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ABSTRACT. In this paper we consider numerical approxi-
mations for systems governed by Volterra integro-differential
equations with realizable kernels. We investigate and compare
numerical methods based on direct integration of the Volterra
equations with methods based on internal state realizations.
Internal state methods depend on constructing a specific real-
ization and since these realizations are not unique the selection
of an internal state model could impact the resulting numeri-
cal algorithm. We illustrate this idea by focusing on Volterra
equations which can be realized by delay systems and present
numerical examples to illustrate the ideas.

1. Introduction. In this paper we provide a comparison of numer-
ical algorithms for a class of Volterra integro-differential equations of
the form

(1.1) ẋ(t) = A0x(t) +
∫ t

0

K(t− s)x(s) ds, t > 0, x(0) = x0 ∈ RN ,

where A0 is an n × n constant matrix and the kernel K(ξ) is the
transfer function of a well-posed linear control system. We assume that
there exist a Hilbert space H, linear operators A : D(A) ⊆ H → H,
B : RN → H and C : D(C) ⊆ H → RN such that A generates a
C0-semigroup S(t) on H and for all x ∈ RN , S(t)Bx ∈ D(C) and

(1.2) K(t)x = CS(t)Bx, t > 0.

Under these conditions we have a well-defined function

K(t) : RN −→ RN ,
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defined by (1.2) which we assume belongs to L2(0, T ) for all finite T > 0.
The triple of linear operators (A,B, C) is called a realization of the
kernel K(t). Note that neither C nor B are required to be bounded and
the triple (A,B, C) is not unique. In particular, there are many possible
realizations of the same kernel K(t).

If (A,B, C) is a realization of K(t), then one can view the realization
as a control system

ż(t) = Az(t) + Bu(t), z(0) = z0 ∈ H

with output
y(t) = Cz(t)

and input u(·) ∈ L2(0, T ). Therefore, if x(·) ∈ L2(0, T ), then the mild
solution to

(1.3) ż(t) = Az(t) + Bx(t), z(0) = 0 ∈ H

is given by the variation of parameters formula

z(t) =
∫ t

0

S(t − s)Bx(s) ds

and, under suitable assumptions on C, it follows that

Cz(t) = C
∫ t

0

S(t − s)Bx(s) ds

=
∫ t

0

CS(t − s)Bx(s) ds

=
∫ t

0

K(t − s)x(s) ds.

Hence, the Volterra equation (1.1) can be written in internal state form
as the system

(1.4)
ẋ(t) = A0x(t) + Cz(t), x(0) = x0 ∈ RN ,

ż(t) = Az(t) + Bx(t), z(0) = 0 ∈ H.

If in addition we define

(1.5) y(t) = Cz(t) =
∫ t

0

K(t − s)x(s) ds,
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then the Volterra equation (1.1) and the internal state system (1.4) are
equivalent to

(1.6) ẋ(t) = A0x(t) + y(t), x(0) = x0 ∈ RN ,

where y(t) is given in (1.5).

Here, the “state” z(t) is called the internal state and the Volterra in-
tegral equation (1.1) comes about by using the variation of parameters
formula to eliminate this internal state.

These observations lead to (at least) two approaches to the devel-
opment of numerical methods for approximating the Volterra integro-
differential equation (1.1). The direct method is based on constructing
numerical schemes specifically for Volterra equations. For example, one
could apply a Runge-Kutta type scheme directly to the Volterra equa-
tion such as in [1]. There is a rich and fruitful literature devoted to this
approach and the books by Brunner and van der Houwen (see [9, 10])
provide excellent examples of this approach. On the other hand, one
could develop numerical schemes based on the coupled system (1.4)
which we call an internal state method. Obviously both approaches
have benefits and drawbacks. Banks, Buksas and Lin [2] note that the
internal state method often works much better in certain applications
in materials science. Also, Cliff, Herdman and Nguyen have observed
similar benefits for other Volterra equations, see [15, 16].

The internal state methods are based on a specific realization
(A,B, C), and it is not always clear how to select a “good” realization
(A,B, C). On the other hand, certain problems begin with a “natu-
ral” internal state model. Therefore, it is important to understand
how the choice of a realization (A,B, C) impacts the resulting numer-
ical method. The goal of this paper is to illustrate how numerical
schemes of the same order can produce different results depending on
the particular realization. In order to keep the paper within reasonable
bounds, we focus on various numerical schemes designed explicitly for
delay integro-differential systems, see [1, 6, 9, 10]. We provide nu-
merical examples that compare the performance of standard methods
when these methods are applied to different internal models of the same
problem.

In order to provide a specific example, consider the case where K(t)
is the inverse Laplace transform of the scalar function K̂(s) = (e−s/s)
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and A0 = a0 is a scalar. Let H = R × L2(−1, 0), and define A on

(1.7) D(A) =
{[

η
ϕ(ξ)

]
: ϕ(ξ) ∈ H1(−1, 0), η = ϕ(0)

}

by

(1.8) A
[

η
ϕ(ξ)

]
=

[
0

−ϕ′(ξ)

]
.

The operators B : R → H and C : H → R are defined by

(1.9) Bu =
[

1
0

]
u =

[
u
0

]

and

(1.10) C
[

η
ϕ(ξ)

]
= ϕ(−1),

where D(C) = D(A). It is well known, see [3, 12], that A generates a
C0-semigroup S(t) on H = R × L2(−1, 0), B is bounded but C is not
bounded. In Section 3 below we show that (A,B, C) is a well-posed
realization of K(t). The resulting internal state system is defined by
the trivial delay system

(1.11)
ẋ(t) = a0x(t) + y(t),
ż(t) = x(t) = 0z(t) + 0z(t − 1) + x(t),
y(t) = z(t − 1).

Although it is somewhat more complex to describe, see [12] for
details, it is possible to construct a second realization (A1,B1, C1) with
A1 = A, B1 unbounded and C1 bounded. This realization corresponds
to a system with delays in the control and leads to the delay system

(1.12)
ẋ(t) = a0x(t) + y(t),
ż(t) = 0z(t) + 0z(t − 1) + x(t − 1),
y(t) = z(t),
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where x(t− 1) is set to zero when t− 1 < 0. As we see below, two such
realizations (A,B, C) and (A1,B1, C1) can lead to different numerical
problems. Observe that the two previous systems may be written as
the delay equations

ẋ(t) = a0x(t) + z(t − 1), x(0) = x0,

ż(t) = x(t), z(0) = 0,(1.13)
x(s) = z(s) = 0, −1 < s < 0,

and

ẋ(t) = a0x(t) + z(t), x(0) = x0,

ż(t) = x(t − 1), z(0) = 0,(1.14)
x(s) = z(s) = 0, −1 < s < 0,

respectively. In Section 3 we use these realizations to construct approx-
imations and compare the resulting algorithms.

We note that it is not always clear when a kernel has a well-posed
realization. Although this is not the focus of this paper, we provide
some basic results that are sufficient for our model problems. If
(A,B, C) is a realization of the kernel K(ξ) with both B and C bounded,
i.e., B ∈ L(RN , H) and C ∈ L(H,RN ), then we say that (A,B, C) is
a bounded realization of K(t) and that K(t) is bounded realizable.
In order to address unbounded realizations and to provide a precise
meaning to the statement that a kernel has a well-posed realization, we
use the following definitions (see [5, 13]). The definitions are stated in
terms of the unilateral Laplace transform defined by

K̂(s) =
∫ ∞

0+
K(t)e−st dt

for all values of s for which the integral exists (converges). Let L and
L−1 denote the Laplace and inverse Laplace operators, respectively. In
addition, L(H1, H2) is the space of all bounded linear operators from
H1 to H2 with the norm

||A|| = max
u∈H1

||Au||H2

||u||H1

.
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Here H1 and H2 are Hilbert spaces. In addition, we let Π+
ρ denote

the right half plane where Re s > ρ and H2(Π+
ρ ) denotes the space of

functions which are analytic in Π+
ρ and square integrable along vertical

lines in Π+
ρ such that

sup
u>ρ

∫ ∞

−∞
|f(u + iw)|2 dw ≤ M < ∞.

Definition 1.1. The kernel K(t) is said to be bounded realizable if
its Laplace transform K̂(s) ∈ H2(Π+

ρ ) and (sK̂(s) − K(0)) ∈ H2(Π+
ρ )

for some ρ > 0. A necessary condition for K(t) to be bounded realizable
is that its Laplace transform K̂(s) belongs to H2(Π+

ρ ) ∩ H∞(Π+
ρ ) for

some p ≥ 0.

Definition 1.2. If the Laplace transform of K(t), K̂(s), is a
uniformly bounded L(U, Y )-valued analytic function on the right half
plane with a limit K̂(∞) in the positive direction, then we say K(t) is
realizable.

We turn now to specific model problems and use these problems to
illustrate the basic results.

2. A Volterra integro-differential equation with bounded-
realizable kernel. In this section, we provide an example of a Volterra
integro-differential equation where the kernel is bounded realizable. We
apply the internal state method and compare our numerical results
to those obtained by the direct numerical method. The numerical
approximations from both the internal state method and the direct
numerical method are also compared against the exact solution. We
report the computing time for each method.

Consider the scalar Volterra integro-differential equation

(2.1) ẋ(t) = −x(t) +
∫ t

0

K(t − s)x(s) ds, t > 0, x(0) = 1,

where

(2.2) K(t) =
{

0 t < 1,
t − 1 t ≥ 1.
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To apply the internal state method to this problem, we first show
that the kernel K(t) is realized by a bounded realization. Taking the
Laplace transform of K(t), we find that

K̂(s) =
e−s

s2
,

In [5] Baras and Brocket stated without proof that K̂(s) = e−s/s2

is bounded realizable. For completeness and to set the stage for the
examples below, we verify that K̂(s) satisfies the sufficient conditions
for K(t) to be bounded realizable.

Theorem 2.1. The kernel K(t) given by (2.2) is bounded realizable.

Proof. First we establish that

K̂(s) =
e−s

s2
∈ H2(Π+

ρ )

with

sup
x>ρ

∫ ∞

−∞

∣∣∣∣ e−(x+iy)

(x + iy)2

∣∣∣∣2 dy < ∞.

We fix ρ > 0; then we have

sup
x>ρ

∫ ∞

−∞

∣∣∣∣ e−(x+iy)

(x + iy)2

∣∣∣∣2 dy ≤ sup
x>ρ

∫ ∞

−∞

|e−2x| |e−2iy|
|x2 + 2ixy − y2|2 dy

= sup
x>ρ

|e−2x|
∫ ∞

−∞

|e−2iy|
x4 + 2x2y2 + y4

dy

≤ sup
x>ρ

|e−2x|
∫ ∞

−∞

1
(x2 + y2)2

dy,

knowing |e−2iy| = 1. We note that the function (x2+y2)−2 is dominated
by 1/x4 for y ∈ [−1, 1] and by 1/y4 otherwise. Thus, it is obvious that
the right side of equation (2.3) is bounded by

sup
x>ρ

|e−2x|
[∫ 1

−1

1
x4

dy +
∫ −1

−∞

1
y4

dy +
∫ ∞

1

1
y4

dy

]
.



344 H.K. NGUYEN AND T.L. HERDMAN

Completing these integrals together with the estimate (2.3) gives

sup
x>ρ

∫ ∞

−∞

∣∣∣∣ e−(x+iy)

(x + iy)2

∣∣∣∣2 dy ≤ sup
x>ρ

|e−2x|
[

2
x4

− 1
3y3

∣∣∣∣−1

−∞
− 1

3y3

∣∣∣∣∞
1

]

= sup
x>ρ

|e−2x|
[

2
x4

+
2
3

]

< |e−2ρ |
[

2
ρ4

+
2
3

]
.

Now we let s ∈ C. We know e−s and s2 are differentiable for Re s > 0.
Thus, for Re s > 0, K̂(s) is analytic and

K̂ ′(s) =
e−(s)

(s)2
=

−s2e−s − 2e−s

s3
.

Next we show that K̂(s) defined above satisfies

sK̂(s) − K(0) ∈ H2(Π+
ρ ).

We first note that

sup
x>ρ

∫ ∞

−∞

∣∣∣∣e−(x+iy)

(x + iy)

∣∣∣∣2 dy < ∞,

since

sK̂(s) = s
e−s

s2
=

e−s

s

and K(0) = 0. So when we fix ρ > 0, we have the following estimates

(2.4)

sup
x>ρ

∫ ∞

−∞

∣∣∣∣e−(x+iy)

(x + iy)

∣∣∣∣2 dy ≤ sup
x>ρ

∫ ∞

−∞

|e−2x| |e−2iy|
x2 + y2

dy

= sup
x>ρ

|e−2x|
∫ ∞

−∞

|e−2iy|
x2 + y2

dy

≤ sup
x>ρ

|e−2x|
∫ ∞

−∞

1
x2 + y2

dy,
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where we use |e−2iy| = 1. The expression 1/(x2 + y2) is bounded by
1/x2 for y ∈ [−1, 1] and 1/y2 for y /∈ [−1, 1]. Therefore, the right side
of equation (2.4) is bounded by

sup
x>ρ

|e−2x|
[∫ 1

−1

1
x2

dy +
∫ −1

−∞

1
y2

dy +
∫ ∞

1

1
y2

dy

]

= sup
x>ρ

|e−2x|
[

2
x2

− 1
y

∣∣∣∣−1

−∞
− 1

y

∣∣∣∣∞
1

]

= sup
x>ρ

|e−2x|
[

2
x2

+ 2
]

< |e−2ρ|
[

2
ρ2

+ 2
]
.

We let h(s) = s on C. Obviously, h is differentiable for Re s > 0 and
we know K̂(s) is differentiable for Re s > 0. It follows that sK̂(s) is
analytic for Re s > 0,

[sK̂(s)]′ =
−e−s

s2
− e−s

s
,

and the proof is complete.

Following the procedures in [11], one can easily show that the delay
control system

(2.5)
ż1(t) = z2(t − 1),
ż2(t) = u(t),

with output
y(t) = z1(t),

provides a bounded realization of the kernel in (2.2) above. In partic-
ular, let H = R2 × L2(−1, 0;R2) and define A on

D(A) =
{[

η
ϕ(ξ)

]
: ϕ(·) ∈ H1(−1, 0;R2), η = ϕ(0)

}

by

A
[

η
ϕ(ξ)

]
=

[
E0η + E1ϕ(−1)

−ϕ′(ξ)

]
,



346 H.K. NGUYEN AND T.L. HERDMAN

where E0 and E1 are 2 × 2 matrices given by

E0 =
[

0 0
0 0

]
, E1 =

[
0 1
0 0

]
.

If the operators B : R → H and C : H → R are defined by

Bu =

⎡
⎢⎣

0
1
0
0

⎤
⎥⎦u =

⎡
⎢⎣

0
u
0
0

⎤
⎥⎦

and

C

⎡
⎢⎣

η1

η2

ϕ1(·)
ϕ2(·)

⎤
⎥⎦ = η1,

then (A,B, C) provide a bounded realization of K(t) given by (2.2).

It follows that the internal state representation for the integro-
differential equation (2.1) can be written as the delay differential
equation (DDE)

(2.6)
ẋ(t) = −x(t) + z1(t),

ż1(t) = z2(t − 1),
ż2(t) = x(t),

with initial conditions

(2.7) x(0) = 1, z1(0) = 0, z2(0) = 0,

and initial histories

(2.8) x(τ ) = 0, z1(τ ) = 0, z2(τ ) = 0, τ ∈ (−1, 0).

It is straightforward to verify that the above delay system (2.6) is an
internal state representation of the integro-differential equation (2.1).
In particular, use (2.5) to note that

L
(

ż1(t)
ż2(t)

)
= L

(
z2(t − 1)

x(t)

)
,
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which implies

sẐ1(s) = e−sẐ2(s)

sẐ2(s) = X̂(s).

Here Ẑ1(s), Ẑ2(s), and X̂(s) represent the Laplace transforms of z1(t),
z2(t), and x(t), respectively. Solving for Ẑ1, we get

Ẑ1(s) =
e−s

s2
̂X(s),

and by the convolution theorem,

z1(t) =
∫ t

0

L−1

(
e−(t−τ)

(t − τ )2

)
x(τ ) dτ

which yields

z1(t) =
∫ t

0

K(t − τ )x(τ ) dτ,

where K(t) is defined in (2.2).

In order to compare numerical schemes we approximate the internal
state model defined by the delay system (2.6) with initial data given
by (2.7) (2.8) by the method of steps using a fourth order Runge-
Kutta method, see [6]. We can solve for the exact solution of Volterra
equation (2.1) using a change of variables and the method of steps. We
let w = t − s, then equation (2.1) becomes

ẋ(t) = −x(t) +
∫ t

0

K(w)x(t − w) dw, t > 0, x(0) = 1.

On the interval [0, 1), equation (2.1) is simply

ẋ(t) = −x(t)

since K(t) = 0 for t ∈ [0, 1). With the initial condition, x(0) = 1, it
follows that x(t) = e−t is the solution of equation (2.1) on [0, 1). For
t ≥ 1, we split the integral in equation (2.1) into two integrals as follows

(2.9) ẋ(t) = −x(t) +
∫ 1

0

K(s)x(t − s) ds +
∫ t

1

K(s)x(t − s) ds.
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We then substitute for K(t) and with a change of variables, we are left
with

ẋ(t) = −x(t) +
∫ t−1

0

(t − s − 1)x(s) ds,

since K(t) = 0 for t ∈ [0, 1) we have
∫ 1

0
K(s)x(t − s) ds = 0. Now on

the interval [1, 2], x(s) is known as e−s for s ∈ [0, 1]; thus, equation
(2.1) becomes

ẋ(t) = −x(t) +
∫ t−1

0

(t − s − 1)e−s ds, x(1) = e−1.

After we integrate
∫ t−1

0
(t−s−1)e−s ds, the integro-differential equation

(2.1) is simply the nonhomogenous ODE,

ẋ(t) = −x(t) + t + e(1−t) − 2, x(1) = e−1,

for t ∈ [1, 2). It follows that the solution of this ODE is given by

x(t) = t + te(1−t) + (1 + e)e−t − 3.

Similarly, the ideas above can be used to solve for x(t) for t ∈ [n, n+1),
where n = 2, 3, . . . , N . In order to obtain the solution x on the interval
[2, 3), we solve the integro-differential equation

ẋ(t) = −x(t) +
∫ 1

0

(t − s − 1)e−s ds

+
∫ t−1

1

(t − s − 1)
(
s + se(1−s) + (1 + e)e−s − 3

)
ds

with the initial condition

x(2) = e−2 + 3e−1 − 1.

Therefore, it follows that for t ∈ [2, 3) the solution is given by

x(t) = (4e2 + e + 1)e−t + te(1−t)

+
(

t2

2
+ 2t

)
e(2−t) +

1
6

t3 − 5
2

t2 + 15t −
(

15 +
104
6

)
.
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We construct a direct numerical method for the Volterra equation
(2.9). In particular, we define g(t, x) by

g(t, x) = −x(t) +
∫ t

0

−1(t − s − 1)x(s) ds

and then approximate the solution x(t) for t ∈ [0, T ] using the explicit
fourth order Runge-Kutta formulas

xn+1 = xn +
h

6
(K1 + 2K2 + 2K3 + K4)

K1 = g(tn, xn)

K2 = g
(
tn +

h

2
, xn +

h

2
K1

)
K3 = g

(
tn +

h

2
, xn +

h

2
K2

)
K4 = g(tn + h, xn + hK3),

where xn = x(tn). Simpson’s rule is employed to calculate the integral.
Using the exact solution given above, we can verify the performances
of these two numerical schemes.

In Table 1, we provide the numerical values of the exact solution
and the solutions from the two methods for the step sizes h = 0.1
and h = 0.2. We recognize from Table 1 that the two numerical
approximations are very close to the exact solution. We then let
h = 0.01 and plot the two numerical solutions against the exact solution
on the interval [0, 3] in Figure 1. We then observe the computing time
for each method in Table 2. We note that, although we don’t see a big
difference in the computing time of these two numerical methods, the
internal state method takes half the computing time compare to the
direct numerical method. This observation agrees with results from
more complex systems ([2, 16]).
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FIGURE 1. Exact solution and approximated solutions from internal state
and direct numerical method (h = 0.01).
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FIGURE 2. A comparison of the solutions based on the two internal state
models: x(τ) = 1, τ ∈ (−1, 0).
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TABLE 1. Numerical values of the solutions with different

time steps, h = 0.1 and h = 0.2.

t Internal state solution Direct method solution Exact solution

h=0.2 h=0.1 h=0.2 h=0.1 h=0.2 h=0.1

0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

0.1000 0.9048 0.9048 0.9048

0.2000 0.8187 0.8187 0.8187 0.8187 0.8187 0.8187

0.3000 0.7408 0.7408 0.7408

0.4000 0.6703 0.6703 0.6703 0.6703 0.6703 0.6703

0.5000 0.6065 0.6065 0.6065

0.6000 0.5488 0.5488 0.5488 0.5488 0.5488 0.5488

0.7000 0.4966 0.4966 0.4966

0.8000 0.4493 0.4493 0.4493 0.4493 0.4493 0.4493

0.9000 0.4066 0.4066 0.4066

1.0000 0.3679 0.3679 0.3679 0.3679 0.3679 0.3679

1.1000 0.3330 0.3331 0.3330

1.2000 0.3023 0.3022 0.3031 0.3026 0.3024 0.3024

1.3000 0.2760 0.2767 0.2764

1.4000 0.2541 0.2545 0.2570 0.2558 0.2554 0.2554

1.5000 0.2381 0.2400 0.2395

1.6000 0.2255 0.2270 0.2313 0.2294 0.2288 0.2288

1.7000 0.2210 0.2242 0.2235

1.8000 0.2177 0.2204 0.2267 0.2242 0.2234 0.2234

1.9000 0.2250 0.2295 0.2286

2.0000 0.2306 0.2347 0.2429 0.2400 0.2390 0.2390

TABLE 2. Computing time of the two numerical methods in seconds (h=0.01).

Numerical methods Computing time
Internal state method 0.1500
Direct numerical method 0.2500
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4. Volterra integro-differential equation with unbounded
realizable kernel. In this section we focus on a Volterra integro-
differential equation defined by a kernel which is realizable by a well-
posed internal model but it is not bounded realizable. In addition,
we compare numerical schemes based on two different realizations.
Consider the Volterra integro-differential equation

(3.1) ẋ(t) = −x(t) +
∫ t

0

K(t − s)x(s) ds t > 0, x(0) = 1,

where

(3.2) K(t) =
{

0 t < 1,
1 t ≥ 1.

As for the previous model problem above, we can construct the exact
solution to (3.1) by the method of steps. After a change of variables,
system (3.1) becomes

(3.3) ẋ(t) = −x(t) +
∫ t

0

K(s)x(t − s) ds, t > 0, x(0) = 1.

Then on the interval [0, 1), we have

ẋ(t) = −x(t), x(0) = 1,

which yields x(t) = e−t as the solution and x(1) = e−1.

For t ∈ [1, 2), we split the integral limits in (3.1) from 0 to 1 and
from 1 to t, substitute for K(t), and do another change of variables.
We then are left with an ODE initial value problem

(3.4) ẋ(t) = −x(t) +
∫ t−1

0

e−s ds, x(1) = e−1.

It follows that the solution for the ODE (3.4) is given by

x(t) = − te(1−t) + e−t + 1,

for t ∈ [1, 2) with
x(2) = 2e−1 + e−2 + 1.
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Following the procedure given above, the solution x(t) for t ∈ [2, 3) is

x(t) = − 3 − te(1−t) + t − 1 +
t2

2
e(2−t) + (1 + e2)e−t.

We can obtain the solution x(t) for t ∈ [n, n+1), where n = 2, 3, . . . , N
by the method of steps employing the same procedure.

Clearly K(t) is not bounded realizable since K(t) is not continuous at
t = 1, which is a necessary condition for K(t) to be bounded realizable
(see [5]). However, K(t) is realizable by a well-posed system.

Theorem 3.1. The kernel K(t) defined in (3.2) is realizable.

Proof. Consider the Laplace transform of K(t) defined in (3.2), that
is,

K̂(s) =
e−s

s
.

From the Volterra equation (3.1), for s > 0, R is both the input space
and the output space. Therefore, for u1, u2 ∈ R, we want to show K̂(s)
is in L(R,R). It follows that

K̂(s)(u1 + u2) =
e−s

s
(u1 + u2)

=
e−s

s
u1 +

e−s

s
u2

= K̂(s)u1 + K̂(s)u2.

Also, for u ∈ R, and α ∈ R we have

K̂(s)αu =
e−s

s
αu

= α
e−s

s
u

= αK̂(s)u.
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Hence, K̂(s) is in L(R,R). As for K̂(s) being uniformly bounded on
L(R,R), we fix s = β > 0 and then we have

‖K̂(s)‖ = max
u∈R\{0}

‖K̂(s)u‖R

‖u‖R

= max
u∈R\{0}

‖(e−s/s)u‖R

‖u‖R

≤ max
u∈R\{0}

‖e−s/s‖R‖u‖R

‖u‖R

=
∥∥∥∥e−s

s

∥∥∥∥R

<

∣∣∣∣e−β

β

∣∣∣∣.
Following the analysis of Section 2, it is obvious that K̂(s) is analytic
on {s ∈ C | Re s > 0} and

K̂ ′(s) = − e−s

s2
− e−s

s
.

Next we show that the limit of K̂ exists in the positive direction, i.e.,

lim
x→∞max y‖K̂(x + iy)‖ = K̂(∞) < ∞.

We have the estimate

(3.5)

lim
x→∞max y ‖K̂(x + iy)‖ = lim

x→∞max y

∣∣∣∣e−(x+iy)

x + iy

∣∣∣∣
= lim

x→∞max y
|e−xe−iy|
|x + iy|

= lim
x→∞max y

|e−xe−iy|√
x2 + y2

≤ lim
x→∞ y

|e−x|
x

= y lim
x→∞

|e−x|
x

= 0,

which completes the proof.
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As noted in the introduction, we may construct two realizations
(A1,B1, C1) and (A,B, C) of K(t) which lead to two internal state
models defined by delay systems

ẋ(t) = −x(t) + z(t), x(0) = 1,

ż(t) = x(t − 1), z(0) = 0,(3.6)

x(s) = z(s) = 0, −1 < s < 0,

and

ẋ(t) = −x(t) + z(t − 1), x(0) = 1,

ż(t) = x(t), z(0) = 0,(3.7)

x(s) = z(s) = 0, −1 < s < 0,

respectively.

The realization (A,B, C) that produces the internal state model (3.7)
is defined by (1.7) (1.10) in the introduction and has a bounded
input operator B and unbounded output operator C. The realization
(A1,B1, C1) that produces the internal state model (3.6) comes from
a control system with delays in the control and results in the case
where the input operator B1 is unbounded and the output operator C1

is bounded (see [12] for details). Although both delay systems (3.6)
and (3.7) are well-posed realizations, the internal state model (3.7) is
in some sense more natural. It is a minimal realization of the kernel
(3.2) (see [5, 11]). On the other hand, although the original Volterra
equation (3.1) does not require any initial data for −1 < s < 0, the
internal state model (3.6) contains the past history x(t − 1) of the
“state” x(t). In the realization given by (3.7) there is no need to
specify x(s) for −1 < s < 0 so we set the initial data to x(s) = 0
when −1 < s < 0. However, since x(0) = 1 one might think that in the
internal model (3.6) it is “natural” to set x(s) ≡ 1 for −1 < s < 0. We
shall return to this issue when we present the numerical results below.

In order to verify that both (3.6) and (3.7) provide internal state
models for the kernel K(t) given by (3.2), one simply applies the
Laplace transform to both systems. The details are similar to the
example with bounded realization given in the previous section. We
turn now to numerical results.
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We apply the method of steps together with the fourth order Runge-
Kutta method above to both systems (3.6) and (3.7). Unless stated
otherwise, we denote system 1 and system 2 in the plots to be the
DDE (3.6) and DDE (3.7), respectively. The first issue we address
concerns the choice of initial data for the internal state model (3.6).
Since the choice of initial function x(τ ) for τ ∈ (−1, 0) in the system
(3.6) is not naturally defined by the Volterra equation (3.1) nor the
construction of the state representation, we consider two choices for
the initial history for the state x(t). In particular, we will use x(τ ) ≡ 1
and x(τ ) ≡ 0, τ ∈ (−1, 0). When x(τ ) ≡ 1 for τ ∈ (−1, 0), we expect
the solutions to be different for t > 0, and this is confirmed in Figure 2.
Moreover, since we know that the past history of the state x(t) does not
effect the solution of the internal model (3.7) nor the original Volterra
equation (3.1), we expect the second internal model to produce the
correct solution regardless of the choice of the initial history x(τ ) for
τ ∈ (−1, 0). This is clearly illustrated in Figure 3 which shows the
numerical solution of the internal state model (3.7) is essentially the
exact solution of Volterra equation (3.1) regardless of the fact that we
have used x(τ ) ≡ 1 for τ ∈ (−1, 0). Therefore, it is clear that x(τ ) ≡ 0,
τ ∈ (−1, 0) is the “correct” initial data for both internal state models.

Even if we use the initial history x(τ ) ≡ 0, τ ∈ (−1, 0) and the fourth
order method above is applied to both delay systems (3.6) and (3.7),
we see a difference in the numerical solutions. This is illustrated in
Figure 4 where we compare the numerical solutions produced by the
two models (3.6) and (3.7) with a mesh size h = 1/64. There is a clear
difference between these solutions when 1 < t < 3.

Figure 5 provides a comparison of the numerical solutions of the
Volterra integro-differential equation (3.1) based on using the internal
state model (3.7), the direct numerical method, and the exact solu-
tion. At this level, both schemes are highly accurate but the direct
numerical method takes approximately twice the amount of computing
time (0.2200 seconds) compared to the internal state method (0.0910
seconds). This simple example is typical of all the runs we made on sim-
ilar problems and illustrates the importance of selecting an appropriate
internal state realization.
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FIGURE 3. A comparison of the solutions based on the two internal state
models with the exact solution of the Volterra equation: x(τ) = 1, τ ∈ (−1, 0).
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FIGURE 4. Solutions of the two internal state models: x(τ) = 0, τ ∈ (−1, 0).
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FIGURE 5. A comparison of the numerical solutions to the exact solution.

4. Conclusions. The results above illustrate that numerical meth-
ods based on internal state models and direct numerical integration
of the Volterra equations can be comparable in terms of accuracy and
performance. Moreover, we have shown that the choice of the internal
state model can impact accuracy even if one uses the same numerical
method on both internal models. In most cases, we also observed that
the internal state method can reduce computing time when compared
to a direct numerical method of the same order. These results are
consistent with what others have found in electromagnetic and HIV
systems ([2, 16]).

The choice of realization clearly impacts accuracy so it is worthwhile
to investigate how one might select the “best” internal state model. We
conjecture that minimal realizations may provide insight into this issue
(see [5, 11, 13]). We plan to investigate this issue in future papers.
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