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A NOTE ON VOLTERRA INTEGRAL EQUATIONS
WITH POWER NONLINEARITY

M. NIEDZIELA AND W. OKRASIŃSKI

ABSTRACT. In the paper the existence of nontrivial solu-
tions to integral Volterra equations with the power nonlinear-
ity is studied. The behavior of nontrivial solutions near origin
is considered.

1. Introduction. The nonlinear Volterra integral equation

(1.1) u(x) =
∫ x

0

k(x − s)g(u(s)) ds, x ∈ [0, δ], δ > 0,

has been studied in the modeling of some problems in nonlinear dif-
fusion and shock-wave propagation [6]. In these problems the kernel
k is nonnegative and g is an increasing continuous function such that
g(0) = 0. Moreover, g does not satisfy a Lipschitz condition near the
origin. A typical example of such a function is g(u) = up, p ∈ (0, 1).
Obviously, u ≡ 0 is the trivial solution to (1.1). The physically interest-
ing solutions of (1.1) are continuous functions u such that u(x) > 0 for
x > 0. Some particular answers concerning the existence of nontrivial
solutions can be found in different works, e.g., [3, 5]. In this paper we
study nontrivial solutions to the equation

(1.2) u(x) =
∫ x

0

k(x − s)up(s) ds, x ∈ [0, δ], p ∈ (0, 1).

Using necessary and sufficient conditions for the existence of nontrivial
solutions in the form of function series [5], we derive them in the integral
form. These last conditions are the same as those obtained in [4].
With respect to applications, the behavior of nontrivial solutions near
the origin is also interesting. We present lower and upper estimates
of nontrivial solutions to (1.2) at the vicinity of zero. For the case
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k(x) = xα−1, α > 0, some estimates are given in [2]. But the knowledge
concerning the behavior of nontrivial solutions near the origin for small
increasing kernels as, e.g., k(x) = x−α−1 exp(−1/xα), α > 1, is still
very poor [1]. In this work we give new results for this last case. Some
examples are also included.

2. Preliminary information. First we recall some results from
[5]. We consider (1.1). We assume that

(2.1) k : (0, δ] −→ [0, +∞), δ > 0, is an integrable function
such that k > 0 a.e.;

(2.2) g : [0, +∞) −→ [0, +∞), is an increasing, continuous function
such that g(0) = 0.

Let K−1 denote the inverse function to K(x) =
∫ x

0
k(s) ds, which is

strictly increasing for k satisfying (2.1). Let g−1 denote the inverse
function to g satisfying (2.1). For a given function f , we define
the sequence of functions fn, n = 0, 1, . . . , as follows: f0(x) = x,
fn+1(x) ≡ (fn ◦ f)(x), n = 0, 1, . . . . As proven in [5], we have

Theorem 2.1. Let the kernel k satisfy (2.1) and g satisfy (2.2). If
equation (1.1) has a nontrivial solution on an interval, then the series

(2.3)
∞∑

n=0

K−1
((

g−1
)n

(x)
)

is convergent on [0, δ] (δ > 0).

Theorem 2.2. Let the kernel k satisfy (2.1) and g satisfy (2.2). Let
ϕ be a continuous function on [0, δ], δ > 0, such that x < ϕ(x) < g(x)
for (0, δ] and x/ϕ(x) → 0 as x → 0+. If the series

(2.4)
∞∑

n=0

K−1
((

g−1 ◦ ϕ
)n

(x)/ϕ
((

g−1 ◦ ϕ
)n

(x)
))

converges uniformly on [0, δ], then equation (1.1) has a nontrivial
solution on an interval.
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Remark 2.3. If the assumptions of Theorem 2.1 and Theorem 2.2 are
satisfied then on the basis of results from [5] we can write

(2.5)
∞∑

n=0

K−1
((

g−1
)n

(x)
)
≤ u−1(x)

≤
∞∑

n=0

K−1
((

g−1 ◦ ϕ
)n

(x)/ϕ
((

g−1 ◦ ϕ
)n

(x)
))

for x ∈ [0, δ], where u−1 denotes the inverse function to the nontrivial
solution u of (1.1).

3. Studies concerning the power nonlinearity. In this part we
shall study equation (1.2). If we designate g(x) = xp, 0 < p < 1, then
Theorem 2.1 can be written as follows.

Theorem 3.1. Let the kernel k satisfy (2.1). If equation (1.2) has
a nontrivial solution on an interval, then the series S(x) defined by

(3.1) S(x) =
∞∑

n=0

K−1
(
x(1/p)n

)
is convergent on [0, δ], δ > 0.

We also modify Theorem 2.2 by using g(x) = xp, 0 < p < 1, and
ϕ(x) = xq, p < q < 1. We get

Theorem 3.2. Let the kernel k satisfy (2.1). If the series S(x)
defined by

(3.2) S(x) =
∞∑

n=0

K−1
(
x(1−q)(q/p)n

)
.

converges uniformly on [0, δ], then equation (1.2) has a nontrivial
solution on an interval.

We can reformulate Remark 2.3 as follows.
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Remark 3.3. If (1.2) has a nontrivial solution, then

(3.3) S(x) ≤ u−1(x) ≤ S(x)

for x ∈ [0, δ], where u−1 denotes the inverse function to the nontrivial
solution.

Let

(3.4) I(x) =
∫ x

0

K−1 (s)
ds

s (− ln s)
,

where x > 0. We can formulate the following theorem (see also [4]).

Theorem 3.4. If equation (1.2) has a nontrivial solution, then
I(x) < ∞ for x ∈ (0, δ], δ > 0.

Proof. Let Φ(x) = x1/p < x < 1. Let xn be a strictly decreasing and
convergent to zero sequence for all 0 < x ≤ δ such that

x0 = x, xn+1 = Φ(xn), n = 0, 1, 2, . . . .

We notice that
(3.5)∫ xi

xi+1

K−1 (s)
ds

s (− ln s)
≤ − ln p K−1(xi) = − ln p K−1

(
x(1/p)i

)
,

for i = 0, 1, 2, . . . . Adding inequalities of the form (3.5) from i = 0 to
n we get

(3.6)
∫ x

xn+1

K−1 (s)
ds

s (− ln s)
≤ − ln p

n∑
k=0

K−1
(
x(1/p)k

)
.

Now, taking n → ∞, we obtain

(3.7)
∞∑

n=0

K−1
(
x(1/p)n

)
≥ 1

− ln p

∫ x

0

K−1 (s)
ds

s (− ln s)
=

1
− ln p

I(x).
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On the basis of Theorem 3, we have I(x) < ∞ for 0 < x ≤ δ.

Theorem 3.5. If I(x) < ∞ for x > 0, then equation (1.2) has a
nontrivial solution.

Proof. Let Ψ(x) = xq/p < x < 1. Let xn be a strictly decreasing and
convergent to zero sequence for all 0 < x ≤ δ such that

x0 = x, xn+1 = Ψ(xn), n = 0, 1, 2, . . . .

Let K−1
0 (x) .= K−1(x1−q). We have

(3.8)

∫ xi

xi+1

K−1
0 (s)

ds

s (− ln s)
≥ − ln

p

q
K−1

0 (xi+1)

= − ln
p

q
K−1

(
x(1−q)(q/p)i+1

)
,

for i = 0, 1, 2, . . . . In a similar manner as in the proof of Theorem 3.4,
we obtain

(3.9)
∫ x

0

K−1
(
s1−q

) ds

s (− ln s)
≥ − ln

p

q

∞∑
n=1

K−1
(
x(1−q)(q/p)n

)
.

The left-hand side of the last inequality is equal to I(x1−q). Since
I(y) < ∞ for y = x1−q < 1, then the series (3.2) is convergent. By
Theorem 3.2 we get the existence of a nontrivial solution.

With the help of Theorems 3.4 and 3.5, we can formulate

Corollary 3.6. Equation (1.2) has a nontrivial solution u if and
only if I(x) < ∞ where x ∈ (0, δ], δ > 0.

On the basis of Remark 3.3 and proofs of Theorems 3.4 and 3.5, we
can write:

Lemma 3.7. If equation (1.2) has a nontrivial solution, then

(3.10) c1I(x) ≤ u−1(x) ≤ c2I (xa) ,
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where x ∈ (0, δ], a = (1 − q) p/q, c1 = (− ln p)−1 and c2 =
(− ln(p/q))−1 are constants.

Proof. On the basis of the proof of Theorem 3.4, we get the left-hand
side of (3.11). The proof of the right-hand side of the inequality is
similar to the proof of Theorem 3.5. Combining inequalities (3.3) and
(3.10), we obtain

(3.11) u−1(x) ≤ K−1(x1−q) + c2

∫ x

0

K−1
(
s1−q

) ds

s (− ln s)
.

Since

(3.12) K−1(x1−q) ≤ c2

∫ xp/q

x

K−1
(
s1−q

) ds

s (− ln s)
,

then we get finally the right-hand side inequality

(3.13)

u−1(x) ≤ c2

∫ x(1−q)p/q

0

K−1 (s)
ds

s (− ln s)
= c2I

(
x(1−q)p/q

)
.

We also obtain the following corollary.

Corollary 3.8. If equation (1.2) has a nontrivial solution u, then

(3.14)
(
I−1(−(ln(p/q)) x)

)q/p(1−q) ≤ u(x) ≤ I−1(−(ln p) x)

where x ∈ (0, δ] and I−1 denotes the inverse function to I.

Proof of Corollary 3.8. Since I is strictly increasing and continuous
function on x ∈ (0, δ], then on the basis of inequality (3.10), we can
easily get inequality (3.14).

4. Some results concerning the power nonlinearity and small
kernels. In this part we shall present some interesting results based
on inequality (3.10). Assume, additionally, that the function k is
nondecreasing, k(0) = 0, and the following condition is satisfied:

(4.1) 1/ln K(x) is a concave function on interval (0, δ), δ > 0.
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Remark 4.1. Let us note that the condition (4.1) is satisfied for
functions as for example K(x) = exp (−1/xα), α ≥ 1 and K(x) =
exp (− exp(1/xα)), α > 0, but it is not satisfied for K(x) = xα, α > 0.

Remark 4.2. With respect to Remark 4.1 all functions k satisfying
(4.1) will be called small kernels.

Lemma 4.3. If function K satisfies condition (4.1), then for any
a ∈ (0, 1) the following inequality holds

(4.2)
K−1(xa)
K−1(x)

≤ 1
a

for all x ∈ (0, δ].

Proof. Let y(z) = exp(−1/z) and z(x) = −1/(lnx). It easy to notice
that the following equality holds

(4.3)
K−1 (xa)
K−1(x)

=
K−1 ◦ y ◦ z(xa)
K−1 ◦ y ◦ z(x)

=
K̃ ◦ z(xa)

K̃ ◦ z(x)
,

where K̃ = K−1 ◦ y. Taking the property z(xa) = (1/a)z(x) we can
write quotient (4.3) as follows

(4.4)
K−1 (xa)
K−1(x)

=
K̃(z/a)

K̃(z)
.

Notice that z(x) → 0+ as x → 0+ and, on the basis of assumption,
function K̃ is concave. Hence we obtain

(4.5) K̃

(
z

a

)
≤ 1

a
K̃(z),

and inequality (4.2) holds at the vicinity of zero.

Notice that for any p ∈ (0, 1) and any q such that 0 < p < q < 1 we
have a = ((1 − q)p)/q ∈ (0, 1). Hence we reformulate Lemma 3.7 and
Corollary 3.8.
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Lemma 4.4. If equation (1.2) has a nontrivial solution, then

(4.6) c1 I(x) ≤ u−1(x) ≤ c I(x),

where x ∈ (0, δ], c1 = (− ln p)−1 and c = −q/(p(1 − q) ln(p/q)) are
constants.

Proof. On the basis of Lemma 4.3, the following inequality holds

(4.7) I(xa) ≤ 1
a

I(x), a ∈ (0, 1).

Hence, from Lemma 3.7, we obtain inequality (4.7).

Corollary 4.5. If function K satisfies condition (4.1) at the vicinity
of zero, then u−1(x) = O(I(x)/(− lnp)) as x → 0+.

Proof. With the help of Lemma 4.4 we can easily obtain the following
inequality

(4.8) 1 ≤ u−1(x)
(− ln p)−1I(x)

≤ q(− ln p)
p(1 − q)(− ln p + ln q)

.

Hence, from the right-hand side of the above inequality it follows that
the function u−1(x) = O(I(x)/(− lnp)) as x → 0+.

Corollary 4.6. If function K satisfies (4.1) for x ∈ (0, δ], then

(4.9) lnu−1(x) ∼ ln I(x), x → 0+.

Proof. Taking the logarithmic form of inequality (4.6) and using the
property of the logarithm we have

(4.10) 1 +
ln c1

ln I(x)
≥ ln u−1(x)

ln I(x)
≥ 1 +

ln c

ln I(x)
for x ∈ (0, δ).

Since I(x) → 0 as x → 0+ then ln I(x) → −∞ at the origin, hence

(4.11) ln u−1(x) ∼ ln I(x), x → 0+.
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Corollary 4.7. If equation (1.2) has a nontrivial solution, then

(4.12) I−1

(
p(q − 1) ln(p/q)

q
x

)
≤ u(x) ≤ I−1(−(ln p) x)

where x ∈ (0, δ] and I−1 denotes the inverse function to I.

Remark 4.8. In fact we need inequality (4.2) to prove all results of
this part. However, in our opinion, condition (4.1) is more readable
than (4.2).

5. Some examples.

Example 5.1. We consider equation (1.2) with k(x) = K ′(x), where
K(x) = exp (−1/xα), α > 0. In this case K−1(x) = 1/ (ln(1/x))1/α.
The convergence of integral (3.4) is a necessary and sufficient condition
for existence of nontrivial solutions. The integral (3.4) becomes

(5.1) I(x) =
∫ x

0

ds

(ln(1/s))1/α s(− ln s)
=

α

(ln(1/x))1/α
.

This implies that equation (1.2) has nontrivial solutions for α > 0.
After some calculations, on the basis of Corollary 4.5, we obtain the
following estimate of function u,

(5.2)

exp
(
−
(

p(q − 1) ln(p/q)α
qx

)α)
≤ u(x) ≤ exp

(
−
(

α

(− ln p)x

)α)
.

Moreover, function K satisfies condition (4.1) only for α ≥ 1. Since,
for all a > 0,

(5.3) K−1(xa) =
1

a1/α
K−1(x), for a > 0,

then inequality (4.2) holds. On the basis of Corollary 4.6, we notice
that u−1(x) = O

(
α/
(
(− ln p) (ln(1/x))1/α)) as x → 0+.
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Example 5.2. We consider equation (1.2) with k(x) = K ′(x),
where K(x) = exp (− exp(1/xα)), α > 0. In this case K−1(x) =
1/ (ln ln(1/x))1/α and

(5.4)

I(x) =
∫ x

0

ds

(ln ln(1/s))1/α s(− ln s)
=

1 − α

α
(ln ln(1/x))(α−1)/α .

Since for α ≥ 1 this integral is divergent for x ∈ [0, δ], then equation
(1.2) has no nontrivial solutions for α ≥ 1. If α ∈ (0, 1), then the
integral is convergent for small x. This implies that equation (1.2)
has nontrivial solutions for α ∈ (0, 1). On the basis of Corollary 4.5,
estimation of the function u has the following form

(5.5) exp

(
exp

((
p(q − 1) ln(p/q)

q
Ax

)−1/A
))

≤ u(x) ≤ exp
(
− exp

(
((− ln p) Ax)−1/A

))
,

where A = (1 − α)/α. Since the function K satisfies condition
(4.1), then, with the help of Corollary 4.6, we notice that u−1(x) =
O
(
(1 − α) (ln ln(1/x))(α−1)/α /(α(− ln p))

)
as x → 0+.
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