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PARABOLIC INTEGRODIFFERENTIAL EQUATIONS
WITH SINGULAR KERNELS

DANIELA SFORZA

ABSTRACT. We consider a parabolic integrodifferential
Volterra equation with nonhomogeneous boundary condition

(∗)

⎧⎪⎨
⎪⎩

ut(t, x) = (Δ + c)
∫ t

0
k(t − s)u(s, x) ds + k0u(t, x) + f(t, x),

t ∈ [0, T ], x ∈ Ω,

u(0, x) = u0(x), x ∈ Ω

u(t, x) = ϕ(t, x), t ∈ [0, T ], x ∈ ∂Ω,

where Δ is the Laplace operator and k is a scalar kernel
singular at t = 0. This assumption on k gives a parabolic
character to (∗). We state some results about the existence,
uniqueness and regularity of the solutions of (∗).

0. Introduction. This paper is concerned with a class of parabolic
integrodifferential Volterra equations with nonhomogeneous boundary
condition
(0.1)⎧⎪⎪⎪⎨

⎪⎪⎪⎩

ut(t, x) = (Δ + c)
∫ t

0
k(t − s)u(s, x) ds + k0u(t, x) + f(t, x),

t ∈ [0, T ], x ∈ Ω,

u(0, x) = u0(x), x ∈ Ω,

u(t, x) = ϕ(t, x), t ∈ [0, T ], x ∈ ∂Ω,

where Ω is a bounded open set in Rn, n ∈ N, with regular boundary
∂Ω, c and k0 are real constants, Δ is the Laplace operator and the
kernel k is a scalar real function.

Problem (0.1) occurs in the study of heat flow in materials with
memory (see [10, 13, 14] and references therein).

In the applications one is often concerned with the corresponding
problem with infinite delay (that is, with

∫ t

0
replaced by

∫ t

−∞), which
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can be written in the form (0.1), provided the history of u up to time
t = 0 is known. Otherwise, it needs a separate treatment, which will
be performed in a forthcoming paper [17].

Several papers have been devoted to a problem similar to (0.1):

(0.2)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ut(t, x) =
∫ t

0
k(t − s)(Δ + c)u(s, x) ds + Δu(t, x) + f(t, x),

t ∈ [0, T ], x ∈ Ω,

u(0, x) = u0(x), x ∈ Ω,

u(t, x) = ϕ(t, x), t ∈ [0, T ], x ∈ ∂Ω,

(see [7, 11] for the case ϕ ≡ 0 and [2, 16] for the inhomogeneous
case). Problem (0.2) is easier than (0.1) because the integral term can
be considered as a perturbation of Δu.

Problem (0.1) has been studied in the case ϕ ≡ 0 in [4, 5, 6], with
singular kernels of the type k(t) = t−β, 0 < β < 1. Concerning singular
kernels in evolution equations, we quote also [15], where the completely
monotone kernel k(t) =

∑∞
n=1 e−nγt, γ > 1, has been considered.

Here we assume that k :]0, +∞[→ R is a locally integrable function,
whose Laplace transform k̂(λ) can be analytically extended to a suitable
sector S in the complex plane, containing the positive real semiaxis, in
such a way that the extension k̂(λ) satisfies

(0.3) k̂(λ) = k̄λβ−1(1 + O(1/λ)), λ ∈ S

with 0 < β < 1. Then, one can construct a resolvent operator for
problem (0.1) with ϕ ≡ 0, in such a way that the solution enjoys many
properties of the solutions of parabolic differential equations (see [6]).
Therefore, the fact that the kernel is singular at t = 0 gives a parabolic
character to problem (0.1).

Assumption (0.3) is satisfied both in the case k(t) = t−β and in the
case k(t) =

∑∞
n=1 e−nγt.

To solve the nonhomogeneous problem (with ϕ �≡ 0), we need to
introduce the Dirichlet mapping D : C(∂Ω) → C(Ω) ∩ C2(Ω), where
for any ϕ ∈ C(∂Ω), Dϕ is the solution of the problem

(0.4)
{

Δz(x) = 0, x ∈ Ω
z(x) = ϕ(x), x ∈ ∂Ω.
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If (0.1) has a solution u, then the function v(t, x) = u(t, x) − Dϕ(t, x)
is the solution of an integrodifferential problem with homogeneous
boundary condition
(0.5)⎧⎪⎨
⎪⎩

vt(t, ·) = (Δ + c)
∫ t

0
k(t − s)v(s, ·) ds + k0v(t, ·) + g(t, ·), t ∈ [0, T ],

v(0, x) = v0(x), x ∈ Ω,

v(t, x) = 0, t ∈ [0, T ], x ∈ ∂Ω,

and the function g is given by

(0.6)
g(t, x) = c

∫ t

0

k(t − s)Dϕ(s, x) ds + k0Dϕ(t, x) − Dϕt(t, x)

+ f(t, x), t ∈ [0, T ], x ∈ Ω.

Setting v(t) = v(t, ·), g(t) = g(t, ·), problem (0.5) may be rewritten as
an abstract integrodifferential equation in the Banach space X = C(Ω):

(0.7)
{

v′(t) = A
∫ t

0
k(t − s)v(s) ds + k0v(t) + g(t), t ∈ [0, T ]

v(0) = v0,

where
{

D(A) = {v ∈ X : Δv ∈ X, v(x) = 0 for any x ∈ ∂Ω}
Av = (Δ + c), v ∈ D(A),

generates an analytic semigroup in C(Ω).

Therefore, we are led to study regularity properties of the resolvent
operator for integrodifferential equations of the form (0.7) in general
Banach space X, assuming that A : D(A) ⊂ X → X generates
an analytic semigroup and k satisfies (0.3). In particular, we find
existence, uniqueness and regularity properties of a strict solution (see
Theorem 1.7), that is, v(t) ∈ D(A) for every t, so that we can write
A

∫ t

0
k(t − s)v(s) ds =

∫ t

0
k(t − s)Av(s) ds. This is important in the

applications, where Δv is required to exist and be continuous.

Applying the general abstract theory to problem (0.5) is not straight-
forward: actually, for getting a strict solution one needs that g,
given by (0.6), is Hölder continuous. However, for general kernel
k, g is not necessarily Hölder continuous because the function t →
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∫ t

0
k(t− s)Dϕ(s, ·) ds is merely continuous. We overcome this difficulty

in two different ways. First, we assume that t → ∫ t

0
|k(s)| ds is Hölder

continuous (this happens, for instance, in the case k(t) = t−β, with
0 < β < 1). However, this assumption on kernel k is not sufficient to
guarantee the existence of the strict solution: we can only show the
existence of a solution v such that v(t) does not belong necessarily to
D(A), but

∫ t

0
k(t − s)v(s) ds is in D(A) for every t.

The second, and more fruitful, way is to replace the Dirichlet map
defined in (0.4) by the unique solution z = Dϕ of{

Δz(x) + cz(x) = 0, x ∈ Ω,
z(x) = ϕ(x), x ∈ ∂Ω.

Obviously, this can be done for any ϕ, if −c is not an eigenvalue of
the Laplace operator. Otherwise, we consider only boundary data ϕ
satisfying suitable compatibility conditions (see (2.6)). With this choice
of the operator D, the integral term in (0.6) disappears, so that g is
Hölder continuous, provided the data f, ϕ satisfy suitable regularity
assumptions.

Our work is organized as follows. In Section 1 we list some assump-
tions, which will remain valid throughout the paper, and review some
known results about problem (0.7). Moreover, we give the existence
and regularity theorem about the strict solution of (0.7). Section 2 is
devoted to the study of the existence and regularity of the solutions of
(0.1).

We now give some notations, which we will use in the following.
Let X be a complex Banach space with norm || · ||. If Y is another
Banach space, we denote by L(X; Y ) the Banach space of all linear
bounded operators T : X → Y , endowed with the norm ||T || =
sup{||T (x)||, ||x|| ≤ 1}. We set L(X) = L(X; X).

If T > 0, we denote by C([0, T ]; X) the space of all continuous func-
tions u : [0, T ] → X, endowed with the norm ||u||∞ = {sup ||u(x)||, x ∈
[0, T ]}. Given α ∈]0, 1[, Cα([0, T ]; X) is the subspace of C([0, T ]; X)
consisting of the α-Hölder continuous functions u, that is,

[u]α
.= sup{|t − s|−α||u(t) − u(s)||; t, s ∈ [0, T ], t �= s} < +∞.

It is endowed with the norm ||u||Cα([0,T ];X)
.= ||u||∞+[u]α. C1([0, T ]; X)

(respectively, C1,α([0, T ]; X)) is the space of all differentiable functions
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u such that u′ belongs to C([0, T ]; X) (respectively, Cα([0, T ]; X)).
hα([0, T ]; X) is the subspace of Cα([0, T ]; X) consisting of the func-
tions u such that

lim
τ→0

sup
|x−y|≤τ

τ−α||u(x) − u(y)|| = 0.

1. Existence and regularity of the solutions of a parabolic
integrodifferential equation with homogeneous boundary con-
dition. Let X be a complex Banach space with norm || · ||, and let
A : D(A) ⊂ X → X be a linear operator satisfying:

(1.1)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

there exist C > 0, ω ∈ R and θ ∈]π/2, π[ such that :
(i) the resolvent set ρ(A) of A contains the sector

Sθ,ω = {λ ∈ C; λ �= ω, | arg(λ − ω)| < θ};
(ii) for any λ ∈ Sθ,ω : ||(λ − A)−1||L(X) ≤ C|λ − ω|−1.

Assumption (1.1) means that A generates an analytic semigroup in X.
Since A is a closed operator, D(A) is a Banach space, endowed with
the graph norm ||x||D(A) = ||x|| + ||Ax||, x ∈ D(A).

Let k :]0, +∞[→ R be a locally integrable function, whose Laplace
transform k̂(λ) has the form

(1.2) k̂(λ) = k̄λβ−1(1 + O(1/λ)), λ ∈ Sϕ0,0,

where k̄ > 0, O(1/λ) → 0 as |λ| → +∞, β ∈ (0, 1) and ϕ0 ∈ R satisfy

(1.3) β > 2(1 − θ/π), π/2 < ϕ0 < θ/(2 − β).

As it has been noticed in [6], for any λ ∈ Sϕ0,0, λ/k̂(λ) belongs to
Sθ,0, thanks to (1.3). Since the operator B = A − ω satisfies (1.1)
with the same angle θ and ω = 0, we have that for any λ ∈ Sϕ0,0 the
operator λ − k̂(λ)B is invertible and

(1.4) ||(λ − k̂(λ)B)−1|| ≤ C|λ|−1,

(see again [6]). Therefore, if k0 ∈ R one may write

λ − k̂(λ)A − k0 = (λ − k̂(λ)B)(I − (λ − k̂(λ)B)−1(k̂(λ)ω + k0)).
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From this, taking into account (1.2) and (1.4), it follows that there
exist r0 > 0 and M > 0 such that for any λ ∈ Sϕ0,0, |λ| ≥ r0, the
operator λ − k̂(λ)A − k0 is invertible and

(1.5) ||(λ − k̂(λ)A − k0)−1|| ≤ M |λ|−1.

Then, it is possible to construct a resolvent operator R : [0, +∞[→
L(X) for the problem

(1.6)
{

v′(t) =
∫ t

0
k(t − s)Av(s) ds + k0v(t), t > 0,

v(0) = v0,

given by

(1.7) R(t) =
1

2πi

∫
γ

eλtF (λ) dλ, t ≥ 0

where F (λ) = (λ− k̂(λ)A− k0)−1 and γ is the path γ = γ+ + γ0 + γ−;
γ± = {λ ∈ C; λ = ρe±i ϕ, ρ ≥ r} and γ0 = {λ ∈ C; λ = reiη, |η| < ϕ},
r ≥ r0, π/2 < ϕ ≤ ϕ0, are oriented counterclockwise.

This was done in [4], for D(A) dense in X and k0 = 0, and it can be
proved in the general case as in [11].

The resolvent operator has the following properties.

Proposition 1.1. [4]. Let (1.1) (1.3) hold and let R(·) be defined by
(1.7). Then

(i) R(·) has an analytical extension to Sϕ0−π/2,0;

(ii) there exists M1 > 0 such that for each t > 0 we have

(1.8) ||R(t)||L(X) + ||tR′(t)||L(X) + ||t2R′′(t)||L(X) ≤ M1e
r0t;

(iii) if t > 0 and x ∈ X, then
∫ t

0
k(t − s)R(s)x ds belongs to D(A)

and

(1.9) R′(t)x = A

∫ t

0

k(t − s)R(s)x ds + k0R(t)x;
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(iv) R is Laplace transformable and

R̂(λ) = F (λ), λ ∈ Sϕ0,0, |λ| ≥ r0.

The existence of the resolvent operator for problem (1.6) allows one
to solve in a strict and strong sense the inhomogeneous problem
(1.10){

v′(t) =
∫ t

0
k(t − s)Av(s) ds + k0v(t) + g(t), t ∈ [0, T ], T > 0,

v(0) = v0,

where A, k satisfy assumptions (1.1) (1.3) and g : [0, T ] → X is Hölder
continuous.

We recall that a function v : [0, T ] → D(A) is said to be a strict
solution of (1.10) in [0, T ] if v ∈ C([0, T ]; D(A)) ∩ C1([0, T ]; X) and
(1.10) holds, while by a strong solution we mean that v ∈ C([0, T ]; X),
v(0) = v0 and there exists a sequence vn ∈ C1([0, T ]; X), with the
functions

∫ t

0
k(t − s)vn(s) ds belonging to C([0, T ]; D(A)), such that

vn → v and v′n(t)−A
∫ t

0
k(t−s)vn(s) ds−k0vn(t) → g(t) in C([0, T ]; X).

The connection between existence of a resolvent operator and solv-
ability of problem (1.10) will be stated in the sequel.

To study the Hölder regularity of the solution of (1.10), in [6] the
authors introduced a class of subsets of X. Such sets are defined for
α > 0 in the following way: x ∈ Dk,A(α,∞) if and only if

|x|Dk,A(α,∞)
.= sup{ρα||ρeiσF (ρeiσ)x − x||; ρ > 1, |σ| < ϕ0} < +∞.

Dk,A(α,∞) is a Banach space under the norm

(1.11) ||x||Dk,A(α,∞)
.= ||x|| + |x|Dk,A(α,∞).

We note that the definition of Dk,A(α,∞) is clearly related to that of
the Lions and Peetre [9] real interpolation spaces DA(α,∞) [3, 12,
18]. In the case of our class of kernels, the connection is stated in the
following proposition (see [6, Proposition 3.5]):

Proposition 1.2. Suppose that k satisfies (1.2) and (1.3). Then

(1.12) Dk,A(α,∞) ≡ DA(α/(2 − β),∞).
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Concerning the regularity properties of the resolvent operator, in [6,
Theorem 3.3] the following has been proved.

Theorem 1.3. If x ∈ Dk,A(α,∞), 0 < α < 1, then the function
t → R(t)x belongs to Cα([0, +∞); X).

The following result about the existence and regularity of an interme-
diate kind of solution between a strict one and a strong one has been
proved in [6] for k0 = 0. In our case the proof is completely analogous.

Theorem 1.4. Assume (1.1) (1.3). Let g ∈ Cα([0, T ]; X), 0 < α <
1, and v0 ∈ D(A). Then

(1.13) v(t) = R(t)v0 +
∫ t

0

R(t − s)g(s) ds, t ∈ [0, T ],

is the unique function belonging to C1([0, T ]; X) such that the function∫ t

0
k(t − s)v(s) ds belongs to C([0, T ]; D(A)) and

{
v′(t) = A

∫ t

0
k(t − s)v(s) ds + k0v(t) + g(t)

v(0) = v0

holds. Moreover, if

(1.14) g(0) ∈ Dk,A(α,∞), v0 ∈ Dk,A(α + 1,∞),

then v ∈ C1,α([0, T ]; X).

From the last theorem we deduce

Corollary 1.5. Assume (1.1) (1.3). Let g ∈ C([0, T ]; X) and
v0 ∈ D(A). Then the function v given by (1.13) is the unique strong
solution of (1.10). In addition, if v0 ∈ Dk,A(α,∞), 0 < α < 1, then v
belongs to Cα([0, T ]; X).

Proof. Let gn ∈ C1([0, T ]; X) and v0n ∈ D(A) such that gn converges
to g in C([0, T ]; X) and v0n converges to v0 in X. By Theorem 1.4 the
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sequence

vn(t) = R(t)v0n +
∫ t

0

R(t − s)gn(s) ds, t ∈ [0, T ],

and the function v satisfy the conditions of the definition of the strong
solution. The uniqueness follows by standard arguments.

Concerning the last part, we observe that, by virtue of Theorem 1.3,
we have R(t)v0 ∈ Cα([0, T ]; X). Moreover, if t, τ ∈ [0, T ], t > τ , then

∫ t

0

R(t − s)g(s) ds −
∫ τ

0

R(τ − s)g(s) ds

=
∫ t

τ

R(t − s)g(s) ds +
∫ τ

0

( ∫ t−s

τ−s

R′(σ) dσ

)
g(s) ds,

from which, taking (1.8) into account, it follows that
∥∥∥∥

∫ t

0

R(t − s)g(s) ds −
∫ τ

0

R(τ − s)g(s) ds

∥∥∥∥
≤ M1e

r0T ||g||∞(t − τ ) + M1e
r0T ||g||∞

∫ τ

0

( ∫ t−s

τ−s

1
σ

dσ

)
ds

≤ M1e
r0T ||g||∞

(
(t − τ ) +

∫ τ

0

ds

(τ − s)α

∫ t−τ

0

σα−1 dσ

)

≤ M1e
r0T ||g||∞

(
(t − τ ) +

∫ T

0

ds

sα

(t − τ )α

α

)
.

Therefore, v(t) is α-Hölder continuous.

We now give an existence, uniqueness and regularity result of the
strict solution of (1.10). Nevertheless, we must note that there is a loss
of regularity of the solution with respect to the inhomogeneous term.
To prove this theorem, we need the following regularity properties of
the resolvent operator R(t).

Lemma 1.6. Assume (1.1) (1.3). Then:

(i) there exists a constant M2 > 0 such that

(1.15) ||AR(t)||L(X) ≤ M2e
r0ttβ−2, t ≥ 0,
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(1.16) ||AR(t) − AR(τ )||L(X) ≤ M2e
r0τ

∫ t

τ

σβ−3 dσ, t > τ > 0;

(ii) there exists a constant M3 > 0 such that for each x ∈
Dk,A(α,∞), 0 < α < 1, and λ ∈ Sϕ0,0, |λ| ≥ r0,

(1.17) ||AF (λ)x|| ≤ M3|λ|1−α−β||x||Dk,A(α,∞);

(iii) there exists a constant M4 > 0 such that for each x ∈
Dk,A(α,∞), 0 < α < 1, α + β > 1, and t, τ > 0, we have

(1.18) ||AR(t)x − AR(τ )x|| ≤ M4|t − τ |α+β−2||x||Dk,A(α,∞);

(iv) for each x ∈ Dk,A(α,∞), 0 < α < 1, α + β > 1, and t > 0 the
integral

∫ t

0
R(s)x ds belongs to D(A) and

(1.19) A

∫ t

0

R(s)x ds =
1

2πi

∫
γ

eλt − 1
λ

AF (λ)x dλ;

(v) there exists a constant M5 > 0 such that for each x ∈
Dk,A(α,∞), 0 < α < 1 and α + β > 1, we have

(1.20)
∥∥∥∥A

∫ t

0

R(s)x ds

∥∥∥∥ ≤ M5||x||Dk,A(α,∞)t
α+β−1, t > 0;

(1.21)
∥∥∥∥A

∫ t

τ

R(s)x ds

∥∥∥∥ ≤ M5||x||Dk,A(α,∞)(t− τ )α+β−1, t > τ > 0.

Proof. First of all, we observe that for any λ ∈ Sϕ0,0, |λ| ≥ r0, we
have

(1.22) AF (λ) = −k̂(λ)−1 + k̂(λ)−1(λ − k0)F (λ).

Therefore, (1.7) and (1.22) give

(1.23) AR(t) =
1

2πi

∫
γ

eλtk̂(λ)−1(λ − k0)F (λ) dλ, t > 0,
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because of
∫

γ
eλtk̂(λ)−1 dλ = 0. By standard arguments (1.15) and

(1.16) follow, taking into account (1.2) and (1.23).

Concerning (1.17), by (1.2) and (1.22), we get

(1.24) ||AF (λ)x|| ≤ C|λ|1−β(||λF (λ)x − x|| + |k0| ||F (λ)x||),

where C is a constant not depending on λ. Since x ∈ Dk,A(α,∞) and
taking into account (1.5), (1.24) yields

||AF (λ)x|| ≤ C|λ|1−β−α|x|Dk,A(α,∞) + CM |k0|rα−1
0 |λ|1−β−α||x||,

that is (1.17).

To prove (1.18), we observe that, for any t > τ > 0,

AR(t)x − AR(τ )x =
1

2πi

∫ t

τ

( ∫
γ

eλσλAF (λ)x dλ

)
dσ

=
1

2πi

∫ t−τ

0

( ∫
γ

eλ(σ+τ)λAF (λ)x dλ

)
dσ,

from which, using standard arguments and (1.17), we get the claim.

In (1.19), we observe that the integral on the right hand side is
convergent, thanks to (1.17). Integrating (1.23) and interchanging the
integrals, we get (1.19). (1.20) follows from (1.19) and (1.17).

Finally, it remains to prove (1.21). To this end, thanks to (1.19), we
may write

A

∫ t

τ

R(s)x ds =
1

2πi

∫
γ

eλt − eλτ

λ
AF (λ)x dλ, t > τ > 0.

Then, again using standard arguments and (1.17), (1.21) easily fol-
lows.

Theorem 1.7. Assume (1.1) (1.3). If v0 ∈ D(A) and g belongs to
Cα([0, T ]; X)∩C([0, T ]; Dk,A(α,∞)) for some α ∈]0, 1[ with α+β > 1,
then the function v defined by (1.13) is the unique strict solution
of (1.10). Moreover, if v0 ∈ Dk,A(α + 1,∞), then v belongs to
Cα+β−1([0, T ]; D(A)).
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Proof. Thanks to Theorem 1.4, we need only to prove v(t) ∈ D(A)
to show that v is a strict solution of (1.10). To this end, we may write
v(t) in the form

(1.25)
v(t) = R(t)v0 +

∫ t

0

R(t − s)(g(s) − g(t)) ds

+
∫ t

0

R(s)g(t) ds, t ∈ [0, T ].

Taking into account (1.15) and A being a closed operator, the first
integral on the right hand side of (1.25) belongs to D(A), while∫ t

0
R(s)g(t) ds ∈ D(A) in virtue of our hypothesis g(t) ∈ Dk,A(α,∞)

and point (iv) of Lemma 1.6. Therefore, v(t) belongs to D(A) for any
t ∈ [0, T ]. The uniqueness follows from the uniqueness of the function
verifying the conditions of Theorem 1.4.

To prove the last statement of the theorem, first of all observe that
in virtue of (1.18), the function t → AR(t)v0 is (α + β − 1)-Hölder
continuous. Moreover, for any t, τ ∈ [0, T ], t > τ ,

∫ t

0

AR(t − s)(g(s) − g(t)) ds −
∫ τ

0

AR(τ − s)(g(s) − g(τ )) ds

+ A

∫ t

0

R(s)g(t) ds − A

∫ τ

0

R(s)g(τ ) ds

=
∫ t

τ

AR(t − s)(g(s) − g(t)) ds

+
∫ τ

0

[AR(t − s) − AR(τ − s)] (g(s) − g(τ )) ds

+
∫ t−τ

0

AR(s)(g(t) − g(τ )) ds +
∫ t

τ

AR(s)g(τ ) ds.

Taking the norm in the previous identity and using, respectively, (1.15),
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(1.16), (1.20) and (1.21), we find
∥∥∥∥

∫ t

0

AR(t − s)(g(s) − g(t)) ds −
∫ τ

0

AR(τ − s)(g(s) − g(τ )) ds

+ A

∫ t

0

R(s)g(t) ds − A

∫ τ

0

R(s)g(τ ) ds

∥∥∥∥
≤ M2e

r0T [g]α

{∫ t

τ

(t−s)α+β−2 ds +
∫ τ

0

( ∫ t−s

τ−s

σβ−3 dσ

)
(τ−s)α ds

}

+ 3 sup
s∈[0,T ]

||g(s)||Dk,A(α,∞)M5(t − τ )α+β−1

≤ M2e
r0T [g]α

{
(α+β−1)−1 + (β−2)−1

∫ +∞

0

yα((1+y)β−2−yβ−2) dy

}

(t − τ )α+β−1 + 3 sup
s∈[0,T ]

||g(s)||Dk,A(α,∞)M5(t − τ )α+β−1.

Therefore, Av(t) is (α + β − 1)-Hölder continuous, and the theorem is
completely proved.

2. Existence and regularity of the solutions of a parabolic
integrodifferential equation with nonhomogeneous boundary
condition. Let Ω be a bounded open set in Rn, n ∈ N, with boundary
∂Ω of class C1.

In this section we shall study several properties (existence, uniqueness
and regularity) of the solutions of the parabolic integrodifferential
equation with nonhomogeneous boundary condition
(2.1)⎧⎪⎪⎪⎨

⎪⎪⎪⎩

ut(t, x) = (Δ + c)
∫ t

0
k(t − s)u(s, x) ds + k0u(t, x) + f(t, x),
t ∈ [0, T ], x ∈ Ω,

u(0, x) = u0(x), x ∈ Ω,

u(t, x) = ϕ(t, x), t ∈ [0, T ], x ∈ ∂Ω,

where T > 0, c and k0 are real constants and f , u0, ϕ are functions
verifying suitable assumptions. We set

(2.2)

⎧⎨
⎩

X = C(Ω); ||v|| = supx∈Ω |v(x)|, v ∈ X,

D(A) = {v ∈ X; Δv ∈ X, v(x) = 0 for any x ∈ ∂Ω},
Av = (Δ + c)v, v ∈ D(A),
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where Δ is the Laplace operator in the distributional sense. Then A
satisfies (1.1) (see [19, 20]). In addition, we recall that D(A) = {v ∈
X; v(x) = 0 for any x ∈ ∂Ω}. Concerning the kernel k, we assume that
(1.2) and (1.3) hold.

To solve problem (2.1), we can revert to an analogous problem with
homogeneous boundary condition, using Dirichlet map. We recall that
the Dirichlet map is the function D : C(∂Ω) → C(Ω) ∩ C2(Ω) defined
for any ϕ ∈ C(∂Ω), Dϕ = z, where z is the solution of the Dirichlet
problem

(2.3)
{

Δz(x) = 0, x ∈ Ω,
z(x) = ϕ(x), x ∈ ∂Ω.

Thanks to the regularity of ∂Ω, for any ϕ ∈ C(∂Ω), there exists a
unique solution of problem (2.3).

Define v(t, x) = u(t, x) − Dϕ(t, x), t ∈ [0, T ], x ∈ Ω; then v is the
solution of problem (1.10), where A is the operator defined by (2.2)
and the inhomogeneous term g is given by

(2.4)
g(t, x) = c

∫ t

0

k(t − s)Dϕ(s, x) ds + k0Dϕ(t, x) − Dϕt(t, x)

+ f(t, x), t ∈ [0, T ], x ∈ Ω.

To apply Theorem 1.4 and the others of Section 1, the function g must
be Hölder continuous. However, that is not the case, in general, because
the function t → ∫ t

0
k(t − s)Dϕ(s, ·) ds is not Hölder continuous, even

if Dϕ(t, ·) is.

To circumvent this problem, we may adopt two different strategies.
One way is to suppose that the function t → ∫ t

0
|k(s)| ds is α-Hölder

continuous for some α ∈]0, 1[; this condition is verified, for instance,
when k(t) = t−β, β ∈]0, 1[. Making such an assumption on kernel k,
we cannot prove an existence theorem for the strict solution of (2.1).

To obtain the existence and maximal regularity of the strict solution,
we must proceed another way and consider the Dirichlet map relative
to the operator Δ + c. The integral term in expression (2.4) for g
then disappears, and we get g Hölder continuous by making suitable
assumptions on ϕ and f .
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We need only be careful when c is an eigenvalue of −Δ; in that case
the Dirichlet problem

(2.5)
{

Δz(x) + cz(x) = 0, x ∈ Ω,
z(x) = ϕ(x), x ∈ ∂Ω,

has a (nonunique) solution if and only if ϕ satisfies the conditions

(2.6)
∫

∂Ω

ϕ(σ)
∂e

∂ν
(σ) dσ = 0,

where e is any eigenfunction relative to eigenvalue c and ∂/∂ν denotes
the normal derivative.

We recall a result (see [16, Lemma 2.1]) on the regularity of the
solution of (2.3) that will be useful in the sequel.

Lemma 2.1. If ϕ belongs to C1,α([0, T ]; C(∂Ω)), 0 < α <
1 and T > 0 (respectively, hα([0, T ]; C(∂Ω))), then Dϕ belongs
to C1,α([0, T ]; C(Ω)) (respectively, hα([0, T ]; C(Ω))), where D is the
Dirichlet map.

We recall the characterization of the interpolation spaces DA(α,∞)
when A is the operator defined by (2.2). For any α ∈]0, 1[, α �= 1/2,
we have [12]

(2.7) DA(α,∞) = C2α
0 (Ω) .= {v ∈ C2α(Ω); v(x) = 0, x ∈ ∂Ω}.

Let’s first suppose that the function t → ∫ t

0
|k(s)| ds is α-Hölder

continuous for some α ∈]0, 1[. We may then state and prove the
following theorems.

Theorem 2.2. Let f ∈ Cα([0, T ]; C(Ω)), ϕ ∈ C1,α([0, T ]; C(∂Ω))
and u0 ∈ C(Ω) be such that Δu0 ∈ C(Ω) and the compatibility condition

(2.8) u0(x) = ϕ(0, x), for every x ∈ ∂Ω,

holds. Then there exists a unique function u(t, x) belonging to C1

([0, T ]; C(Ω)) such that Δ
∫ t

0
k(t− s)u(s, ·) ds ∈ C([0, T ]×Ω) and (2.1)

is satisfied.
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Moreover, if we assume β(α + 2) < 2, ∂Ω of class C2,α and

(2.9) f(0, ·) ∈ C
2α

2−β (Ω),

(2.10) ϕt(0, ·) ∈ C
2α

2−β (∂Ω),

(2.11) f(0, x) = ϕt(0, x) − k0ϕ(0, x), for any x ∈ ∂Ω,

(2.12) ϕ(0, ·) ∈ C
2(α+1)
2−β (∂Ω),

(2.13) u0 ∈ C
2(α+1)
2−β (Ω),

then the function u(t, x) belongs to C1,α([0, T ]; C(Ω)).

Proof. First of all, we observe that by Lemma 2.1 we have Dϕ ∈
C1,α([0, T ]; C(Ω)), where D is the Dirichlet map. We set

g(t, x) = c

∫ t

0

k(t − s)Dϕ(s, x) ds + k0Dϕ(t, x) − Dϕt(t, x)

+ f(t, x), t ∈ [0, T ], x ∈ Ω,

(2.14)

v0(x) = u0(x) − Dϕ(0, x), x ∈ Ω.(2.15)

With the convention g(t) = g(t, ·), we consider the abstract problem

(2.16)
{

v′(t) = A
∫ t

0
k(t − s)v(s) ds + k0v(t) + g(t), t ∈ [0, T ],

v(0) = v0,

where A is the operator defined by (2.2). Since the functions t →∫ t

0
|k(s)| ds and Dϕ(t) are α-Hölder continuous, the same holds for the

function t → ∫ t

0
k(t−s)Dϕ(s) ds, and hence g belongs to Cα([0, T ]; X),

where X = C(Ω). By (2.15) we get Δv0 = Δu0, because Dϕ(0, ·) is
a harmonic function. In addition, by (2.8) we have v0(x) = 0 for any
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x ∈ ∂Ω, so that v0 ∈ D(A). Therefore, we may apply Theorem 1.4:
the function

(2.17) v(t, ·) = R(t)v0 +
∫ t

0

R(t − s)g(s, ·) ds, 0 ≤ t ≤ T,

belongs to C1([0, T ]; X),
∫ t

0
k(t−s)v(s) ds ∈ C([0, T ]; D(A)) and (2.16)

holds. It is easy to check that

(2.18) u(t, x) = v(t, x) + Dϕ(t, x), t ∈ [0, T ], x ∈ Ω,

is the required function. The uniqueness follows from (2.18) and from
the uniqueness of the solution of (2.16).

To prove the last part of the theorem, we begin to show that (1.14)
holds. First of all, we observe that, due to (2.10), (2.12) and Schauder’s
theorem (see [8]),

k0Dϕ(0, ·) − Dϕt(0, ·) ∈ C
2α

2−β (Ω), Dϕ(0, ·) ∈ C
2(α+1)
2−β (Ω),

since 2α/(2 − β) < 2 + α and 2(α + 1)/(2 − β) < 2 + α. Therefore,
by (2.9), (2.11), (2.13) and (2.8), we get g(0) ∈ C

2α/(2−β)
0 (Ω) and

v0 ∈ C
2(α+1)/(2−β)
0 (Ω), from which, taking into account (2.7) and

(1.12), (1.14) follows. By Theorem 1.4, the function v(t, x) defined
by (2.17) belongs to C1,α([0, T ]; C(Ω)), and then by (2.18) we get that
u belongs to C1,α([0, T ]; C(Ω)).

We now give a representation formula for the solution of (2.1).

Corollary 2.3. Under the assumptions of the first part of Theorem
2.2, the solution of (2.1) is given by the formula

(2.19) u(t, ·) = R(t)u0 +
∫ t

0

R(t − s)h(s, ·) ds

−
∫ t

0

R′(t − s)Dϕ(s, ·) ds, t ∈ [0, T ],

where h(t, x) is the function defined by

(2.20)
h(t, x) = c

∫ t

0

k(t − s)Dϕ(s, x) ds + k0Dϕ(t, x) + f(t, x),

t ∈ [0, T ], x ∈ Ω.
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Proof. The proof is completely analogous to that of Corollary 2.4 of
[16], and so we omit it.

We now define the strong and the strict solution of problem (2.1).

Definition 2.4. A function u(t, x) ∈ C([0, T ] × Ω) is said to be a
strong solution for problem (2.1) if

(2.21) u(0, x) = u0(x), x ∈ Ω,

(2.22) u(t, x) = ϕ(t, x), t ∈ [0, T ], x ∈ Ω,

and there exists a sequence of functions {un(t, x)}n∈N such that for any
n ∈ N, un ∈ C1([0, T ]; C(Ω)), Δ

∫ t

0
k(t − s)un(s, x) ds ∈ C([0, T ] × Ω)

and fulfills

(i) limn→+∞ un = u in C([0, T ] × Ω);

(ii) limn→+∞(∂un

∂t (t, x)−(Δ+c)
∫ t

0
k(t−s)un(s, x) ds−k0un(t, x)) =

f(t, x) in C([0, T ] × Ω).

On the other hand, a function u : [0, T ] × Ω → R is said to be a
strict solution of (2.1) if u ∈ C1([0, T ]; C(Ω)), Δu ∈ C([0, T ] × Ω) and
satisfies (2.1).

Therefore, if u is a strict solution of (2.1), then the Laplace operator
and the integral commute, and hence u fulfills the equation

(2.23)
ut(t, x) =

∫ t

0

k(t − s)(Δ + c)u(s, x) ds + k0u(t, x) + f(t, x)

t ∈ [0, T ], x ∈ Ω.

We shall prove a result about the existence and regularity of the
strong solution of (2.1).

Theorem 2.5. Let f ∈ C([0, T ] × Ω), ϕ ∈ hα([0, T ]; C(∂Ω)) and
u0 ∈ C(Ω) verify the compatibility condition (2.8). Then the function
u(t, x) given by (2.19) is the unique strong solution of (2.1). In addition,
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if ∂Ω is of class C2,α, u0 ∈ C2α/(2−β)(Ω) and ϕ(0, ·) ∈ C2α/(2−β)(∂Ω),
then u belongs to Cα([0, T ]; C(Ω)).

Proof. First of all, we observe that u given by (2.19) is well defined
thanks to (1.8). Set v0(x) = u0(x) − Dϕ(0, x), x ∈ Ω. By (2.8) we
have v0 ∈ D(A), where A is the operator defined by (2.2). Therefore,
there exists a sequence {v0n

} in D(A) such that {v0n
} converges to v0

in C(Ω) as n → +∞.

Let {fn} be a sequence in C1([0, T ]; C(Ω)) such that fn converges
uniformly to f . Moreover, let {ϕn} be a sequence in C2([0, T ]; C(∂Ω))
such that ϕn converges to ϕ in Cα([0, T ]; C(∂Ω)). Set, for any n ∈ N,

(2.24) u0n(x) = v0n(x) + Dϕn(0, x), x ∈ Ω;

it is easy to prove that u0n converges to u0 in C(Ω). In addition, since
v0n ∈ D(A), any u0n fulfills the compatibility condition (2.8), when ϕ
is replaced by ϕn.

For any n ∈ N, we consider the problem
(2.25)⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂un

∂t (t, x) = (Δ + c)
∫ t

0
k(t − s)un(s, x) ds + k0un(t, x) + fn(t, x),
t ∈ [0, T ], x ∈ Ω,

un(0, x) = u0n(x), x ∈ Ω,

un(t, x) = ϕn(t, x), t ∈ [0, T ], x ∈ ∂Ω.

In view of Theorem 2.2 and Corollary 2.3, there exists a unique solution
un(t, x) of (2.25) given by

un(t, ·) = R(t)u0n +
∫ t

0

R(t − s)hn(s, ·) ds −
∫ t

0

R′(t − s)Dϕn(s, ·) ds

where

hn(t, x) = c

∫ t

0

k(t − s)Dϕn(s, x) ds + k0Dϕn(t, x) + fn(t, x).

Therefore, thanks to the properties of the resolvent operator R(t) (see
Section 1), it is easy to check that un and u verify the conditions of
definition of the strong solution (see Definition 2.4).



620 D. SFORZA

If ū is another strong solution of (2.1), it is clear that the function
u − ū is the strong solution of the problem with u0 = 0, ϕ = 0 and
f = 0, and hence, by Corollary 1.5, we have u = ū.

Finally, we must prove the last statement of the theorem. First of
all, we may write the function u in the form

(2.26)

u(t, ·) = R(t)(u0 − Dϕ(0, ·)) +
∫ t

0

R(t − s)h(s, ·) ds

− R(t)(Dϕ(t, ·) − Dϕ(0, ·)) + Dϕ(t, ·)

−
∫ t

0

R′(t − s)(Dϕ(s, ·) − Dϕ(t, ·)) ds, t ∈ [0, T ].

Since ϕ(0, ·) ∈ C2α/(2−β)(∂Ω), by Schauder’s theorem we have Dϕ(0, ·) ∈
C2α/(2−β)(Ω). Therefore, by (1.12), (2.7) and (2.8), u0 − Dϕ(0, ·)
belongs to Dk,A(α,∞). We may apply Corollary 1.5: the function
R(t)(u0 − Dϕ(0, ·)) +

∫ t

0
R(t − s)h(s, ·) ds belongs to Cα([0, T ]; C(Ω)).

Using standard arguments, we might prove that the remaining terms
in (2.26) are α-Hölder continuous too (see [16, Theorem 2.7]). This
completes the proof of the theorem.

In the case of interest k(t) = t−β, β ∈]0, 1[, the function t →∫ t

0
|k(s)| ds is α-Hölder continuous, with α = 1−β. However, Theorem

1.7 does not apply in this case, as α + β = 1, so that we cannot prove
the existence of the strict solution.

From now on, we consider the Dirichlet map D relative to the operator
Δ + c. If c is an eigenvalue of −Δ, a solution (in fact, an infinity of
solutions) of the Dirichlet problem (2.5) exists if and only if ϕ ∈ C(∂Ω)
satisfies condition (2.6). In this case, we will denote by Dϕ one such
solution and assume that (2.6) is fulfilled.

Theorem 2.6. Let f ∈ Cα([0, T ]; C(Ω)), ϕ ∈ C1,α([0, T ]; C(∂Ω)),
0 < α < 1, and u0 ∈ C(Ω) be such that Δu0 ∈ C(Ω) and the
compatibility condition (2.8) holds. Then, there exists a unique function
u(t, x) belonging to C1([0, T ]; C(Ω)) such that Δ

∫ t

0
k(t − s)u(s, x) ds ∈

C([0, T ] × Ω) and (2.1) is satisfied.

In addition, if we assume β(α + 2) < 2, ∂Ω of class C2,α and
(2.9) (2.13) hold, then the function u(t, x) belongs to C1,α([0, T ]; C(Ω)).
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Proof. Taking into account that a result similar to Lemma 2.1
holds for the Dirichlet map D relative to the operator Δ + c, we have
Dϕ ∈ C1,α([0, T ]; C(Ω)), and hence the function

(2.27)
g(t, x) = k0Dϕ(t, x) − Dϕt(t, x) + f(t, x),

t ∈ [0, T ], x ∈ Ω,

belongs to Cα([0, T ]; C(Ω)). The remainder of the proof is completely
analogous to that of Theorem 2.2.

The following result about the existence of the strong solution of (2.1)
can be proved by repeating the same arguments used in the proof of
Theorem 2.5.

Theorem 2.7. Let f ∈ C([0, T ] × Ω), ϕ ∈ hα([0, T ]; C(∂Ω)),
0 < α < 1, and u0 ∈ C(Ω) such that the compatibility condition (2.8)
holds. Then the function u(t, x) defined by

(2.28)
u(t, ·) = R(t)u0 +

∫ t

0

R(t − s)(k0Dϕ(s, ·) + f(s, ·)) ds

−
∫ t

0

R′(t − s)Dϕ(s, ·) ds, t ∈ [0, T ]

is the unique strong solution of (2.1).

Finally, we shall prove that if the terms u0, f and ϕ are more regular,
then the solution of (2.1), whose existence has been stated by Theorem
2.6, is the strict solution of (2.1).

Theorem 2.8. Assume that ∂Ω is of class C2,α for some α ∈]0, 1[,
α + β > 1. Let f ∈ Cα([0, T ]; C(Ω)) ∩ C([0, T ]; C2α/(2−β)(Ω)), ϕ ∈
C1,α([0, T ]; C(∂Ω))∩C1([0, T ]; C2α/(2−β)(∂Ω)) and u0 ∈ C(Ω) be such
that Δu0 ∈ C(Ω). In addition, f, ϕ and u0 verify condition (2.8) and

(2.29) f(t, x) = ϕt(t, x) − k0ϕ(t, x), t ∈ [0, T ], x ∈ ∂Ω.

Then the function u given by (2.28) is the unique strict solution of
(2.1). Moreover, if u0 belongs to C2(α+1)/(2−β)(Ω), then Δu belongs to
Cα+β−1([0, T ]; C(Ω)).
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Proof. First of all, we observe that, by Schauder’s theorem, we
have Dϕ ∈ C1([0, T ]; C2α/(2−β)(Ω)). Let v(t, x) be the solution of
problem (2.16) with the inhomogeneous term g given by (2.27). It
is enough to prove that v is the strict solution of (2.16), and then
(2.18) gives that u is the strict solution of (2.1). To this end, we
must apply Theorem 1.7. Taking into account our assumptions on f
and ϕ, (2.29), (1.12) and (2.7), we find that the function g belongs to
Cα([0, T ]; X) ∩ C([0, T ]; Dk,A(α,∞)). Therefore, by Theorem 1.7, v is
the strict solution of (2.16).

In addition, if u0 ∈ C2(α+1)/(2−β)(Ω), then, by (2.8), (2.7) and (1.12),
v0 ∈ Dk,A(α + 1,∞), and hence, again by Theorem 1.7, Δv belongs
to Cα+β−1([0, T ]; C(Ω)). Since Δu = Δv − cDϕ, it follows that Δu
belongs to Cα+β−1([0, T ]; C(Ω)), too.
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