Q)

such that

(10) /Vu-Vvdx—i—al(u,v):/fvds, You e HY(Q),
Q r
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where
(11) ay (u,v) = 'y/ |u2uv ds.
r

For any v =€ H*() and u satisfying Au = 0 in 2, we have

/Vu-Vvdx:/pvds.
Q r

By the equality (9), we have

/Vu Vvdac—a()((jlu ZZ)—Fb(p, v), Yov e HY(Q),

with u satisfying Au = 0 in Q. Then variational problem (10) is
reduced to the following boundary variational problem: Find (u,p) €

HY2(I') x H7Y*(I), such that

du dv

H'Y2(1

(12) <ds R >+a1(uv + b(p,v) /fvds Yov e (D),
~b(q,u) +ao(q,p) =0, Vg Hi V(D).

Before we establish the existence and uniqueness of the problem (12),
we recall some results on the bilinear forms ag(p, q) and b(g, v).

Lemma 2.1 [7, 8, 12]. (i) ao(p, q) is a bounded and coercive bilinear

form on H=1/2%(T) x H_1/2(1"), i.e., there exist two constants My > 0
and By > 0 such that

(13)  ao(p, @)| < Mollpll-1/2,2,rllgll-1/2,2,r Vp,q€ H*_I/Q(F),

(14) ao(p,p) > Bollpll®1jpor, Vo€ H: V(D).

(ii) b(g,v) is a bounded bilinear form on H:1/2(F) x H'Y2(T), i.e.,
there exists a constant My > 0 such that
|b(q,v)| < Mi|lgl|=1/2,.2,0l|v]|1/2,2,T,

15
= Vqe H, A1), ve H/(T).
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For a;(u,v), we have

Lemma 2.2. (i) a1(u,v) is well defined on H'/%(T') x H'/?(T).

(ii) The functional a(v,v) is strictly convexr on H/?(T) and

(16) ai(v,0) =|lol[g 50, Vve HYA(D).

(iii) For any u,v,w € HY?(T'), the following inequalities hold

17)  ax(uw, w) = ar(v,w)| < 47/F(|u| + [v]*)Ju — vf|w] ds,
(18)  a1(v,v —w) —ay(w,v —w) > % /F(\v\s + [w]?) (v — w)? ds.

Proof. (i) By Sobolev’s imbedding theorem [1], we know that for any
v € HY2(T') that v € Ls(T) and

l|v]]o,5,0 < Cllv|l1/2,2,r-

4/5 1/5
<o frupas) (frras)
r r

we conclude that a; (u,v) is well defined on H'/?(T") x HY/?(T).

(ii) The conclusion follows by making use of the strict convexity of
the mapping t € R — |t[5.

(iii) By the definition (11) of ay(u,v), we have

Since

r(w0) =1 [ ufuvas
r

a1 (u, w) — ay(v,w) = 'y/(|u\3u — |[v]2v)wds.
r
Furthermore, we get

(= Pyl = [0 [ dr| < 40 + o= ol
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On the other hand, we obtain that, for vw > 0,
(JvPPv = [wlw)(v — w) = (lv* = |w|*)(|v| = wl)
> ([ + w]?)(Jo] = |w])?
= ([v]* + [wl*)(v — w)*.
and for vw < 0,
(JvfPv = [w[w) (v —w) = ([v]* + [w|*)(jv] + [w])
1
> S ([0 + [wP)? (o] + wl)
1
> 7 (0P + [wP) (o] + [w) (o] + |w])®
1
> 70 + [wP) (v —w)*.
Thus the inequalities (17) and (18) are proved.
For any v € H'/2(T), let

dv ||
o + ol o

(19) lol? = \
—1/2,2,T

Lemma 2.3. || ||, is an equivalent norm on HY/2(I'), i.e., there
exist two positive constants Cy and Co such that

(20) Cillvllij2,2,0 < |0l < Caf[v]l1/2,2,r, Vv e HY(T).

Proof. Let 6 = 2ws/L, where L denotes the length of the boundary
and s denotes the length of the arc from the point py € I' to a point
p € T along the boundary I'. Making a change of variable from s to
0, it is seen that we only need to prove (20) when I is the circle with
radius 1. On the other hand, we know that the space C(f) is dense
in H1(2) [1]. If we can prove (20) for any v € C*(Q), then (20) holds
for v € HY/2(T).

Suppose T is the circle with radius 1. For any v € C*(Q) on boundary
I', we have

v = % + ngl(an cos nf + by, sinnd)
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where
1 2
an:—/ v(0) cosnf db, n=0,1,2,...
™ Jo
1 27
bn:—/ v(0) sinnf db, n=1,2,...
™ Jo
2 a2 2
10l = 5 + D _(ah +7),
n=1
2 ag = 2\1/2(, 2 2
HUH1/2,2,F Y + Z(l +n%)7 (ay, +by,),
n=1
dv = .
0= Z(nbn cosnf — nay, sin nh),
n=1
dv |? = 2\—1/2(, 272 2 2
— :Z(l—i—n) (n"b;, +n7ay,).
d0 71/27271—‘ n=1
Furthermore,
dv || 2 >
|G, e <2{ 5+ ety e )
—1/2,2,T ne1
< 2”””1/2,2,1‘
and
dv||? 9 9
[ IR
Thus, the proof is complete. ]

Corollary 2.1. Let H1/2( I) = {ve HY*T) and [rvds =0}, then
there exists a constant Cs > 0 such that

dv
(21) [[v]]1/2,2,0 < Cs s Yo e Hi/z(F).

)
—1/2.2,T

Lemma 2.4. There is a constant My > 0 such that
dv

< M.
|( )| 2”‘1” 1/2,2,T s

I

—1/2,2,T

Vqe HY3(T), ve HY2(D).

(22)
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Proof. For any v € HY/?(T"), let

1
1 d
! mes(F)/Fv *

then v = ¥ is a solution of Au = 0 and p = (Ou/0n)|r = 0. Hence
(7, p) satisfies the equation

~b(q,7) +ao(g,p) =0,  ¥ge H.*(D).
Since p = 0, we get

b(q,v)| = [b(g, v — D) < Millgl|-1/2,2,r||v = V|[1/2,2,
dv

< C3Miyllql|iy2,2,0 Is

)

—1/2,2,T
Vqe HV3(T), ve HY(D).

Thus the conclusion follows with My = C3Mj. a

We now establish the existence and uniqueness of a solution of the
problem (12).

Theorem 2.1. Suppose that f € H~'/2(T"). Then the problem (12)
has a unique solution (u,p) € HY/2(T) x H, Y/*(T).

Proof. For any given v € HY?(T') we consider the problem: Find
pE H*_l/z(l") such that

(23) ao(g,p) = b(q,v),  Vge H, D).

From Lemma 2.1 and the Lax-Milgram theorem [6], we know that the
problem (23) has a unique solution which is denoted by Kv € H, 1/2 (I).
Thus, we can eliminate the unknown function p in the problem (12).

In fact, for the solution (u,p) of the problem (12), we have p = Ku and

b(p,v) = ao(p, Kv) = ag(Ku, Kv).
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Hence the problem (12) is reduced to: Find u € H'/?(I') such that

(24) a0<z—z, %)—i—al(u,v)—l-ao(Ku, Kv) = (f,v), VUEH1/2(F),

which is a nonlinear variational problem on I.

Let ) D d
v v
I(’U) = 5 |:a0 (E’ £> + ao(KU,K’U):|

Fra(vo) - (o), Yoe HYAD).

It is straightforward to check that the nonlinear variational problem
(24) is equivalent to the following minimization problem: Find u €
H'/2(T") such that

(25) I(w)= inf I(v).
vEH/2(T)

By Lemmas 2.1, 2.2 and the imbedding theorem,

vllo2r < Collvllosr,  Vve Ls(D),

with a positive constant Cj, we obtain

1 dv dv 1
10) 2 oo G 50 )+ panos0) = (120

Bo || dv 2 vy 5

2 552 + =llvllosr = Ifll-1/2.2,0/lv1/2,2,0
2 ||ds || ypp T 51005 / /
Bo || dv ? v 5

> =7 + —=sllvllo2r — IIfll=1/2,2,0llv]l1/2,2,0-
2 ||ds||_yjp,p  5C5 10 / /

Applying Lemma 2.3, we conclude that

I(v) = 4o0.

Hle/z,z,raOo

Combining the results in Lemma 2.1-2.2, we deduce the strict convexity
and the differentiability of the functional I(v) [6, p. 3.14]. By the
theorem of minimization of convex functionals [3, p. 13] we conclude
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that the minimization problem (25) has a unique solution, u € H/?(T),
which is the unique solution of (24). Let p = Ku, where u is the unique

solution of (25). Then (u,p) € HY?(T) x H*_l/z(F) is the unique
solution of the problem (12), which finishes the proof. O

Furthermore, we have the following

Theorem 2.2. The boundary variational problem (12) is equivalent
to the following saddle-point problem: Find (u,p) € Hl/Z(F)xH,flﬂ(F)
such that

L(u,q) < L(u,p) < L(v,p),

26
(26) Vv e HYX(D), q e HY/*(T),

where

1 dv dv
L = — _— —
(v,q) 2a0(d8, ds)

1 1
+ —ay(v,v) + b(q,v) — zao(q, q) — / fvds.
5 2 -

Proof. Assume that (u,p) is the solution of (26). Then for any
qe H:l/z(f‘) and real number A, we have

L(u,p + Aq) < L(u, p).

That is,
)\2

Mblg,u) — aolg,p)} ~ —rao(g,9) < 0.

Since ap(q,q) > 0 and ) is an arbitrary real number, we have

—b(g,u) +ao(q,p) =0,  Vgqe H, 7*D).

On the other hand, for any v € H'/2(T") and any real number A, we
have
L(u,p) < L(u+ Av,p), Vv e HY3(T).
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A computation shows

(27)
du dv
L(u + A\v,p) = L(u, p)+)\{a0<d ' Is >+bp, /fvds}
A2 dv dv 1
+ 7a0<$, £> + g[al(u + v, u+ M) — ay(u, u)].
Let

1
J(A) = gal(u + v, u + Av),

then we have

7(0) = %al(u, w)

dJ
— :'y/ lu+ M| (ud-Iv)v ds
X .

dJ
5‘)‘:0 = 'y/ lulPuv ds = ay (u,v)
d2

e 47/ |u+Av|*v? ds > 0, VAeR.

Hence, we obtain

%{al(u—k)\v,u—i-)\v) ~ar(wu)} = JO) — J(0)
(28) )\2 d2J

= )\al(u,v) + gm )\_

)

where X lies between 0 and X. Combining (27) and (28), we arrive at
the following inequality

du dv
)\{ (d ' T >+a1(u v)+b(gq, v /fvds}
A2 dv dv d*J
2 il > /21,
e p{o( )+ 5| fro veenr

Since A is an arbitrary real number, we get

<le flv>+a1(u v)+b(p, )—/Ffvds, Yov e HY(I).
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This means that (u,p) € HY?(T) x H*_I/Z(F) is the solution of the
problem (12). Each of the above steps is reversible, hence we conclude
that if (u,p) is the solution of the problem (12), then it is the solution
of the saddle-point theorem (26), finishing the proof. mi

Remark. For the more general nonlinear problem (1)—(3), we can
get a similar result under some suitable assumptions on g(x,w). For
example, suppose that g(z,u) and (9/0u)g(z,u) are two continuous
functions on I' X R, and

l9(z, u)| < O(L+ |u™*h),

0
aolul? < 5-glz,u)

< aqul?, Vzel, ue R;

where C, 8, ap and «; are positive constants. Then the problem (1)—(3)
is equivalent to the variational problem (24) with

a1 (u, v) = /Fg(m,u)vdx.

3. The boundary element approximations. Here we consider a
numerical approximation scheme for finding the approximate solution
of the problem (12). Assume that Sy, and M}, are two finite-dimensional

subspaces of H'/2(T") and H, 1/2 (T), respectively. The discrete problem
corresponding to (12) is: Find (up,pn) € (Sh, Mp), such that

duh d’Uh

b = A S

(29) ao< 15 ds >+a1(Uh,vh)+ (Phyvn) = (f,vn)s vp € Sh,
—b(qn, un)+ao(qn,pn) =0, Van € My.

For the problem (29) we have

Theorem 3.1. If f € H Y/2(I), then the problem (29) has a unique
solution (up,pr) € (Sh, Mp,).

The proof of Theorem 3.1 is omitted here because it is similar to the
proof of Theorem 2.1. Now assume that f € Ls/4(I"). Taking vy, = up,
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gn = pp, in (29), we obtain

<duh duh
ag

s’ E) + a1 (un, un) + ao(pn, pr) = (f, un)-

Using Young’s inequality and the results in the Lemmas 2.1-2.2; we get

(30) lunll§ 5.0 < Ca(|l]

where Cy is a constant independent of h. Similarly for the solution
(u,p) of (12), we have

(31) [lul

)5/4

0,5/4,T )

S50 < Cal||fllo,5/ar)>*.

We now analyze the error of the approximation solution (up,pn). Let
ep = U — Up, €p, = P — pr. Then we have
(32)
dep, dv
ag (d—:, d—;> +a1 (u, vp) —a1 (un, vp)+b(en, vn) = 0, V v, € Sh,

—b(qn, en)+ao(qn,en) =0, Y qn € My,.
By (32), a computation shows
deh deh
ao <$’ E) + a1(u, en) — a1(un, en) + aolen, en)

dep, d(u—v
= ao<d—sh, %) + a1 (u,u — vp) — ay(up, u —vp)

+ao(p — qn,en) + blen, v —vp) — b(p — qn,en),
V’Uh S Sh, qn € My,.

On the other hand, from Lemmas 2.1-2.4, we have

d d
ao <%, %) +ai(u,en) — a1 (up, en) + ao(en, en)

2

dep, Y
oG] lenluar) 4 [0+ e ds
—1/2,2,T r
and
a0<dﬁ, d(uvh)>‘ < M, den, d(u—wp)
ds ds ds —1/22,T ds —1/2,2,0




30 H. HAN

2

< Boj|den
4| ds ~1/2,2,0
2M¢ || d(u—wvp) 2
Bo ds —1/2,2,1“,

Bo
lao(p—q,en)| < Z||5h||2—1/2,2,r

QMg 9
+ P—aqni|- ’
25 a2

o u=0n) = an (un, u=on)| < 4y [ (ul® + funfhen[u=vi  ds
r
2l 3 31,2
<2 [ QP+ funf)et ds
r

4320 [l + Jun Y onf? ds,
r

d(u—v
b(en, u—wvn)| < Mallen||-1/2,2,r (d )
S —1/2,2.0
Bo
< Z||5h||2—1/2,2,1“
2MZ || d(u—up) ||?
S | R )
Bo ds -1/2,2,T
deh
|b(p—an,en)| < Ma|lp—qnl|-1/2,2,0 (d )
S ll-1/22,0
_ Bol|den [’
4| ds ~1/2,2,0
2M22 9
+ P—aqni|- .
Bo || hH 1/2,2,0
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Thus, we obtain
den |12
(33) Bo (' %r
2 ds —1/2,2,T

o33
Bo ds —1/2,2,T

+ 32y / (Jul® + [un ®) u — vn|? ds.
I

)
Hllenll ayaar ) + 3 [P + )k s

2

- qh||21/2,2,r)

Combining the inequalities (33), (30) and (31), we have the following
error estimate.

Theorem 3.2. Suppose f € L5;4(T'), let (u,p) and (un,pn) be the
solutions of (12) and (29), respectively, and let ey, = u—up, €, = p—ph.-
Then

) |5

| el [l )k s
—1/2,2 r

{ inf [
vhLEShH

uvh)2

n <|f||o,5/4,r)3/4|uvh||3,5,r]
—1/2,2,T

inf h 2, )
+qhthHp qnl| 1/2,2,T
where C is a constant independent of h.

In applications the subspaces S and M}y could be constructed as
follows. Assume that the boundary I' of 2 is represented as

z1 = z1(s), xy = x2(s), 0<s< L,

and

zj(0) = z;(L), j=12
Then I' is divided into segments {T'} by the points (z1(s;),z2(s:)),
t=1,2,...,N with s; =0, sy+1 = L. Let

"=y s sl
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This partition of I' is denoted by Jj. Let

(35)  Sp = {wp, € C°T),vp|r is a linear function
of parameter s, VT € Jp},

(36) My, = {pn|r is a constant, VT € Jp and / pp ds = 0}.
r

The subspaces S;, and M}, are two regular finite element spaces in the
sense of Babuska and Aziz [2] that satisfy the following approximation

property:

inf o 2 < Ch2 2
virelsh”u Uh|‘1/2,2,1“ > Hu||3/2,2,1"7

qhithHP - Qh|‘%1/2,2,r < ChQHPH%/z,z,F-

(37)

From the imbedding theorem, we have
(38) [0/[§50 < Clloll} /o2, Vo HYAD).
Furthermore, we obtain

(39) inf [[u—vp[g 50 < CR?[Julf3 .0 p-
VR EShH

Combining (34) and (37)—(39), we have

Theorem 3.3. Suppose that the solution (u,p) of (12) satisfies
u € H¥?(T), p € H:1/2(I‘) N HY2(T), and the subspaces Sy, and M,

are given by (35) and (36). Then the following error estimate holds

d(u — up) ||?
ds

+lp—prll* 1200 +/(\UI3 + unl?) (u —up)? ds
—1/2,2,T r

<C{[1+ (||f‘|0,5/4,1")3/4]||UH§/2,2,I‘ + |‘P|‘%/2,2,F}h2-

4. Numerical examples. Suppose that the domain Q = {|z| < 1}
with boundary T', which is the unit circle. Let (r,60) denote the polar
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coordinates in the plane, namely xy = rcosf, o = rsinf. Then the
boundary T is given by

x1 = cosb, To = sinf, 0<6<2m.

Let h = 2n/N and 0; = (i — 1)h, i = 1,2,...,N, where N is an
integer. In each of the following three examples, we take N = 4,816,
then get the numerical solutions w4, us, uig of the problem (29),
correspondingly, by Newton’s method. In every example we select zero
initial data for computing u4 and we select {u4(6;),i =1,2,...,8} with
0; = (i — 1)(w/8) as the initial data for computing us. Similarly, we
select initial data from ug for computing u¢.

Example 1. In this example we select v = 1 and f(z) = 2. Then
we know that the exact solution of (1)—(2) is

w(x) = 21/* = 1.189207. .. .

Example 2. We take v = 1, f(z)|r = (1 + |cos6|®) cosf. In this
case it is straightforward to check that the exact solution of the problem

(1)—(2) is

u(z) = 21, u(z)|r = cosé.

Example 3. We take v = 1, f(z)[r = e®*%cos(d + sinf) +
[e°°%¢ cos(sin §)]*. Then the exact solution of problem (1)—(2) is

u(z) = e* cos(xz).
The numerical results are shown in Tables 1, 2 and 3, in which &
denotes the number of iterates computed in Newton’s method, and

EN = MaX1<i<N "U,|]_‘*(01) — UN(91)| for N = 4, 8 and 16.

TABLE 1. Example 1.

4 8 16
58 1 1
En | 0.00000 | 0.00000 | 0.00000

==
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TABLE 2. Example 2.

4 8 16
10 4 3
En | 0.06900 | 0.02848 | 0.00671

El

TABLE 3. Example 3.

4 8 16
k 68 6 4
En | 1.24939 | 0.19676 | 0.03617
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