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This paper is dedicated to K.E. Atkinson on the occasion of his 65th birthday

ABSTRACT. Using the Goursat representation for the bi-
harmonic function and approximate solutions of a corrected
Muskhelishvili equation we construct approximate solutions
for biharmonic problems in smooth domains of R2. It is shown
that the sequence of these approximate solutions converges
uniformly on each compact subset of the initial domain D.
Under additional conditions it converges uniformly on D. We
also provide numerical examples.

1. Introduction. Let D be a domain in R2 bounded by a simple
closed regular smooth curve Γ. This means that Γ does not have any
intersections with itself and, if γ = (γ1, γ2) is a parametrization of
Γ, i.e., γ : [a, b] −→ Γ, where [a, b] ⊂ R, then γ is continuously
differentiable on [a, b] and (γ′

1 (s))2 + (γ′
2 (s))2 �= 0 for every s ∈ [a, b].

For convenience in the sequel we always assume γ to be a 1−periodic
function on R. Moreover, we also assume that the origin belongs to D.

Let Δ denote the Laplace operator, i.e.,

(1) ΔU (x, y) =
∂2U

∂x2
(x, y) +

∂2U

∂y2
(x, y) , (x, y) ∈ D.

It is well known that a vast number of problems in applied sciences can
be reduced to the biharmonic equation

(2) Δ2U (x, y) = 0, (x, y) ∈ D

with appropriately chosen boundary conditions for the function U . For
instance, the problem of bending elastic clamped plates, the equilibrium
of elastic bodies, the flow of viscous fluids, are all of this type, [7 10,
13].
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2. Reduction to a boundary value problem for analytic
functions. In 1934, Muskhelishvili proposed a method for solving
problems of the plane theory of elasticity. The method turned out to
be very efficient in studying many other problems. Let us explain it on
an example.

Lemma 1. Let U be a solution of the biharmonic problem

(3) Δ2U |D = 0,
∂U

∂x

∣∣∣∣
Γ

= G1,
∂U

∂y

∣∣∣∣
Γ

= G2.

Then U can be represented in the form

(4)
U (x, y) = Re [(x − i y)φ (x + i y) + χ (x + i y)] ,

i2 = − 1, (x, y) ∈ D,

where φ and χ are analytic functions in the domain D satisfying the
boundary condition

(5) φ (t) + tφ′ (t) + χ′ (t) = f (t) , t = x + i y ∈ Γ,

and where f(t) = G1(t) + i G2(t).

Proof. As usual, we assume that U , together with its partial deriva-
tives, is continuously extendable on Γ. It is well known that any bihar-
monic function allows the representation (4) with some analytic func-
tions φ and χ. Thus the problem is to find φ and χ to satisfy boundary
conditions (3).

Let φ = u + iv and z = x + iy, with u = Re φ, v = Im φ. Then

U (x, y) = Re [z̄ · (u + iv) (z) + χ (z)]
= x · u (x, y) + y · v (x, y) + Re [χ (x, y)] , z ∈ D.

From this, it immediately follows that

∂U

∂x
= u + x

∂u

∂x
+ y

∂v

∂x
+

∂ Re [χ]
∂x

,

∂U

∂y
= x

∂u

∂y
+ v + y

∂v

∂y
+

∂ Re [χ]
∂y

.
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Letting z tend to Γ and taking into account the Cauchy-Riemann
equations and boundary conditions (3), we obtain

φ (t) + tφ′ (t) + χ′ (t) = φ + x

(
∂u

∂x
− i

∂v

∂x

)
+ i y

(
∂v

∂y
− i

∂v

∂x

)
+

∂ Re [χ]
∂x

− i
∂ Im [χ]

∂x

= (u + iv) + x

(
∂u

∂x
+ i

∂u

∂y

)
+ y

(
∂v

∂x
+ i

∂v

∂y

)
+

∂ Re [χ]
∂x

+ i
∂ Re [χ]

∂y

=
∂U

∂x
+ i

∂U

∂y
= G1 (t) + i G2 (t) , t ∈ Γ.

Remark. If, instead of (3), we consider the Dirichlet problem

(6) Δ2U |D = 0, U |Γ = f1,
∂U

∂n̄

∣∣∣∣
Γ

= f2,

where n̄ denotes the unit normal to Γ, then it reduces to the boundary
problem (4) with the right-hand side given by

f (t) = eiα(t)

[
f2 (t) − i

∂f1

∂s̄
(t)

]
, t ∈ Γ,

where α denotes the angle between n̄ and the real axis R, and s̄ is a
unit vector such that the angle between s̄ and R is π/2 − α.

Now let us assume that we are able to find the boundary value φ (t),
t ∈ Γ, of the analytic function φ satisfying condition (5). Then the
same condition allows us to express the boundary value χ′ (t), t ∈ Γ,
for the analytic function χ′, viz.,

(7) χ′ (t) = f (t) − φ (t) − t̄ φ′ (t) .

Making the substitution t = γ (σ) in (7) and multiplying the resulting
expression by γ′ (σ), we obtain

(8)
χ′ (γ (σ)) γ′ (σ) = f (γ (σ)) γ′ (σ) − φ (γ (σ)) γ′ (σ)

− γ (σ)φ′ (γ (σ)) γ′ (σ) .
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Taking integrals of both sides of (8) and using integration by parts for
the last integral in (8), we get

(9)

χ (γ (s)) =
∫ s

0

f (γ (σ)) γ′ (σ) dσ

−
∫ s

0

φ (γ (σ)) γ′ (σ) dσ

+
∫ s

0

γ′ (σ)φ (γ (σ)) dσ̄

− γ (s)φ (γ (s)) + γ (0)φ (γ (0)) + c,

where c ∈ C is an arbitrary constant. If we denote by t = γ (s) and
by Γt the arc of Γ joining the points t0 = γ (0) and t = γ (s), then
representation (9) takes the form

(10)

χ (t) =
∫

Γt

f (τ ) dτ −
∫

Γt

φ (τ ) dτ

+
∫

Γt

φ (τ ) dτ̄ − t̄ φ (t) + t̄0 φ (t0) + C,

where C is a complex constant. Thus, having obtained the boundary
representations φ (t) and χ (t), t ∈ Γ, for the analytic functions φ and
χ one can retrieve them from

(11) φ (z) =
1

2πi

∫
Γ

φ (τ ) dτ

τ − z
, χ (z) =

1
2πi

∫
Γ

χ (τ ) dτ

τ − z
, z ∈ D

and using the Goursat representation (4) one can get a solution of
the biharmonic problem (3). However, as a rule, a solution of the
boundary problem (5) can be found only in a restricted number of
cases. Therefore, the task is to find an approximate solution for (5).
The first step in this direction was made by Muskhelishvili himself,
cf. [8, 9]. Assuming Γ is the unit circle, he proposed looking for
a solution in the form of an infinite Fourier series. Finite sections
of the series ought to provide approximations to an exact solution.
The subsequent research concentrated on this idea using conformal
mapping, either exact or approximate, in the case where Γ differs from
the unit circle [2, 3, 6]. However, the operator corresponding to the
boundary problem (5) is not invertible and it is well known that for such
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operators the finite section method is not stable. Hence, further efforts
were needed to make suitable changes of the domain and co-domain to
achieve the invertibility of the corresponding operator. In contrast to
this approach, we prefer to work in the same space but to use an integral
equation for the unknown function φ. Though the corresponding
integral operator is still not invertible, it can be corrected by adding a
compact operator. The newly obtained operator perfectly satisfies all
our needs. It is already invertible and the solution of the corresponding
integral equation gives us the boundary value for the function φ in (5).
Therefore, we are able to apply a spline collocation method to the
integral equation and to show that this method is stable in the space of
continuous functions C(Γ). Using this result we construct approximate
solutions for the biharmonic problem and give error estimates in the
uniform metric norm. Note that in [4] the stability of quadrature
and Galerkin methods in L2(Γ) for the Muskhelishvili equation on
curves with corner points was established. The approximation methods
in [4] are based on piecewise constant splines and the presence of
corner points on the contour requires additional conditions for the
corresponding methods to be stable. However, as it is shown later, there
is no stability condition whatsoever if Γ is a smooth contour. Under a
suitable choice of collocation points indeed, the approximation method
considered here is always stable. In addition, we give examples which
illustrate the numerical performance of the method.

3. Reduction to an integral equation. Let us consider the
boundary value problem

(12) φ (t) + t̄ φ′ (t) + χ′ (t) = f (t).

It is well known, [8 10], that if φ is a solution of (12) then it satisfies
the following integral equation

(13) − φ (t) − 1
2πi

∫
Γ

φ (τ ) d log
τ̄ − t̄

τ − t

− 1
2πi

∫
Γ

φ (τ ) d
τ̄ − t̄

τ − t
= f0 (t) , t ∈ Γ,

where

f0 (t) = − 1
2

f (t) +
1

2πi

∫
Γ

f (τ )
τ − t

dτ.
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Unfortunately, the operator corresponding to the left-hand side of (13)
is not invertible. Hence, none of the widely used projection approx-
imation methods can be applied to equation (13) directly. However,
equation (13) admits a correction which allows us to achieve two goals.
First, to obtain an invertible operator, and second, to find an approxi-
mate for φ.

We say that the curve Γ belongs to the class C(k), k ∈ N, if its
parametrization γ is a k times continuously differentiable function.

Theorem 1. Let Γ ∈ C(2). Then the integral operators

(14)

(T1φ) (t) =
1

2πi

∫
Γ

φ (τ )
τ

dτ,

(T2φ) (t) =
1

2πi

∫
Γ

[
φ (τ )
τ2

+
φ (τ )
τ̄2

]
dτ,

(T3φ) (t) = − 1
2πi

∫
Γ

φ (τ ) d log
τ̄ − t̄

τ − t
,

(T4φ) (t) = − 1
2πi

∫
Γ

φ (τ ) d
τ̄ − t̄

τ − t
,

are compact on C (Γ).

Proof. We consider the integral operators in (14) and show that each
of them is compact on C (Γ). Indeed, the kernels of the operators T1φ,
T2φ are continuous on Γ×Γ, hence T1 and T2 are compact. The kernel
K (t, τ ) of the operator T3

(T3φ) (t) = − 1
2πi

∫
Γ

K1 (t, τ )φ (τ ) dτ

has the form

K1 (t, τ ) = − 1
2πi

(
1

τ̄ − t̄

dτ̄

dτ
− 1

τ − t

)
and is continuous if τ �= t. On the other hand, if we set t = γ (s),
τ = γ (σ), then

K1 (t, τ ) = − 1
2π

Im
(
γ′′ (σ)γ′ (σ)

)
+ o (1)

|γ′ (σ)|2
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as σ → s. Hence under the conditions of Theorem 1, K1 (t, τ ) is
continuous for all t, τ ∈ Γ. Therefore, the operator T3 is compact
on C (Γ). Compactness of the remaining integral operator T4 in (14)
can be proved analogously. Let W 1

2 (Γ) refer to the Sobolev space, and
let R be defined by

Rφ (t) ≡ −φ (t) − 1
2πi

∫
Γ

φ (τ ) d log
τ̄ − t̄

τ − t
− 1

2πi

∫
Γ

φ (τ ) d
τ̄ − t̄

τ − t

+
1

2πi

∫
Γ

φ (τ )
τ

dτ +
1
t

1
2πi

∫
Γ

(
φ (τ )
τ2

dτ +
φ (τ )
τ̄2

dτ̄

)
.

Theorem 2. Let Γ ∈ C(2). Then the operator R : C (Γ) → C (Γ) is
invertible. Moreover, if f ∈ W 1

2 (Γ) and satisfies the condition

(15) Re
∫

Γ

f (τ ) dτ = 0,

then the solution of the equation

(16) Rφ = f0

is simultaneously a solution of equation (13) and of the boundary value
problem (12).

Proof. Since all integral operators appearing in R are compact the
operator R : C (Γ) → C (Γ) is Fredholm and its index is equal to zero.
On the other hand, it follows from [4] that R considered on the space
L2 (Γ) is invertible. Taking into account that the space C (Γ) is dense in
the space L2 (Γ), one obtains that the dimensions of the kernels of R on
the spaces C (Γ) and L2 (Γ) coincide [5]. Therefore, dim kerR|C(Γ) = 0,
and this implies the invertibility of R on C (Γ).

The second assertion of Theorem 2 follows immediately from [4]. The
above results can be used for the approximate solution of the Muskhe-
lishvili equation and, subsequently, for the approximate solution of the
biharmonic problem.

4. Error estimates. Before we start with approximate solution
of the Muskhelishvili equation, we would like to give some estimates
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for the errors appearing in the approximation of the solutions of the
biharmonic problem. We will use the scheme described above.

Assume we have available an approximate solution φn of the Muskhe-
lishvili equation (13), and let

(17) ‖φ − φn‖C ≤ εn, n ≥ n0.

Using formulae (8) and (9), we can also get an approximation for the
function χ, viz.,

χn (t) =
∫

Γt

f (τ ) dτ −
∫

Γ

φn (τ ) dτ

+
∫

Γ

φn (τ ) dτ̄ − t̄φn (t) + t̄0φn (t0) + C.

Comparing this representation with (17) one can easily find

(18) ‖χn − χ‖C ≤ d1εn

where d1 is a constant independent of n. Then one can set

(19) φ̃n (z) ≡ 1
2πi

∫
Γ

φn (τ ) dτ

τ − z
, χ̃n (z) ≡ 1

2πi

∫
Γ

χn (τ ) dτ

τ − z
, z ∈ D

and subsequently, by the Goursat representation (4),

(20) Un (x, y) ≡ Re
[
z̄φ̃n (z) + χ̃n (z)

]
, z = x + i y ∈ D.

Theorem 3. Let the approximate solution φn, n ≥ n0 of the
Muskhelishvili equation (13) satisfy inequality (17). Then for any
compact subset K of D, the approximate solution (20) of the biharmonic
problem satisfies the estimate

(21) sup
(x,y)∈K

|Un (x, y) − U (x, y)| ≤ d2 εn, n ≥ n0

where d2 is independent of (x, y) ∈ K and n and U is given by (4).
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The proof is straightforward. Using the above construction we have

|Un (x, y) − U (x, y)|
≤ |z|

2π

∫
Γ

|φn (τ ) − φ (τ )|
|τ − z| |dτ | + 1

2π

∫
Γ

|χn (τ ) − χ (τ )|
|τ − z| |dτ |

≤ |Γ|
2π dist (K, Γ)

[
max
z∈Γ

|z| + d1

]
εn

where |Γ| stands for the length of Γ and d1 is defined in (18).

Remark. Estimate (21) contains the constant [dist (K, Γ)]−1 which
grows if the boundary of K tends to Γ. The estimate can be improved
if it is known that the functions φn (t), χn (t), n ≥ n0, belong to a
subspace W (Γ) of C (Γ) such that the Cauchy integral operator S

Sx (t) ≡ 1
πi

∫
Γ

x (τ ) dτ

τ − t
, t ∈ Γ

is bounded on W (Γ), i.e., if there exists a constant d3 such that

(22) ‖Sx‖C ≤ d3‖x‖C

for any x ∈ W (Γ). Then, instead of φn and χn, one can use in (19)
the functions

(23) φ̂n (t) = (Pφn) (t) , χ̂n (t) = (Pχn) (t)

with P = 1/2 (I + S). Since φ̂n and χ̂ are boundary values of analytic
functions in D, we have

‖φ − φ̂n‖C = ‖P (φ − φn) ‖C ≤ d3‖φ − φn‖C ,

‖χ − χ̂n‖C = ‖P (χ − χn) ‖C ≤ d3‖χ − χn‖C .

An approximate solution for the biharmonic problem can now be
constructed as follows

Ûn (x, y) = Re
[
z̄
˜̂
φn (z) + ˜̂χn (z)

]
.
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However, to estimate the error now one can use the maximum principle
for analytic functions. This gives us

(24) sup
(x,y)∈D

∣∣Ûn (x, y) − U (x, y)
∣∣ ≤ d4 εn.

5. Approximate solution of the Muskhelishvili equation. We
use equation (16) to find approximations for the boundary function φ.
Let η = η (s), s ∈ R, refer to the characteristic function of the interval
[0, 1), i.e.,

η (s) =
{

1 x ∈ [0, 1),
0 otherwise.

For any natural number d, consider a function η(d) : R → R defined
by

η(d) (s) =
∫
R

η (s − σ) η(d−1) (σ) dσ,

where η(0) (s) ≡ η (s), s ∈ R. Then for any fixed n ∈ N and for any
d ≥ 1, the set

Sd
n (R) ≡ closC(R) span

{
η̃jn (s) : η̃jn (s) = ηd (ns − j) , j ∈ Z

}
forms a spline subspace of C (R), [12].

We fix d ≥ 1 and consider a corresponding spline space on Γ.
The latter is constructed in the following way. If γ is a 1−periodic
parametrization of Γ then for any t on Γ one puts

ηjn (t) = η̃jn (s) , t = γ (s) , s ∈ R, j ∈ Z.

The corresponding spline space is denoted by Sd
n ≡ Sd

n (Γ). It is obvious
that the functions ηjn, j = 0, 1, . . . , n − 1, form a basis in Sd

n.

Let δ be a real number 0 ≤ δ < 1. Consider the points

t
(n)
j ≡ γ

(
j + δ

n

)
, j = 0, 1, . . . , n − 1.

The approximate solution φn of the equation (16) is sought in the form

(25) φn (t) =
n−1∑
k=0

c
(n)
k ηkn (t) , t ∈ Γ.
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The coefficients of φn are found from the system of algebraic equations

(26) Rφn

(
t
(n)
j

)
= f0

(
t
(n)
j

)
, j = 0, 1, . . . , n − 1.

Theorem 4. Let Γ ∈ C(2) and δ �= 1/2 if d is even or δ �= 0 if d
is odd. If f ∈ W 1

2 (Γ) and satisfies condition (15), then there exists a
number n0 ∈ N such that for all n ≥ n0 equations (26) are solvable and
the approximate solutions (25) converge to an exact solution of equation
(13) in the norm of C (Γ).

Proof. It is well known, cf. [11], that under conditions of Theorem 3
there exist interpolation projections Kδ

n : C (Γ) → Sd
n (Γ) with the

property
Kδ

nφ
(
t
(n)
j

)
= φ

(
t
(n)
j

)
, j = 0, 1, . . . , n − 1

for any φ ∈ C (Γ). Therefore, the algebraic equations (26) are equiva-
lent to the operator equations

Kδ
nRφn = Kδ

nf0, n ∈ N.

The latter equations can be written in the form

Kδ
nRφn = −φn + Kδ

n (T1 + T2 + T3 + T4)φn = Kδ
n f0.

Now, taking into account the strong convergence of Kδ
n to the identity

operator on C (Γ), Theorems 1 and 2 and the results of [11, pp. 25 30],
we deduce that the sequence

{
Kδ

nR
}

is stable, i.e., there exists an
integer n0 ∈ N such that the operators Kδ

nR : Sd
n (Γ) → Sd

n (Γ) are
invertible and the norms of their inverses are uniformly bounded. The
last fact also implies the convergence of φn to the exact solution φ of
(16). By Theorem 2, φ is a solution of (13) as well. This completes the
proof.

Remark. From these considerations it follows that the approximate
solution φn obtained by the above collocation method can be used for
calculating the approximate solution of the biharmonic problem.
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6. Numerical considerations. The numerical scheme proceeds as
follows. Given the boundary values G1 and G2 of (3), one calculates
the right-hand side of (5), i.e., of the boundary value problem (12). The
function f0 can then be evaluated, using for instance the elementary
approach described in [1], so that the forcing function in (13) is thus
known. Replacing now the noninvertible singular integral operator
given by the left-hand side of (13) by its invertible counterpart R,
see Theorem 2, it is now possible to solve (16) for the function φ(t),
t ∈ Γ, using the collocation method described in Section 5, i.e., we
solve system (26). The computation of values at inner points of φ and
χ is achieved again with elementary quadratures via the formulae (11).
The final evaluation of the solution at the inner grid nodes can now be
obtained using formula (4).

The examples given as well as the related figures empirically illustrate
the numerical performance of the algorithm. In all examples the order
of the splines used is d = 2. Also, the curve Γ is always the unit
circle. The collocation points are chosen with different values of δ to
demonstrate that the choice of this parameter does not influence the
conditioning of the resulting system away from the forbidden value
δ = 0.5. The number of basis elements n instead ranges in the first
example from 8 to 64 and in the second one from 16 to 128. The rows
in the figures correspond respectively to the analytic solution, to the
computed solution and to the contour plots of the absolute error. The
tables show the excellent conditioning of the algorithm. To study the
convergence, in the polar coordinate plane we use a rectangular grid G,
with 25 points both in the radial as well as in the angular directions.
The convergence is empirically determined from the absolute error
‖U − Un‖G,∞ calculated at the grid points of the grid G. The results
of the tables show it to be in line with the theory.

Example 1. Here we solve the problem with the boundary functions
G1 = 2x, G2 = 2y, with an analytic solution (up to an arbitrary
constant) given by U = x2 − y2 + 1. The behavior of the numerically
evaluated solution is illustrated in Figure 1. Table 1 contains the
conditioning and the numerical values of the error.
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FIGURE 1. Analytic solution (first row) and numerical solution (second row)
and contour plot of absolute error (third row) of Example 1.

TABLE 1. Results of Example 1, δ = 0.25.

n conditioning ‖U − Un‖G,∞
8 15.85 0.14291

16 15.90 0.04293
32 15.92 0.00898
64 15.92 0.00370

Example 2. The relevant functions in this case are G1 = 4x3 −
12xy2, G2 = 4y3 − 12x2y, with an analytic solution given by U =
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FIGURE 2. Analytic solution (first row) and numerical solution (second row)
and contour plot of absolute error (third row) of Example 2.

x4 − 6x2y2 + y4 and results plotted in Figure 2. Conditioning and
behavior of the error are found in Table 2.

TABLE 2. Results of Example 2, δ = 0.3.

n conditioning ‖U − Un‖G,∞
16 19.88 7.2196 E-2
32 19.89 4.1258 E-2
64 19.90 1.3493 E-2

128 19.90 5.8315 E-3
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