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MAXIMAL REGULARITY AND GLOBAL
WELL-POSEDNESS FOR A PHASE
FIELD SYSTEM WITH MEMORY

VICENTE VERGARA

ABSTRACT. In this paper we obtain global strong well-
posedness for a phase field system with memory and relaxing
chemical potential in an Lp-setting, employing maximal reg-
ularity tools. The global well-posedness result is obtained by
an energy estimate, provided that the space dimension n is
less than 3.

1. Introduction. Let Ω ⊂ Rn be a bounded domain with smooth
boundary ∂Ω and let J = [0, T ], T > 0, be an interval. We consider
the following system

(PFM)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ut +
l

2
φt =

∫ t

−∞
a1(t− s)Δu(s) ds in J × Ω;

τφt =
∫ t

−∞
a2(t−s)

[
ξ2Δφ+

φ−φ3

η
+ u

]
(s) ds in J × Ω;

n · ∇u = n · ∇φ = 0 on J × ∂Ω;
u(0, x) = u0(x), φ(0, x) = φ0(x) in Ω.

The phase field system with memory (PFM) was first proposed in [9] as
a phenomenological model to describe phase transitions in the presence
of a slowly relaxing internal variable. Later Novick-Cohen [6] obtained
a global weak solution of (PFM), by means of the Galerkin method and
energy estimates.

Our goal here is to obtain global well-posedness of (PFM) in the
strong sense in an Lp-setting. Assuming enough regularity of the ker-
nels, we may apply a recent result in the theory of Volterra equations,
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which was proved in [11], to obtain a strong local solution in the frame-
work of Bessel potential spaces. To solve (PFM), we first show the
equivalence of it to a semi-linear problem of Volterra type of the form

(1.1) v(t) =
∫ t

0

b(t− s)Δv(s) ds+H(v(t)) + f(t), t ∈ J.

This fact allows us to prove the local well-posedness of (PFM). Con-
cerning the global well-posedness of (PFM), let us make some consid-
erations. It may seem problematic to consider the current state of the
system as dependent on the entire history. To get rid of this problem
we consider the model

(1.2) ut +
l

2
φt =

∫ t

0

a1(t− s)Δu(s) ds+ f1, in J × Ω;

(1.3)

τφt =
∫ t

0

a2(t− s)[ξ2Δφ+
φ− φ3

η
+ u](s) ds+ f2, in J × Ω;

n · ∇u = n · ∇φ = 0, on J × ∂Ω;
u(0, x) = u0(x), φ(0, x) = φ0(x), in Ω,

where

f1(t, x) =
∫ 0

−∞
a1(t− s)Δu(s, x) ds, (t, x) ∈ J × Ω;

f2(t, x) =
∫ 0

−∞
a2(t− s)

[
ξ2Δφ+

φ− φ3

η
+ u

]
(s, x) ds, (t, x) ∈ J × Ω

are known. According to [7, p. XV], we may set f1(t, ·) = f2(t, ·) =
u(t, ·) = φ(t, ·) = 0 whenever t < 0. This fact allows us to obtain
a-priori estimates, which yield global strong well-posedness of (PFM).

This paper is organized as follows. In Section 2, we consider a
linear equation of Volterra type and state a recent result obtained by
Zacher [11], which is the key to obtain existence and uniqueness of a
local solution for (PFM) in the framework of Bessel potential spaces.
In Section 3, we establish the equivalence of (PFM) to a semi-linear
equation of Volterra type as mentioned before and prove its local well-
posedness, by employing maximal Lp-regularity and the contraction
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mapping principle. Finally, in Section 4, assuming standard conditions
of positivity on a1 and a2 we obtain a priori estimates for u and φ, in
the case where

f1(t, x) = f2(t, x) = 0, (t, x) ∈ (−∞, 0) × Ω,

which, together with the Gagliardo-Nirenberg inequality, lead to the
global existence result (Theorem 4.2) provided n ≤ 3.

2. Volterra equation. In this section, we would like to present
a recent result in the theory of Volterra integral equation obtained by
Zacher [11, Theorem 3.4], which will be the key to prove local well-
posedness. To cite this theorem, as well as other important auxiliary
results, it is necessary to recall the definition of sectorial operators,
and some of its sub-classes. Furthermore, we will describe the main
assumptions on the kernels needed to obtain local and global well-
posedness.

Let X be a Banach space, A a closed linear operator in X with dense
domain D(A), and a ∈ L1,loc (R+) a scalar kernel. We consider the
Volterra equation

(2.1) u(t) +
∫ t

0

a(t− s)Au(s) ds = f(t), t ≥ 0.

Well-posedness of this problem has been obtained in several important
cases, as a general reference we refer to the monograph Prüss [7]. Let
us begin our study of (2.1) with some considerations on the kernels.

In the sequel we denote by f̂ and f̃ the Laplace transform and
the Fourier transform of a function f , respectively. The symbol ∗
means the convolution of two functions supported on the half line,
i.e., (a ∗ b)(t) =

∫ t

0
a(t− s)b(s) ds.

Definition 2.1. Let a ∈ L1,loc (R+) be of subexponential growth,
and suppose â(λ) 	= 0 for all Reλ > 0. The variable a is called sectorial
with angle θ > 0 (or merely θ-sectorial) if

| arg â(λ) |≤ θ

for all Reλ > 0.



96 V. VERGARA

Definition 2.2. Let a ∈ L1,loc (R+) be of subexponential growth
and k ∈ N. a(t) is called k-regular, if there is a constant c > 0 such
that

|λnâ(n)(λ)| ≤ c|â(λ)|

for all Reλ > 0, and 1 ≤ n ≤ k.

The subsequent class of kernels, which was introduced and used by
Zacher [11], is appropriate to obtain maximal regularity for the abstract
parabolic Volterra equation (2.1) in vector-valued Bessel potential
spaces Hα

p (J ;X).

Definition 2.3. Let a ∈ L1,loc(R+) be of subexponential growth,
and assume r ∈ N, θa > 0, and α ≥ 0. Then a is said to belong to the
class Kr(α, θa) if

(K1) a is r-regular;

(K2) a is θa-sectorial;

(K3) lim supμ→∞ |â(μ)|μα <∞, lim infμ→∞ |â(μ)|μα > 0,
lim infμ→0 |â(μ)| > 0.

Further, K∞(α, θa) := {a ∈ L1,loc (R+) : a ∈ Kr(α, θa) for all r ∈
N}. The kernel a is called a K-kernel if there exist r ∈ N, θa > 0, and
α ≥ 0, such that a ∈ Kr(α, θa).

A typical example of a K-kernel is given by

a(t) =
tα−1

Γ(α)
e−ηt, t > 0,

which belongs to the class K∞(α, α(π/2)) for every α > 0 and η ≥ 0.
The K-kernels will be our main assumption in order to obtain local
well-posedness. For global well-posedness we will additionally assume
the following conditions of positivity on the kernels a1 and a2.

(P1) a1 ∈ L1,loc (R+), such that

Re
∫ T

0

a1 ∗ψ(t)ψ(t) dt ≥ 0 for all ψ ∈ L2((0, T );C), and T > 0.
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(P2) a2 ∈ L1,loc (R+), and there exists ν ∈ L1,loc (R+) nonnegative,
nonincreasing and such that∫ t

0

a2(t− s)ν(s) ds = 1, for all t > 0.

Observe that condition (P1) means that a1 is of positive type, while
(P2) is a special case of the definition of completely positive type. For
this and important properties of all of this type of kernels, we refer to
the monograph Prüss [7].

Next, we recall some classes of operators.

Definition 2.4. Let X be a complex Banach space, and let A be a
closed linear operator in X. We say that A is sectorial if D(A) = X,
R(A) = X, N(A) = {0}, (−∞, 0) ⊂ ρ(A) and

|t(t+A)−1| ≤M for all t > 0, and some M <∞.

We denote the class of sectorial operators in X by S(X).

It follows from the definition of sectoriality that it makes sense to
define the spectral angle φA of A ∈ S(X) by

φA = inf
{
φ : ρ(−A) ⊃ Σπ−φ, sup

λ∈Σπ−φ

|λ(λ+A)−1| <∞
}
,

where Σθ for θ ∈ (0, π] is defined as the open subset of C with vertex 0
and opening angle 2θ which is symmetric with respect to the positive
half axis R+.

Remark 2.5. If A ∈ S(X) with spectral angle φA < π and the kernel
a is 1-regular and θ-sectorial with θ < π, such that the condition of
parabolicity θ + φA < π holds, then (2.1) admits a resolvent operator
S ∈ C((0,+∞);B(X)), which is also uniformly bounded in R+. This
follows directly from [7, Proposition 3.1 and Theorem 3.1].

A sectorial operator A in X is said to admit bounded imaginary
powers, if Ais ∈ B(X) for each s ∈ R and there is a constant C > 0
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such that |Ais| ≤ C for |s| ≤ 1. The class of such operators will be
denoted by BIP(X), and we will call

θA = lim|s|→∞
1
|s| log |Ais|

the power angle of A. Let Y be another complex Banach space. We
recall that a family of operators T ⊂ B(X,Y ) is called R-bounded, if
there is a constant C > 0 and p ∈ [1,∞) such that for each N ∈ N,
Tj ∈ T , xj ∈ X and for all independent, symmetric {−1, 1}-valued
random variables εj on a probability space (Σ,M, μ) the inequality

∣∣∣∣ N∑
j=1

εjTjxj

∣∣∣∣
Lp(Σ;Y )

≤ C

∣∣∣∣ N∑
j=1

εjxj

∣∣∣∣
Lp(Σ;X)

is valid. The smallest such C is called the R-bound of T , we denote it
by R(T ). The concept of R-bounded families of operators leads to the
notion of R-sectorial operators, replacing bounded with R-bounded in
the definition of sectorial operators.

Definition 2.6. Let X be a complex Banach space, and assume that
A is a sectorial operator in X. Then A is called R-sectorial if

RA(0) := R{t(t+ A)−1 : t > 0} <∞.

The R-angle φRA of A is defined by means of

φRA = inf{θ ∈ (0, π) : RA(π − θ) <∞},

where
RA(θ) := R{λ(λ+A)−1 : | arg λ| ≤ θ}.

The class of R-sectorial operators will be denoted by RS(X). The
class of operators that admit bounded imaginary powers was introduced
by Prüss and Sohr in [8]. The class of R-sectorial operators goes back
to Clément and Prüss [3], where the inclusions

BIP(X) ⊂ RS(X) ⊂ S(X),
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and the inequality

(2.2) φRA ≤ θA

were obtained, in the special case, when the space X is such that the
Hilbert transform defined by

(Hf)(t) = lim
ε→0

1
π

∫
ε≤|s|≤1/ε

f(t− s)
ds

s
, t ∈ R,

is bounded in Lp(R;X) for some p ∈ (1,∞). The class of spaces with
this property will be denoted by HT .

There is a well-known theorem which says that the set of Banach
spaces of class HT coincides with the class of UMD spaces, where
UMD stands for unconditional martingale difference property. It is
further known that HT -spaces are reflexive. Every Hilbert space
belongs to the class HT , and if (Σ,M, μ) is a measure space, 1 < p <∞
and X ∈ HT , then Lp(Σ,M, μ;X) is an HT -space. For all these
results, see the survey article by Burkholder [1]. For a detailed study
of the mentioned topics, see for instance, [5] and also [4].

The following result will be of importance below.

Theorem 2.7 (Prüss [7, Theorem 8.6]). Suppose X belongs to the
class HT , p ∈ (1,∞), and let a ∈ L1,loc (R+) be of subexponential
growth. Assume that a is 1-regular and θ-sectorial, where θ < π. Then
there is a unique operator B ∈ S(Lp(R;X)) such that

(2.3) (Bf)∼(ρ) =
1

â(iρ)
f̃(ρ), ρ ∈ R, f̃ ∈ C∞

0 (R \ {0};X).

Moreover, B has the following properties:

(i) B commutes with the group of translations ;

(ii) (μ + B)−1Lp(R+;X) ⊂ Lp(R+;X) for each μ > 0, i.e., B is
causal ;

(iii) B ∈ BIP(Lp(R;X)), and power angle θB = θa, where

θa = sup{| arg â(λ)| : Reλ > 0};
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(iv) σ(B) = {1/â(iρ) : ρ ∈ R \ {0}}.

Corollary 2.8 (Prüss [7, Corollary 8.1]). Let the assumptions of
Theorem 2.7 hold, let B be defined by (2.3), and let α, β ≥ 0. Then

(i) limμ→∞|â(μ)|μα <∞ implies D(B) ↪→ Hα
p (R;X),

(ii) limμ→∞|â(μ)|μβ > 0 and limμ→0|â(μ)| > 0 imply Hβ
p (R;X) ↪→

D(B).

The concept of K-kernels is very useful when working with Bessel
potential spaces, since it connects the order of the kernels with the
order of Bessel potential spaces. The following result due to Zacher
[11] expresses this fact.

Corollary 2.9. Let X be a Banach space of class HT , p ∈
(1,∞), and J = [0, T ] or J = R+. Suppose a ∈ K1(α, θ) with
θ < π, and assume in addition a ∈ L1(R+) in the case J = R+.
Then the restriction B := B|Lp(J;X) of the operator B constructed in
Theorem 2.7 to Lp(J ;X) is well-defined. The operator B belongs to
the class BIP(Lp(J ;X)) with the power angle θB ≤ θB = θa and is
invertible satisfying B−1w = a ∗ w for all w ∈ Lp(J ;X). Moreover,
D(B) = 0H

α
p (J ;X).

Next, we will state an important result obtained by Zacher [11], which
gives necessary and sufficient conditions for the existence of a unique
solution u of (2.1) in the space

Hα+κ
p (J ;X) ∩Hκ

p (J ;DA).

Here DA denotes the domain of A equipped with the graph norm.

Theorem 2.10 (Zacher [11]). Let X be a Banach space of class
HT , p ∈ (1,∞), J = [0, T ] or R+, and let A be an R-sectorial
operator in X with R-angle φRA . Suppose that a belongs to K1(α, θa)
with α ∈ (0, 2) and that, in addition, a ∈ L1(R+) in the case J = R+.
Further, let κ ∈ [0, 1/p) and α + κ /∈ {1/p, 1 + 1/p}. Assume the
parabolicity condition θa + φRA < π. Then (2.1) has a unique solution
in Hα+κ

p (J ;X) ∩Hκ
p (J ;DA) if and only if the function f satisfies the

subsequent conditions :
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(i) f ∈ Hα+κ
p (J ;X);

(ii) f(0) ∈ DA(1 + (κ/α) − (1/pα), p), if α+ κ > 1/p;

(iii) ḟ(0) ∈ DA(1 + (κ/α) − (1/α) − (1/pα), p), if α+ κ > 1 + 1/p.

Here DA(γ, p) denotes the real interpolation space (X,DA)γ,p, for
γ ∈ (0, 1).

The following result is due to Clément and Prüss [2]. It will play an
important role in order to obtain a priori estimates.

Theorem 2.11. Let X be a Banach space, 1 ≤ p < ∞,
ν ∈ L1,loc (R+) nonnegative, nonincreasing, and let Bp be defined in
Lp(R+;X) by

(Bpu)(t) =
d

dt
ν ∗ u(t), t ≥ 0, u ∈ D(Bp),

with domain

D(Bp) = {u ∈ Lp(R+;X) : ν ∗ u ∈ 0W
1
p (R+;X)}.

Then Bp is m-accretive. In particular, if X = H is a Hilbert space,
then ∫ T

0

〈Bpu(t), u(t)〉 |u|p−2
H dt ≥ 0, T > 0,

for each u ∈ D(Bp).

Remark 2.12. Let a ∈ K1(α, θ) with θ < π. Let B be the operator
from Corollary 2.9 associated with a, and assume that the condition
(P2) is valid with a in place of a2. Then, from Theorem 2.11, it follows
that (Bv)(t) = (Bpv)(t) = (d/dt)ν ∗ v(t), for each v ∈ D(B) ∩D(Bp).
In particular, for p = 2 and D(B) = 0H

α
2 (J, L2(Ω)), it follows that

∫ T

0

〈Bv, v〉 dt =
∫ T

0

〈 d

dt
ν ∗ v, v

〉
dt ≥ 0.
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3. Local well-posedness. This section is devoted to the local
well-posedness of (PFM); for this we will reduce the system (PFM) to
a semi-linear equation of Volterra type, such that local well-posedness
of it allows us to obtain the same properties in (PFM). Our strategy
to solve this semi-linear equation will divide in two parts. Firstly, we
solve the linear version of it using maximal regularity tools (Theorem
2.10), and secondly we apply the contraction principle to overcome the
nonlinearities. We would like to begin with some definitions.

3.1 Preliminaries. Let T > 0 be given and fixed, and let Ω be a
smooth bounded domain in Rn. For 0 < δ ≤ T and 1 < p < ∞, we
define the spaces

Z(δ) = Hα+κ
p ([0, δ];X) ∩Hκ

p ([0, δ];DA);

Zi(δ) = H1+αi+κi
p ([0, δ];X) ∩Hκi

p ([0, δ];DA);

X̃i(δ) = Hαi+κi
p ([0, δ];X);

Xi(δ) = H1+αi+κi
p ([0, δ];X),

for i = 1, 2, where α, αi > 0, and κ, κi ≥ 0, and X := Lp(Ω), and A is
a closed linear operator in X with dense domain D(A). The spaces
0Z(δ) and 0Zi(δ) denote the corresponding spaces Z(δ) and Zi(δ),
respectively, with zero trace at t = 0. A similar definition holds for
0X̃i(δ) and 0Xi(δ). Whenever no confusion may arise, we shall simply
write Z, Zi, etc., respectively 0Z, 0Zi, etc., if δ = T . Furthermore, in
case that κi ∈ [0, 1/p) and αi + κi 	= 1/p, we define the natural phase
spaces for Zi by

Y i
p = (X;DA)γi,p, with γi = 1 +

κi

1 + αi
− 1
p(1 + αi)

, for i = 1, 2;

Ỹ i
p = (X;DA)ςi,p, with ςi = 1 +

κi

1 + αi
− 1

1 + αi
− 1
p(1 + αi)

,

for i = 1, 2.

Next, we would like to recall that, for 1 < p < ∞ and n ∈ N, the
Bessel potential spaces may be defined as interpolation spaces between
the well-known Sobolev spaces Wn

p and Lp, by means of the so-called
complex interpolation, i.e.,

Hsn
p = [Lp,W

n
p ]s, for s ∈ (0, 1).
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We may also set Hsn
p = Lp if s = 0, and Hsn

p = Wn
p if s = 1. For a

general reference concerning these topics, see e.g., [10].

Let J = [0, T ] be an interval on R. We consider the system

(3.1) ut +
l

2
φt = a1 ∗ Δu+ f1, in J × Ω;

(3.2)

τφt = ξ2a2 ∗ Δφ+
1
η
a2 ∗ (φ− φ3) + a2 ∗ u+ f2, in J × Ω;

n · ∇u = n · ∇φ = 0, on J × ∂Ω;
u(0, x) = u0(x), φ(0, x) = φ0(x), in Ω,

where f1 and f2 are given by

f1(t, x) =
∫ 0

−∞
a1(t−s)Δu(s, x) ds, (t, x) ∈ J × Ω;

f2(t, x) =
∫ 0

−∞
a2(t−s)

[
ξ2Δφ+

φ− φ3

η
+ u

]
(s, x) ds, (t, x) ∈ J × Ω.

For the discussion of equations (3.1) (3.2), we will assume that without
loss of generality all constants are equal to one. Furthermore, we will
also assume that the kernels ai belong to K1(αi, θi), with θi ∈ (0, (π/2))
and αi ∈ (0, 1) for i = 1, 2, and we will set A = −Δ with Neumann
boundary conditions.

If we consider φ as known, then equation (3.1) is equivalent to the
two problems {

u∗t = − a1 ∗Au∗ + f1 in J × Ω;

u∗(0) = u0 in Ω,
(I)

and {
wt = − a1 ∗Aw − (l/2)φt in J × Ω;

w(0) = 0 in Ω,
(II)

by means of the relation u = u∗ +w. Observe that Theorem 2.10 gives
necessary and sufficient conditions to obtain a strong solution of (I)
and also for (II). Indeed, integrating equation (I) over [0, t], we have

u∗ = − 1 ∗ a1 ∗Au∗ + 1 ∗ f1 + u0.



104 V. VERGARA

It is easy to show that a := 1 ∗ a1 is a kernel that belongs to the
class K1(1 + α1, θ1 + (π/2)). On the other hand, it is well-known that
A = −Δ with Dirichlet- or Neumann- or Robin-boundary conditions
belongs to the class BIP(X) with power angle θA = 0. Moreover, from
[3] it follows that A ∈ RS(X), too, with R-angle φRA = 0. Hence, (I)
transforms into the equation (2.1), with f = 1 ∗ f1 + u0. Therefore, we
may apply Theorem 2.10. A similar argument holds for (II).

Now we want to have a representation formula of the mild solution
of (II). For this, we take f = − 1 ∗ φt and a = 1 ∗ a1 in (2.1). On
the other hand, since A ∈ S(X) and spectral angle φA = 0, it follows
from Remark 2.5 that (2.1) admits a resolvent operator S. Using this
fact and the variation of parameters formula, it follows that the mild
solution w of equation (II) can be represented as

(3.3) w =
d

dt
(−S ∗ 1 ∗ φt) = −S ∗ φt.

Now substituting u = u∗ + w in (3.2) and using (3.3) it follows that

(3.4) φt = − a2∗Aφ+a2∗(φ−φ3)+a2∗u∗−a2∗S∗φt+f2, in J×Ω.

Defining

g(t) = 1∗a2∗u∗+1∗f2+φ0 and H(φ) = 1∗a2∗(φ−φ3)−1∗a2∗S∗φt,

then (3.4) can be rewritten as

(3.5) φ = − 1 ∗ a2 ∗Aφ+H(φ) + g(t).

Now we will establish the equivalence between system (3.1) (3.2) and
equation (3.5). To do so, we will first assume that the functions in
(3.1) (3.2) and (3.5) enjoy enough regularity (later, we will make this
aspect precise).

We begin assuming that u∗ as well as φ are known in (I) and (3.5),
respectively. Using φ in equation (II) we obtain a function w, and by
defining a new function u = u∗ + w, one can show (after an easy
computation) that the pair (u, φ) is a solution of (3.1) (3.2). The
converse direction is trivial.

We will make precise now the type of regularity which we will give
to the solutions.
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The regularity that one can await of the solution (u, φ) of (3.1) (3.2)
is delivered by Theorem 2.10; therefore, we can assume that (u, φ)
belongs to Z1 × Z2. On the other hand, by applying the contraction
mapping principle, we see that the solution φ of (3.5) belongs to Z2, if
and only if H(φ)+g(t) ∈ X2. From Corollary 2.9 we have that, for each
function u∗ ∈ Lp(J ;X) (in particular in Z1), the function 1∗a2∗u∗ is in
0X2, hence g ∈ X2, provided that u∗ ∈ Lp(J ;X) and 1 ∗ f2 + φ0 ∈ X2.

From equation (II) and Theorem 2.10, it follows that the solution
w of (II) belongs to 0Z2. Since u = u∗ + w is a solution of (3.1), we
have u ∈ Z1. On the other hand, since u∗ ∈ Z1 and w ∈ Z2, we have
to impose a compatibility condition between the spaces Z1 and Z2. In
fact, the Sobolev embedding Z2 ↪→ Z1 is an admissible condition, which
is equivalent to

(3.6) α2 − α1 ≥ κ1 − κ2 and κ2 ≥ κ1.

The following auxiliary results are needed to estimate the nonlinear
term H(φ) of equation (3.5) in X2. For this purpose we begin with an
estimate of product of functions in Bessel potential spaces.

Lemma 3.1. Let 0 ≤ κ < 1, α > 0, n ∈ N. Suppose that
p > (n/3) + (2/3α). Then there is a constant C > 0 and an ε > 0
such that

(3.7) |u v w|Hκ+ε
p (Lp) ≤ C|u|Z |v|Z |w|Z

is valid for every u, v, w ∈ Z.

Proof. Let ρi > 1 for i = 1, . . . , 4, such that

1 =
1
ρ1

+
2
ρ3

=
1
ρ2

+
2
ρ4
,

in particular ρ3 and ρ4 must be greater than 2. Let ε > 0 be such that
0 < κ+ ε < 1; then, from the characterization of Hκ+ε

p via differences,
see [10], and with the help of Hölder’s inequality, it follows that

(3.8) |uvw|Hκ+ε
p (Lp) ≤ C|u|Hκ+ε

pρ1 (Lpρ2 )|v|Hκ+ε
pρ3 (Lpρ4 )|w|Hκ+ε

pρ3 (Lpρ4 ).
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Observe that (3.8) is valid for κ = ε = 0, too.

On the other hand, the mixed derivative theorem yields

Z ↪→ H(1−θ)α+κ
p (H2θ

p ).

Then, for completion of the proof, we have to check the validity of
Sobolev embeddings

H(1−θ)α+κ
p (H2θ

p ) ↪→ Hκ+ε
pρ1

(Lpρ2)

and

H(1−θ)α+κ
p (H2θ

p ) ↪→ Hκ+ε
pρ3

(Lpρ4).

Is easy to verify that the first embedding is valid for some θ ∈ (0, 1),
provided
(3.9)

p ≥ αn

2(α− ε)

(
1− 1

ρ2

)
+

1
α− ε

(
1− 1

ρ1

)
=

αn

2(α− ε)

(
2
ρ4

)
+

1
α− ε

(
2
ρ3

)
and the second one is valid for some θ ∈ (0, 1), provided

(3.10) p ≥ αn

2 (α− ε)

(
1 − 1

ρ4

)
+

1
α− ε

(
1 − 1

ρ3

)
.

Taking ρ3 = ρ4 = 3, (3.9) and (3.10) are equivalent to

p ≥ αn

3(α− ε)
+

2
3(α− ε)

.

Then the claim follows from the strict inequality

αn

3(α− ε)
+

2
3(α− ε)

>
n

3
+

2
3α
,

since ε > 0.

Lemma 3.2. Let X be a Banach space of class HT , and let
J = [0, T ], T > 0. Further let b ∈ K1(β, θ), β > 1, θ < π. Assume
that the constants κ ≥ 0 and ε ∈ (0, 1) are given, and suppose further
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that 1 < β + κ < 2. Then, for all u ∈ Hκ+ε
p (J ;X), there is a constant

c(T ) > 0, such that

(3.11) |b ∗ u|
0Hβ+κ

p (J;X) ≤ c(T )|u|Hκ+ε
p (J;X).

Moreover, c(T ) → 0 as T → 0.

Proof. We begin by recalling the notion of fractional derivatives.
Let α > 0. The fractional derivative of order α for all functions
f ∈ 0H

α
p (J ;X) is defined by

Dα
t f(t) =

dm

dtm

∫ t

0

gm−α(t− s)f(s) ds,

where m = [α] ∈ N, and gα(t) := (tα−1/Γ(α)).

Observe that by Corollary 2.9 the operator Dα
t coincides with the

operator given there. Moreover, it defines an isometric isomorphism
from 0H

α
p (J ;X) to Lp(J ;X). On the other hand, since f ∈ 0H

α
p (J ;X),

it follows that

(3.12) |gε ∗ f |0Hα
p (J;X) ≤ c(T )|f |0Hα

p (J;X),

where c(T ) > 0 and c(T ) → 0 as T → 0. Indeed, observing that the
operators Dα

t and gε ∗ · commute in 0H
α
p (J ;X), we have

|gε ∗ f |0Hα
p (J;X) = |αt (gε ∗ f)|Lp(J;X) = |gε ∗Dα

t f |Lp(J;X).

Using this and Young’s inequality, the claim follows with c(T ) :=
|gε|L1(J).

Now, since b ∗ gε and (d/dt)b ∗ gε are of order tβ+ε and tβ+ε−1,
respectively, it follows that the operator Dε

t (b ∗ ·) : Hκ+ε
p (J ;X) →

0H
β+κ
p (J ;X) is well-defined, linear and bounded. On the other hand,

since ε < 1 and the identity gε ∗ Dε
t = I is valid in 0H

ε
p(J ;X), we

obtain

(3.13) |b ∗ u|
0Hβ+κ

p (J;X) = |gε ∗Dε
t (b ∗ u)|0Hβ+κ

p (J;X).

Therefore, (3.11) follows from (3.12) and (3.13) with α = β + κ, since
the operator Dε

t (b ∗ ·) is bounded in Hκ+ε
p (J ;X).
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We can now estimate H(φ) in X2.

Corollary 3.3. Let α1, α2 ∈ (0, 1) and κ1, κ2 ∈ [0, 1/p) such that the
compatibility condition (3.6) holds. Let ai ∈ K1(αi, θi), with θi < π/2,
for i = 1, 2, and let S be the operator given in (3.3). Suppose that
p > (n/3) + (2/3(α2 + 1)). Then the map H : Z2 → 0X2, defined as

H(φ) = 1 ∗ a2 ∗ (φ− φ3) − 1 ∗ a2 ∗ S ∗ φt

is continuous and bounded in Z2. Moreover, there is a constant
K(T ) > 0, with K(T ) → 0 as T → 0, such that

(3.14) |H(v)|0X2 ≤ K(T ) ·
[
|v|3Z2

+ |v|Z2 + |v − v(0)|0X2

]
.

is valid for every v ∈ Z2.

Proof. Let v ∈ Z2, then 1∗vt ∈ 0X2. From Lemma 3.2 with b = 1∗a2

and β = 1 + α2, it follows that there is a constant c(T ) > 0, such that

(3.15) |1 ∗ a2 ∗ S ∗ vt|0X2 ≤ c(T )|S ∗ vt|Hκ2+ε
p (Lp)

.

On the other hand, from the embedding Z2 ↪→ Hκ2+ε
p , ε < α2,

and maximal regularity of equation (II), we obtain the existence of
a constant C > 0, such that

(3.16) |S ∗vt|Hκ2+ε
p (Lp)

≤ |S ∗vt|Z2 ≤ C · |1∗vt|0X2 = C · |v−v(0)|0X2 .

Therefore, from (3.15) and (3.16), there exists a constant K(T ) > 0
with

(3.17) |1 ∗ a2 ∗ S ∗ vt|0X2 ≤ K(T )|v − v(0)|0X2 .

Finally, Lemma 3.2 yields

(3.18) |1 ∗ a2 ∗ (v − v3)|0X2 ≤ c(T )
(
|v|

H
κ2+ε
p (Lp)

+ |v3|
H

κ2+ε
p (Lp)

)
.

Hence, using the embedding Z2 ↪→ Hκ2+ε
p (Lp), ε < α2, and Lemma 3.1,

the proof is complete.
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3.2 Contraction mapping principle. In this section we solve the
equation

(3.19) φ = − 1 ∗ a2 ∗Aφ+H(φ) + g(t), t ∈ J,

in Z2, where the nonlinearity H(φ) and the function g(t) are defined
by

H(φ) = 1 ∗ a2 ∗ (φ− φ3) − 1 ∗ a2 ∗ S ∗ φt, t ∈ J,(3.20)

and

g(t) = 1 ∗ a2 ∗ u∗ + 1 ∗ f2 + φ0, t ∈ J.(3.21)

We begin with the linear version of (3.19), that is,

(3.22) v∗ = − 1 ∗ a2 ∗Av∗ + g(t), t ∈ J.

Theorem 2.10 allows us to define an operator L in Z2 by

Lv = v + 1 ∗ a2 ∗Av, for all v ∈ Z2,

which is an isomorphism between Z2 and the space

E :=
{
g ∈ X2 : g(0) ∈ Y 2

p , and gt(0) ∈ Ỹ 2
p , if α2 + κ2 >

1
p

}
.

Observe that a function g defined by (3.21) belongs to E, if and only if

(i) u∗ ∈ Lp(J ;X) and f2 ∈ X̃2,

(ii) φ0 ∈ Y 2
p ,

(iii) f2(0) ∈ Ỹ 2
p , if α2 + κ2 > 1/p.

On the other hand, from Corollary 3.3, it follows H(w) ∈ X2, for
each w ∈ Z2. Furthermore, it is easy to check that H(w) ∈ E too,
actually H(w)(0) = d/(dt)H(w)(t)|t=0 = 0. Now, let v∗ ∈ Z2 denote
the solution of Lv∗ = g, and assume that in equation (3.19) φ ∈ Z2 is
known. By defining v = φ− v∗, equation (3.19) is equivalent to the fix
point problem

v = L−1H(v + v∗) =: T v in 0Z2.



110 V. VERGARA

Here is the result concerning the solution of equation (3.19).

Theorem 3.4. Let αi ∈ (0, 1), 0 < θi < π/2, κi ∈ [0, 1/p)
for p > 1, and let ai ∈ K1(αi, θi) for i = 1, 2. Suppose that
p > (n/3) + (2/3(α2 + 1)), αi + κi 	= 1/p, i = 1, 2, and that condition
(3.6) holds. Then for some 0 < δ ≤ T , equation (3.19) has a unique
local solution in Z2(δ), if

(i) u∗ ∈ Lp(J ;X) and f2 ∈ X̃2,

(ii) φ0 ∈ Y 2
p ,

(iii) f2(0) ∈ Ỹ 2
p , if α2 + κ2 > 1/p,

are fulfilled.

Proof. Assume that the conditions (i) (iii) are fulfilled. Defining g by
(3.21), it follows that g ∈ E, and from Theorem 2.10 there is a unique
solution v∗ in Z2 of equation

Lv∗ = g.

Since H(w) ∈ E, for each w ∈ Z2 we have that equation (3.19) is
equivalent to a fixed point problem. Consider the ball Br(0) ⊂ 0Z2(δ),
where r > 0 is fixed, and define T : Br(0) ⊂ 0Z2(δ) → 0Z2(δ) by
T v = L−1H(v∗ + v). Furthermore, let b := 1 ∗ a2. We first show that
T is a contraction by using Lemma 3.1 and Corollary 3.3.

|T v − T w|0Z2(δ) ≤ |L−1||H(v∗ + v) −H(v∗ + w)|0X2(δ)

≤ C|b ∗ (v − w)[(v∗ + w)2

+ (v∗ + v)(v∗ + w) + (v∗ + v)2]|0X2(δ)

+ C|b ∗ S ∗ (vt − wt)|0X2(δ) + C|b ∗ (v − w)|0X2(δ)

≤ CK(δ)|v − w|0Z2(δ)

×
[
2|v∗|Z2(δ) + |w|0Z2(δ) + |v|0Z2(δ)

]2
+ C|b ∗ S ∗ (vt − wt)|0X2(δ) + CK(δ)|v − w|0Z2(δ)

Then, using the same argument as in the proof of Corollary 3.3, it
follows that

(3.23)
|T v − T w|0Z2(δ) ≤ CK(δ)|v − w|0Z2(δ)[4(|v∗|Z2(δ) + r)2 + C1]

≤ 1
2
|v − w|0Z2(δ),

since K(δ) → 0 as δ → 0.
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To show that T Br(0) ⊂ Br(0), in a similar way we obtain that

(3.24)

|T v|0Z2(δ) ≤ |L−1||H(v∗ + v)|X2(δ)

≤ CK(δ)[|v∗ + v|Z2(δ) + |v∗ + v|3Z2(δ)
+ |v∗

+ v − v∗(0)|0X2(δ)]

≤ 0CK(δ)[|v∗|Z2(δ) + 2r + (|v∗|Z2(δ) + r)3

+ |v∗ − v∗(0)|0X2(δ)]
< r,

provided δ > 0 is small enough. Note that |v∗|Z2(δ) → 0 as δ → 0, since
v∗ is a fixed function.

Hence, the contraction mapping principle yields a unique fixed point
v ∈ Br(0) of T and, therefore, φ = v∗ + v is the unique strong solution
of (3.19) in [0, δ].

Concerning continuation of the solution φ, observe that by Theo-
rem 3.4, there exist a δ > 0 and a unique solution φ = v + v∗ of
(3.19) in Z2(δ). On the other hand, from the embedding Z2(δ) ↪→
C1([0, δ]; Ỹ 2

p ) ∩ C([0, δ];Y 2
p ) we have φ(δ) ∈ Y 2

p and φt(δ) ∈ Ỹ 2
p . This

fact allows us to continue the solution. Indeed, let T be the map de-
fined in the proof of Theorem 3.4, and let v ∈ 0Z2(δ) be its unique fix
point. For η > 0, consider the space

Mv := {ψ ∈0 Z2(δ + η) : ψ|[0,δ] = v}.
The set Mv is not empty and with the metric induced by Z2(δ + η),
we have that (Mv, d) is a complete metric space, where

d(f, g) := |f − g|Z2(δ+η), for all f, g ∈ Mv.

Now we can apply the contraction mapping principle to T in Mv. From
(3.23) and (3.24), it is easy to show that T has a unique fixed point
ψ ∈ Mv, for some δ1 ∈ (δ, δ + η), provided η > 0 is chosen sufficiently
small. Hence, the function φ := v∗ + ψ is the unique solution of (3.5)
in Z2(δ1). A successive application of this argument yields a solution
φ on a maximal time interval [0, tmax), which is characterized by the
two equivalent conditions{ limδ→tmax |φ(δ)|Y 2

p
does not exist;

limδ→tmax |φt(δ)|Ỹ 2
p

does not exist, if α2 > 1/p,
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and
|φ|Z2(tmax) = ∞.

As we already proved in subsection 3.1, (3.19) and the system (1.2) (1.3)
are equivalent. Therefore, we obtain the following result.

Theorem 3.5. Let αi ∈ (0, 1), 0 < θi < π/2, κi ∈ [0, 1/p)
for p > 1, and let ai ∈ K1(αi, θi) for i = 1, 2. Suppose that
p > (n/3)+(2/3(α2 + 1)), αi+κi 	= 1/p for i = 1, 2, and that condition
(3.6) holds. Then for some 0 < δ < tmax the system (3.1) (3.2) has
a unique solution (u, φ) ∈ Z1(δ) × Z2(δ), provided that the data are
subject to the following conditions.

(i) f1 ∈ X̃1 and f2 ∈ X̃2,

(ii) u0 ∈ Y 1
p and φ0 ∈ Y 2

p ,

(iii) fi(0) ∈ Ỹ i
p , if αi + κi > 1/p for i = 1, 2.

4. Global well-posedness. In this section we want to solve the
nonlinear system

(PFM)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ut + l/2φt =
∫ t

−∞
a1(t− s)Δu(s) ds in J × Ω;

τφt =
∫ t

−∞
a2(t− s)

[
ξ2Δφ+

φ− φ3

η
+ u

]
ds in J × Ω;

n · ∇u = n · ∇φ = 0 on J × ∂Ω;
u(0, x) = u0(x), φ(0, x) = φ0(x) in Ω,

globally in time in the setting established in previous sections. As we
already explained in the introduction, we may set

(4.1) u(t, x) = φ(t, x) = 0, (t, x) ∈ (−∞, 0) × Ω.

For the sake of simplicity, we also set κ2 = 0. In case κ2 	= 0, the
global existence result remains true, but the calculation is more lengthy.
Observe that, from (3.6), it follows that α2 ≥ α1 if κ2 = 0.

We now begin the discussion concerning global existence of (PFM).
From (4.1) and the definition of operator B in Corollary 2.9, which is
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associated with kernel a2, (PFM) can be written as follows

ut + φt =
∫ t

0

a1(t− s)Δu(s) ds, in J × Ω;(4.2)

Bφt = Δφ+ φ− φ3 + u, in J × Ω;(4.3)
n · ∇u = n · ∇φ = 0, on J × ∂Ω;
u(0, x) = u0(x), φ(0, x) = φ0(x), in Ω.

The next result gives an a priori estimate in the case that the kernels
a1 and a2 satisfy the conditions (P1) and (P2), respectively.

Lemma 4.1. Let (u, φ) ∈ Z1(δ)×Z2(δ) be the solution of (4.2) (4.3),
for p ≥ 2. Assume that the conditions (P1) and (P2) are fulfilled. Then
there is constant M > 0, independent of δ, such that, the inequality

−M ≤ sup
0<δ<tmax

{
|u(δ)|2L2(Ω)+ |φ(δ)|2H1

2 (Ω) +
1
2
|φ(δ)|4L4(Ω) − |φ(δ)|2L2(Ω)

}
+ 2

∫ tmax

0

〈a1 ∗ ∇u,∇u〉 dt+ 2
∫ tmax

0

〈Bφt, φt〉 dt

≤ 2
[
|u0|2L2(Ω) + |φ0|2H1

2 (Ω) + |φ0|4L4(Ω)

]
holds.

Proof. We multiply (4.2) by u and (4.3) by φt, add the result and
integrate by parts, to obtain

(4.4)
1
2
∂t

{ ∫
Ω

|u|2 dx+
∫

Ω

|∇φ|2 dx+
1
2

∫
Ω

|φ|4 dx−
∫

Ω

|φ|2 dx
}

+ 〈a1 ∗ ∇u,∇u〉 + 〈Bφt, φt〉 = 0

Integrating (4.4) over (0, δ), δ < tmax, it is easy to verify the inequality

(4.5) |u|2L2(Ω) + |φ|2H1
2 (Ω) +

1
2
|φ|4L4(Ω) − |φ|2L2(Ω) + 2

∫ δ

0

〈Bφt, φt〉 ds

+ 2
∫ δ

0

〈a1 ∗ ∇u,∇u〉 ds

≤ 2
[
|u0|2L2(Ω) + |φ0|2H1

2 (Ω) + |φ0|4L4(Ω)

]
.
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Note that the term
∫ δ

0
〈Bφt, φt〉 ds is positive since B is accretive. On

the other hand, the parabola x4 − 2x2 is bounded from below by −1.
Therefore, taking the supremum over (0, tmax) in (4.5), the proof is
completed.

Now we can state our main result of this section.

Theorem 4.2. Let αi ∈ (0, 1), 0 < θi < π/2, and let ai ∈ K1(αi, θi)
for i = 1, 2. Suppose that p ≥ 2 and n ≤ 3, αi 	= 1/p for i = 1, 2, and
the condition α2 ≥ α1 holds. If

(i) the conditions (P1) and (P2) are fulfilled, and

(ii) u0 ∈ Y 1
p and φ0 ∈ Y 2

p ,

then the system (4.2) (4.3) has a unique global solution (u, φ) ∈ Z1×Z2.

Proof. Let 0 < δ < tmax, and let (u, φ) ∈ Z1(δ)×Z2(δ) be the unique
local solutions of (4.2) (4.3), given by Theorem 3.5. From Lemma 4.1
it follows that

(4.6) φ ∈ L∞([0, tmax);L6(Ω)).

If � ∈ (1/4, 1/3), then the inequality

− n

3p
≤ �

(
2 − n

p

)
− n(1 − �)

6

is valid for p ≥ 2 and n ≤ 3. Therefore, by the Gagliardo-Nirenberg
inequality, it follows that there is a constant C := C(Ω) > 0, such that

(4.7) |φ|L3p(Ω) ≤ C|φ|�H2
p(Ω)|φ|

1−�
L6(Ω).

Furthermore, from (4.6) and (4.7), we obtain

(4.8) |φ3|Lp(Lp) ≤ C0|φ|3�
L3	p(H2

p) ≤ C0|φ|3�
Lp(H2

p) ≤ C0|φ|3�
Z2(δ).

On the other hand, by maximal Lp-regularity, there is a constant
M := M(T ) > 0, such that

|u|Z1(δ) + |φ|Z2(δ) ≤M
(
1 + |φ3|Lp([0,δ];X)

)
.
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Hence, (4.8) yields

|φ|Z2(δ) ≤M
(
1 + |φ|3�

Z2(δ)

)
with a different constant M , which is independent of δ < tmax.
Therefore,

|φ|Z2(tmax) <∞.

This in turn yields the boundedness of u ∈ Z1(tmax). Hence the global
existence of (4.2) (4.3) follows.
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Basel, 1993.

8. J. Prüss and H. Sohr, On operators with bounded imaginary powers in Banach
spaces, Math. Z. 203 (1990), 429 452.

9. H.G. Rotstein, S. Brandon, A. Novick-Cohen and A. Nepomnyashchy, Phase
field equations with memory: hyperbolic case, SIAM J. Appl. Math., 62 (2001),
264 282.

10. H. Triebel, Theory of function spaces II, Birkhäuser Verlag, Basel, 1992.
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