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DISCRETE POLYNOMIAL-BASED GALERKIN METHODS
FOR FREDHOLM INTEGRAL EQUATIONS

MICHAEL A. GOLBERG

1. Introduction. In recent years there has been considerable inter-
est in using Galerkin’s method for the numerical solution of Fredholm
integral equations. In large measure, this interest seems to stem from
the interesting superconvergence properties discovered by Sloan in [12,
13]. In early work the effect of quadrature errors on the behavior of the
algorithms was ignored [12, 13], but starting with the work of Chandler
[4] and then Spence and Thomas [14], these errors have been studied
in great detail. For spline approximations this work culminated in the
papers of Joe [7] and Atkinson and Bogomolny [2]. In particular, in [2],
it was shown that sufficiently accurate quadrature rules preserved both
the rates of convergence and superconvergence of Galerkin’s method.

In [5] Delves and Freeman discussed the effect of quadrature errors
on Galerkin’s method using orthogonal polynomial approximations for
one-dimensional equations, while Miel in [10, 11] examined the partic-
ular case of Legendre polynomial approximations for both linear and
nonlinear equations. None of these authors considered the convergence
of the Sloan iterate.

It is the purpose of this paper, therefore, to sharpen and extend the
convergence results in [5, 10, 11] for the solution of the equations

(1.1) u(x) = f(x) +
∫ b

a

k(x, t)u(t) dt, −∞ < a < b < ∞,

where f(x) and k(x, t) are suitably smooth functions on [a, b] and [a, b]×
[a, b] respectively. In particular, we show that if u(x) is approximated
by vn =

∑n
k=0 akϕk(x), where {ϕn} are the orthonormal polynomials

associated with the integrable weight function w(x) ≥ 0 on [a, b]
and integration rules of precision greater or equal than 2n are used
to evaluate the integral transforms and inner products, then ||u −
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vn||∞ = O(n−r+ν+μ+2) where r is the number of derivatives of f(x)
and k(x, t) and ν and μ depend on {ϕn}. This extends the mean-square
convergence results in [5, 10, 11].

The paper is divided into five sections. In Sections 2 and 3, we review
the Galerkin and discrete Galerkin methods. Section 4 is devoted to
the convergence analysis of the discrete Galerkin method. In Section 5
we summarize these results and discuss future research.

2. Galerkin’s method. Assume that k(x, t) and f(x) in (1.1) are
real and continuous on [a, b], −∞ < a < b < ∞, and let Lw be the
space of real square-integrable functions with respect to the integrable
weight function w(x) ≥ 0. The inner product on Lw is given by

(2.1) 〈f, g〉w =
∫ b

a

w(x)f(x)g(x) dx,

and the induced norm is

(2.2) ||f ||w = (〈f, f〉w)1/2.

To solve (1.1) (which is assumed to have a unique solution) by
Galerkin’s method, let {ϕ0, . . . , ϕn} be n+1 linearly independent func-
tions in Lw and approximate u by

(2.3) un =
n∑

k=0

akϕk.

As is well known, the coefficients {ak}n
k=0 are obtained by solving [1]

(2.4)

(
Kϕk =

∫ b

a

k(x, t)ϕk(t) dt

)

n∑
k=0

〈ϕk, ϕj〉wak −
n∑

k=0

〈Kϕk, ϕj〉wak = 〈f, ϕj〉w,

j = 0, 1, 2, . . . , n.

We shall consider equations (2.3) (2.4) only where {ϕ0, . . . ϕn}, n =
0, 1, 2, . . . , are the orthonormal polynomials associated with w(x). That
is,

(i) deg(ϕn) = n, n = 0, 1, 2, . . . ,(2.5)
(ii) 〈ϕ, ϕj〉w = δkj , (k, j) = 0, 1, 2, . . . , n.(2.6)
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Particularly important special cases occur when w(x) = 1/(1 − x2)1/2

and ϕn(x) = tn(x), the nth orthonormalized Chebyshev polynomial
[3], or w(x) = 1 and ϕn = pn, the normalized Legendre polynomials
[10].

Under the stated conditions on k and f , it is well known that un

converges to u in Lw [12]. In particular, using Jackson’s theorem,

(2.7) ||u − un||w = 0(n−r),

if f(x) ∈ Cr[a, b], and k(x, t) ∈ Cr([a, b]× [a, b]). For some polynomials
one can obtain convergence rates in the uniform norm [3].

The convergence property in (2.7) has been known for some time
and has been proved under the assumption that the inner products
〈f, ϕj〉w, 〈Kϕk, ϕj〉w, (j, k) = 0, 1, 2, . . . , n, are calculated exactly. In
most practical cases, this cannot be done, and some numerical method
needs to be used to approximate them. It is then important to study
the effects of such approximations on the convergence of un. For
piecewise polynomials (splines) the work of Chandler [4], Spence and
Thomas [14], Joe [7], and Atkinson and Bogomolny [2] has shown
that sufficiently accurate quadrature rules will preserve the convergence
rates of the Galerkin approximation (they require w = 1). In particular,
using discontinuous splines of order r[r = deg +1], Atkinson and
Bogomolny have shown that, to preserve the O(hr) rate of convergence
of Galerkin’s method, one must use an integration rule with precision
d = r − 1. To preserve the O(h2r) convergence of the Sloan iterate,
it suffices to use an integration rule with d ≥ 2r − 1. On the basis of
this, it is reasonable to conjecture that rules of precision n could be
used to preserve (2.7). Unfortunately, this appears not to be the case.
The best we are able to show is that rules with precision ≥ 2n give
O(n−r+ν+μ+2) convergence in the uniform norm (ν ≥ 0, μ ≥ 0 depend
on {ϕn}∞n=0) while Gaussian quadrature with n+1 nodes and w(x) = 1
gives O(n−r) convergence in the Lw norm.

3. Discrete Galerkin methods. When the inner products
and integrals in (2.4) are approximated by numerical integration, the
approximation to un will be denoted by vn and the resulting numerical
scheme will be referred to as the discrete Galerkin method.
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To obtain vn, define quadrature rules QM and QN by

(3.1)
∫ b

a

w(x)g(x) dx � QM (g) =
M(n)∑
k=0

wkg(xk),

and

(3.2)
∫ b

a

g(t) dt � QN (g) =
N(n)∑
l=0

σlg(tl).

(Note that {wk}, {xk}, {σl} and {tl} generally depend on n. For
convenience, this dependence will be suppressed in the remainder of
the paper.) For our purposes we require that

(i) wk > 0, k = 0, 1, 2, . . . , M(n), n ≥ 0,(3.3)
(ii) σl > 0, l = 0, 1, 2, . . . , N(n), n ≥ 0,

(iii) the precision of QN and QM is ≥ 2n, n ≥ 0.
(3.4)

That is,

(3.5) QM (g) =
∫ b

a

w(x)g(x) dx, QN (g) =
∫ b

a

g(x) dx,

when g is a polynomial of degree ≤ 2n.

Using QM and QN we define the following approximations:

〈f, ϕk〉w � QM (fϕk), 0 ≤ k ≤ n,(3.6)
〈ϕk, ϕj〉w � QM (ϕkϕj), 0 ≤ (j, k) ≤ n(3.7)

and

(3.8)

〈Kϕk, ϕj〉w =
∫ b

a

∫ b

a

w(x)k(x, t)ϕk(t)ϕj(x) dx dt

�
M∑

m=0

N∑
l=0

σlwmk(xm, tl)ϕk(tl)ϕj(xm)

≡ QM × QN (kϕkϕj).
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Substituting (3.6) (3.8) into (2.6) and letting

(3.9) vn =
n∑

k=0

bkϕk,

{bk}n
k=0 are determined by solving

(3.10) bj −
n∑

k=0

[ M∑
m=0

N∑
l=0

σlwmk(xm, tl)ϕk(tl)ϕj(xm)
]

=
M∑

m=0

wmf(xm)ϕj(xm), 0 ≤ j ≤ n

since QN has precision ≥ 2n and ϕkϕj is a polynomial of degree
j + k ≤ 2n, 0 ≤ (j, k) ≤ n so that QM (ϕkϕj) = 〈ϕk, ϕj〉w = δkj .

4. Convergence of the discrete Galerkin method

4.1. Mean-square convergence of vn. To prove the convergence of
vn and to obtain rates of convergence, we use the theory of perturbed
projection methods [8]. For this, let Pn be the operator of orthogonal
projection onto Xn = span ({ϕk}n

k=0). Then some tedious algebra
shows that vn defined by (3.9) (3.10) satisfies the operator equation

(4.1) vn = πnKnvn + πnf,

where

(4.2) Knu(x) =
N(n)∑
l=0

σlk(x, tl)u(tl)

and πn is a “discrete” projection defined by

(4.3) πnu(x) =
n∑

k=0

QM (uϕk)ϕk.

Now πnKnvn = PnKvn + πnKnvn − PnKvn = PnKvn + Rnvn and
πnf = πnf − Pnf + Pnf = Pnf + rn so that (4.1) becomes

(4.4) vn = PnKvn + Rnvn + Pnf + rn,
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where Rn may be viewed as a linear operator from Xn → Xn, rn ∈ Xn

and vn ∈ Xn.

Let
||Rn||n = {lub||Rnwn||w, wn ∈ Xn, ||wn|| = 1}.

Theorem 4.1. Let QM and QN , n ≥ 0, be a sequence of quadrature
rules satisfying (3.3) (3.5), and assume that f(x) ∈ Cr[a, b], r > ν +1,
k(x, t) ∈ Cr([a, b]×[a, b]), r > ν+1, and [

∫ b

a
ϕ2

n(x) dx]1/2 ≤ cnν , ν ≥ 0,
n ≥ 0 where c does not depend on n. Then for all n sufficiently large,
vn, the discrete Galerkin approximation to u, exists and is unique in
Lw. Moreover, vn → u in Lw and

(4.5) ||u − vn||w = 0(n−r+ν+1).

To prove Theorem 4.1 we need to obtain estimates of the quadrature
errors

(4.6) ej(fϕj) = 〈f, ϕj〉w − QM (fϕj), 0 ≤ j ≤ n,

and

(4.7) Ejk = 〈Kϕk, ϕj〉w − QM × QN (kϕkϕj), 0 ≤ (j, k) ≤ n.

These estimates are the core of the proof, and our method for obtaining
them is somewhat different than that used in [5, 6]. Similar results to
these are given in [9], but it appears from the proof given there that the
constants in (4.9) (4.10) depend on the derivatives of {ϕn}∞n=0. Since
these derivatives can grow like nr, where r is the number of derivatives
of k(x, t) and f(x), this growth shows that the errors need not converge
to zero. The convergence rates are an improvement over those given in
[5, 10]. We begin with a simple, but useful lemma.

Lemma 4.1. Let X be a normed linear space with norm || · ||, and
let l be a bounded linear functional on X. If Y is a subspace of X and
l(y) = 0 for all y ∈ Y , then for all x ∈ X,

(4.8) |l(x)| ≤ ||l||{inf ||x − y||, y ∈ Y }.
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Proof. Let x ∈ X. Then x = (x− y) + y, y ∈ Y . Since l is linear and
l(y) = 0, l(x) = l(x− y)+ l(y) = l(x− y). Taking absolute values gives
(4.8).

Lemma 4.2. Let QM and QN satisfy (3.3) (3.5), and let g(x) ∈
Cr[a, b], r ≥ 1. Assume for some ν ≥ 0,

[ ∫ b

a

ϕ2
j(x) dx

]1/2

≤ cjν

with c independent of j. Then

(4.9)
|ej(g)| =

∣∣∣∣
∫ b

a

w(x)g(x)ϕj(x) dx − QM (gϕj)
∣∣∣∣

≤ c/nr, 0 ≤ j ≤ n,

and

(4.10)
|fj(g)| =

∣∣∣∣
∫ b

a

g(x)ϕj(x) dx − QN (gϕj)
∣∣∣∣

≤ c/nr−ν , 0 ≤ j ≤ n,

where c is a generic constant not depending on n.

Proof. To get (4.9), take X = C[a, b] with the sup norm, in
Lemma 4.1, and let Y = Xn = span ({ϕk}n

k=0), the subspace of
polynomials of degree ≤ n. If lj = ej , then lj(g) = 0, for all
g ∈ Xn, since QN has precision ≥ 2n. Thus, if g ∈ Cr[a, b],
|ej(g)| = |lj(g)| ≤ ||lj ||inf {||g − y||∞, y ∈ Xn}. By Jackson’s theorem
inf {||g− y||∞, y ∈ Xn} = 0(n−r), n ≥ r, so that it remains to estimate
||lj ||.

Now

(4.11)

|lj(g)| =
∣∣∣∣
∫ b

a

w(x)g(x)ϕj(x) dx −
M∑

m=0

wmg(xm)ϕj(xm)
∣∣∣∣

≤
∫ b

a

w(x)|g(x)| |ϕj(x)| dx +
M∑

m=0

wm|g(xm)| |ϕj(xm)|,
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since w(x) ≥ 0 and wm > 0, 0 ≤ m ≤ M . By the Cauchy-Schwarz
inequality for integrals and sums,

∫ b

a

w(x)|g(x)| |ϕj(x)| dx

≤
[ ∫ b

a

w(x)ϕ2
j(x) dx

]1/2[ ∫ b

a

w(x)g2(x) dx

]1/2

≤ c1||g||∞,

and

(4.12)
M∑

m=0

wm|g(xm)| |ϕj(xm)|

≤
[ M∑

m=0

wmϕ2
j(xm)

]1/2[ M∑
m=0

wmg2(xm)
]1/2

≤ c2||g||∞,

since [
∑M

m=0 wmϕ2
j(xm)]1/2 =[

∫ b

a
w(x)ϕ2

j(x) dx]1/2 and [
∑M

m=0 wm]1/2 =

[
∫ b

a
w(x) dx]1/2.

Thus, |lj(g)| ≤ (c1 + c2)||g||∞, giving ||lj || ≤ c where c does not
depend on j, 0 ≤ j ≤ n. Hence, |ej(g)| = |lj(g)| ≤ cn−r, 0 ≤ j ≤ n.

For (4.10), we again take X = C[a, b] and Y = Xn in Lemma 4.1.
Letting lj(g) =

∫ b

a
g(x)ϕj(x) dx − QN (gϕj), 0 ≤ j ≤ n, lj(g) = fj(g).

Since QN also has precision ≥ 2n, lj(g) = 0 for all g ∈ Xn, 0 ≤ j ≤ n,
and |lj(g)| ≤ c||lj ||nr . Thus, it suffices to estimate ||lj ||.

Arguing as above, ||lj(g)|| ≤ c[(
∫ b

a
ϕ2

j (x) dx)1/2+
∑N

l=0 σ2
l ϕj(xl)1/2]×

||g||∞ = 2c(
∫ b

a
ϕ2

j(x) dx)1/2||g||∞ because QN has precision ≥ 2n.

By assumption, (
∫ b

a
ϕ2

j (x) dx)1/2 ≤ cjν , so that ||lj || ≤ cjν ≤ cnν ,
0 ≤ j ≤ n. Thus, |fj(g)| = |lj(g)| = 0(n−r+ν).

Lemma 4.3. Let g(x, y) ∈ Cr([a, b] × [a, b]), r > ν + 1, and sup-
pose that

∫ b

a

∫ b

a
w(x)g(x, y)ϕk(x)ϕj(y) dx dy is approximated by QM ×

QN (gϕkϕj), where QN and QM are as in Lemma 4.2. Then the error
Ejk = 0(n−r+ν), 0 ≤ (j, k) ≤ n, n ≥ r.
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Proof. By definition

(4.13)

Ejk =
∫ b

a

∫ b

a

w(x)g(x, y)ϕk(x)ϕj(y)

−
N∑

l=0

M∑
m=0

σmwlg(xl, ym)ϕk(xl)ϕj(ym).

Letting hm(x)=g(x, ym), 0≤m≤M , and h(y)=
∫ b

a
w(x)g(x, y)ϕk(x) dx

(4.14) Ejk =
∫ b

a

h(y) dy −
M∑

m=0

σmϕj(ym)QN (hmϕk).

But QN (hmϕk) =
∫ b

a
w(x)g(x, ym)ϕk(x) dx − ek(hmϕk) = h(ym) −

ek(hmϕk), and using this in (4.14) gives

Ejk =
∫ b

a

h(y) dy −
M∑

m=0

wmϕj(ym)[h(ym) − ek(hmϕk)]

=
∫ b

a

h(y) dy −
M∑

m=0

wmϕj(ym)h(ym)

+
M∑

m=0

wmϕj(ym)ek(hmϕk)

= fj(hϕj) −
M∑

m=0

wmϕj(ym)ek(hmϕk).

By Lemma 4.2, |fj(hϕj)| = 0(n−r+ν), 0 ≤ j ≤ n, and |ek(hmϕk)| =
0(n−r) uniformly in m. (The uniformity follows from the error formula
in Jackson’s theorem [3].) Thus

|Ejk| ≤ c1n
−r+ν + cn−r

M∑
m=0

wm|ϕj(ym)|.

By the argument in Lemma 4.2

M∑
m=0

wm|ϕj(ym)| ≤
[ ∫ b

a

w(x) dx

]1/2

, 0 ≤ j ≤ n,



206 M.A. GOLBERG

so |Ejk| ≤ c1n
−r+ν + c3n

−r ≤ cn−r+ν , 0 ≤ (k, j) ≤ n.

One should note that the error estimates in Lemmas 4.2 and 4.3 do
not follow directly from those for

∫ b

a
w(x)g(x) dx − QM (g), etc., if g is

a Cr function. This was apparently done in [8] and leads, we believe,
to over-optimistic assumptions on the quadrature rules. For example,
if we assume, as is done in [9], that QM has precision ≥ n, then the
argument given there for ej(g) appears to go as follows:

Let pn of degree ≤ n be the polynomial of best uniform approximation
to gϕj . Then

∫ b

a

w(x)g(x)ϕj(x) dx − QM (gϕj)

=
∫ b

a

w(x)[g(x)ϕj(x) − pn(x)] dx − QM (gϕj − pn)

since
∫ b

a
w(x)pn(x) dx − QM (pn) = 0. thus,

|ej(g)| ≤ ||gϕj(x) − pn||∞
∫ b

a

w(x) dx

+ ||gϕj − pn||∞
M∑

m=0

wm

= 2||gϕj − pn||∞
∫ b

a

w(x) dx.

If one now uses Jackson’s theorem to estimate ||gϕj − pn||∞ the
error is ≤ cn−r||(gϕj)(r)||∞ where (gϕj)(r) is the rth derivative of

gϕj . By Leibnitz’s rule (gϕj)(r) =
∑r

k=0

(
r
k

)
ϕ

(k)
j g(r−k) so that

||gϕj(r)||∞ ≤ ∑r
k=0

(
r
k

)
||ϕ(k)

j ||∞||g(r−k)||∞. But ||ϕ(k)
j ||∞ can grow

like j2k (for Legendre or Chebyshev polynomials, for instance) so that
in such cases ||(gϕj)(r)||∞ ≤ c1j

2r, and it follows from this argument
that |ej(g)| ≤ cn−rj2r. For j = n, |ej(g)| = 0(nr), which is useless for
our purposes.
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Proof of Theorem 4.1. Arguing as in [9], it follows that

(4.15) ||rn||w =
[ n∑

k=0

e2
k(fϕk)

]1/2

,

and

(4.16) ||Rn||n ≤
[ n∑

k=0

n∑
j=0

E2
jk

]1/2

.

Using the results of Lemmas 4.2 4.3 in (4.15) (4.16) gives ||rn||w =
0(n−r+1/2) and ||Rn||n = 0(n−r+ν+1), so that ||rn||w → 0 and
||Rn||n → 0, n → ∞. From Theorem 1 of [8] (let H = I there) it
follows that for all n sufficiently large that vn exists, is unique, and

(4.17) ||u − vn||w ≤ c[||u − un||w + ||Rn||n + ||rn||w].

Since ||u − un||w = 0(n−r), (4.9) (4.10) and (4.17) give

||u − vn||w≤c1n
−r + c2n

−r+ν+1 + c3n
−r+1/2≤cn−r+ν+1, n→∞.

Example 4.1. In [16] Miel considered the discrete Galerkin method
where w(x) = 1, {ϕn}∞n=0 are the normalized Legendre polynomials
and QM and QN are ordinary Gaussian quadratures with M(n) =
N(n) = n + 1. In this case it is well known that the precision of QM

and QN is 2n + 1 and all the weights wm = σm are positive [15]. If
f(x) and k(t, x) in (1.1) are Cr, r > 1, functions, it follows that the
discrete Galerkin approximation νn converges in Lw[a, b](w = 1) and
||u − vn||w = 0(n−r+1) since ν = 0.

This sharpens the result in Theorem 5.2 of [10] where only conver-
gence of the discrete Galerkin method is proved, but no convergence
rates are given. In fact, there appears to be an error (or possibly just
an oversight) in the proof, as the author states (but does not prove)
that ek(fϕk) → 0 and Ejk → 0 are sufficient to guarantee that ||rn||w
and ||Rn||n in (4.18) also converge to zero. Since no analysis of the
quadrature errors ek and Ejk is given, it appears that the assumption
of Riemann integrability of f(x) and k(x, t) is too weak.
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Example 4.2. In [3] Baker considered solving (1.1) using Galerkin’s
method with the Chebyshev polynomials {tn(x)}. Taking a = −1,
b = 1, w(x) = (1 − x2)−1/2, and using the Gaussian quadrature for
QN (M = N = n + 1) gives ||u − vn||w = 0(n−r+1) as ||tn||∞ ≤ 1,
n ≥ 0.

4.2. Uniform convergence of vn.

Theorem 4.2. Suppose that the conditions of Theorem 4.1 hold and
||ϕn||∞ ≤ nμ, μ ≥ 0, n ≥ 0. Then vn converges uniformly to u if
r > ν + μ + 2 and

(4.18) ||u − vn||∞ ≤ n−r+ν+μ+2.

Proof. Following the method used in [5, 6]

(4.19)

u − vn =
∞∑

k=0

〈u, ϕk〉wϕk −
n∑

k=0

bkϕk

=
n∑

k=0

(〈u, ϕk〉w − bk)ϕk +
∞∑

k=n+1

〈u, ϕk〉wϕk.

However, 〈u, ϕk〉w − bk = 〈u, ϕk〉w − 〈vn, ϕk〉w = 〈u − vn, ϕk〉w. By
the Cauchy-Schwarz inequality and Theorem 4.1, 〈u − vn, ϕk〉w ≤
||u − vn||w||ϕk||w ≤ c1n

−r+ν+1. Also, |〈u, ϕk〉w| ≤ c2n
−r [6], n ≥ r.

Thus, for n ≥ r,

|u − vn| ≤ c1n
−r+ν+1

n∑
k=0

||ϕk||∞ +
∞∑

k=n+1

c2n
−r+ν+μ

≤ c3n
−r+ν+1 · nμ+1 + c4n

−r+μ+1

≤ cn−r+ν+μ+2,

so that ||u− vn||∞ = 0(n−r+ν+μ+2), and un → u if r > ν +μ+2.

Example 4.3. In Example 4.1 ν = 0, μ = 1/2 [15], so that vn

converges uniformly to u if r > 5/2 and ||u − vn||∞ = 0(n−r+5/2).
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Example 4.4. In Example 4.2 ν = 0 and μ = 0 since ||tn(x)||∞ = 1.
Thus, ||u − vn||∞ = 0(n−r+2).

Note that the convergence rate here is somewhat worse than the
known 0(n−r log n) convergence for un.

Example 4.5. We note that the convergence rates given in Theorem
4.1 and 4.2 are not optimal. For instance, if we use Gaussian quadrature
with n+1 nodes in Examples 4.1 and 4.3 then, arguing as in [3], it can
be shown that vn is the Lagrange interpolant of the solution {zk} to
the Nyström equations

zk = f(tk) +
n∑

j=0

wkk(tk, tj)zj , 0 ≤ j ≤ n.

Using this fact and the well-known convergence theory for the Nyström
method [1], it can be shown that

(4.20) ||u − vn||∞ ≤ n−r+1/2.

If we consider only Lw convergence, then the estimate (4.18) can be
improved. Again, arguing as in [2] using the relation between vn and
the Sloan iterate v̂n = f + Knvn, we have

(4.21) ||u − vn||w ≤ (1 + ||πn||)||u − pn||w + ||u − v̂n||w,

where πn : C[a, b] → Lw maps a continuous function to its Lagrange
interpolant on the quadrature nodes {tk}n

k=0 and pn is the polynomial
of best uniform approximation of degree ≤ n to u. In this case ||πn|| ≤ c
and ||u − v̂n||w ≤ c2n

r since v̂n is the Nyström interpolant of {zk}n
k=0.

Using this in (4.22)
||u − vn||w ≤ cn−r.

5. Conclusions. We have considered solving the Fredholm integral
equation (1.1) by using Galerkin’s method with orthonormal polyno-
mial bases. When these are the Legendre polynomials and Gaussian
quadrature is used to evaluate the inner products and integral trans-
forms, the resulting discrete Galerkin method agrees with that studied
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by Miel in [11]. Here our basic result, Theorem 4.1, provides conver-
gence rates sharpening the results in Theorem 5.2 of [1]. For more
general polynomial expansions our results seem to be new.

Extension of these results to discontinuous kernels, particularly
Green’s function kernels, and to nonlinear problems is of interest in
view of the interesting parallel algorithms developed by Miel for solv-
ing two point boundary value problems by conversion to an equivalent
integral equation [11].
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