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ABSTRACT. In this paper we analyze nonconforming finite
element methods for solving a fourth order boundary value
problem describing the deformation of a clamped elastic thin
plate unilaterally constrained by an elastic obstacle. Optimal
order error estimates are derived for both continuous and
discontinuous nonconforming finite elements.

1. Introduction. Nonconforming methods are popularly employed
in solving high order differential equations. For fourth order boundary
value problems, conforming finite elements require C1 continuity. For
multi-dimensional spatial domains, it is not easy to construct C1

elements, and the resulting C1 elements are usually difficult to use.
On the contrary, nonconforming finite elements are easy to construct
and easy to use, since the smoothness requirement on finite element
functions is weakened to either C0 continuity or even less than C0

continuity. Application of nonconforming finite element methods is
not limited to fourth order or higher order problems, though; they
offer more efficient solution algorithms for numerous other problems,
see, e.g., [3, p. 208].

It is more delicate to provide convergence and error analysis for non-
conforming finite element methods than for conforming finite element
methods. An early reference on the mathematical analysis of non-
conforming finite element methods for the plate bending problem is
[9]. A patch test was proposed and is widely used by engineers for
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convergence analysis of nonconforming finite element methods, see [1,
8]. However, it is shown in [15] that the patch test is neither a necessary
nor a sufficient condition for convergence. One finds in [15] a rigorous
necessary and sufficient condition for convergence of nonconforming fi-
nite element solutions to variational equations of some boundary value
problems. Some further developments along this line can be found in
[13, 20] where convergence conditions are studied which are easier to
examine. A summary account of nonconforming finite element methods
can be found in [4], or more recently, [5].

In this paper, we study the nonconforming finite element method
for solving the problem of determining the deformed configuration of
a clamped homogeneous, isotropic thin elastic Kirchhoff plate subject
to transversal loads and unilaterally constrained by an elastic obstacle.
The model is proposed and studied in [16], where a mixed approach
is taken for its finite element solution. The model is a boundary value
problem for a fourth-order equation with a non-smooth term of the
solution, and can also be formulated as a fourth-order elliptic varia-
tional inequality. We notice that in the literature, only a few papers
can be found on the analysis of nonconforming finite element methods
for fourth order variational inequalities, see [7, 17 19]. Analysis of
mixed finite element methods for a fourth order variational inequality
in unilaterally supported bent plate problem can be found in [6].

The paper is organized as follows. In Section 2, we introduce the plate
problem presented in [16] and determine some regularity properties for
the solution of the problem. Nonconforming finite element methods for
the problem are introduced in Section 3. Section 4 is devoted to error
estimation of continuous nonconforming finite element methods for the
plate contact problem. The error estimates are valid in particular
for the Zienkiewicz triangle and Adini’s rectangle. Discontinuous
nonconforming finite element methods are discussed in Section 5, and
we mention Morley’s triangle and the Fraeijs de Veubeke triangle as
two particular examples. Description of the four sample nonconforming
elements can be found in [4, 5].

2. The plate contact problem. The physical setting of the
contact problem is illustrated in Figure 1. We consider a thin flat plate
Ω×(−d/2, d/2), where d > 0 is the thickness of the plate, assumed to be
small, and Ω ⊂ R2 is an open, bounded, connected set with a Lipschitz
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FIGURE 1. A plate subject to a normal force and unilaterally constrained by
an obstacle.

continuous boundary Γ = ∂Ω. Throughout the paper, we denote a
generic point in Ω by x = (x1, x2). Assume the three-dimensional
material of the plate is isotropic, linearly elastic with Poisson’s ratio
σ ∈ (0, 1/2) and Young’s modulus E > 0. The plate is assumed to
be clamped on its lateral boundary Γ × (−d/2, d/2), and is subject
to a transversal external force of density D0q(x), q(x) ≥ 0, where D0

denotes the stiffness coefficient of the plate:

D0 =
E d3

12 (1 − σ2)
.

The unknown of the problem is the plate vertical deflection u(x).
The plate is constrained unilaterally by an obstacle described by the
equation x3 = ψ(x). The obstacle is flexible and offers resistance on
regions where contact occurs between the obstacle and the plate. The
reaction force of the obstacle acts vertically on the plate and is given
by the formula

r(x) = −D0κ(x) (u(x)− ψ(x))+.

Here κ is a positive-valued function, and t+ = max{t, 0} is the positive
part of t. Observe that r(x) = 0 at a point x where the plate does
not touch the obstacle. The function κ describes the stiffness of the
obstacle. The limiting case of a rigid obstacle is recovered as κ(x) → ∞.
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For the given data, we make the following assumptions:

(2.1)
q ∈ L2(Ω), q ≥ 0 a.e. in Ω, ψ ∈ L2(Ω),

κ ∈ L∞(Ω), κ ≥ κ0 > 0 a.e. in Ω.

Since the plate is clamped, the function space for the deflection u is

V = H2
0 (Ω).

We adopt the summation convention over a repeated index. For any
u, v ∈ V , introduce the following functionals

a(u, v) =
∫

Ω

[
ΔuΔv + (1 − σ)

× (2 ∂12u ∂12v − ∂11u ∂22v − ∂22u ∂11v)
]
dx,

j(u, v) =
∫

Ω

κ (u− ψ)+v dx,

and denote
(q, v) =

∫
Ω

q v dx.

Later in this paper, we will use the following formula on several
occasions: for any v ∈ H3(D) and any w ∈ H2(D),

(2.2)
∫

D

(2 ∂12v ∂12w − ∂11v ∂22w − ∂22v ∂11w) dx

=
∫

∂D

(−∂ττv ∂νw + ∂ντv ∂τw) ds,

where D is a two-dimensional Lipschitz domain, ν = (ν1, ν2) is the
unit outward normal vector on ∂D, τ = (τ1, τ2) = (−ν2, ν1) is the unit
tangential vector along ∂D, and

∂νv = νi∂iv,

∂τv = τi∂iv,

∂ντv = νiτj∂ijv,

∂ττv = τiτj∂ijv.
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These derivatives and the vectors ν, τ are defined a.e. on the boundary
of the Lipschitz domain.

Note that for u, v ∈ V , we have

a(u, v) =
∫

Ω

ΔuΔv dx.

Then following [16] (with a scaling of the constant D0 throughout the
equation), the weak formulation of the plate problem is

(2.3) u ∈ V, a(u, v) + j(u, v) = (q, v) ∀ v ∈ V.

It is shown in [16] that the problem (2.3) has a unique solution, and
the problem is equivalent to the variational inequality of finding u ∈ V
such that

a(u, v − u) +
∫

Ω

κ

2
[(v − ψ)+]2 dx−

∫
Ω

κ

2
[(u− ψ)+]2 dx ≥ (q, v − u)

∀ v ∈ V,

and is also equivalent to the problem of minimizing the energy func-
tional

1
2
a(v, v) +

1
2

∫
Ω

κ [(v − ψ)+]2 dx− (q, v)

over V . The classical formulation of the problem is

Δ2u+ κ (u− ψ)+ = q in Ω,
u = ∂νu = 0 on Γ,

where ∂νu is the outward normal derivative of u on Γ. The boundary
condition ∂νu = 0 is understood to be valid at the boundary points
where the outward normal vector ν is defined.

We now recall a regularity result for the biharmonic equation [2,
Theorem 7].

Theorem 2.1. Let u be the weak solution of the problem

Δ2u = f in Ω,
u = ∂νu = 0 on Γ.
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Let Ω ⊂ R2 be a bounded polygon and denote its largest internal angle
by ω. Then, if ω < 180◦ and f ∈ H−1(Ω), we have u ∈ H3(Ω); and if
ω < 126.283696 . . .◦ and f ∈ L2(Ω), we have u ∈ H4(Ω).

For the plate contact problem (2.3), notice that κ (u− ψ)+ ∈ L2(Ω).
Applying Theorem 2.1, we obtain the following regularity result for the
solution.

Theorem 2.2. Assume (2.1), and let u ∈ V be the weak solution
of the problem (2.3). Then u ∈ H3(Ω) if ω < 180◦, and moreover,
u ∈ H4(Ω) if ω < 126.283696 . . .◦.

Assume u ∈ H3(Ω). For later use, we note that, from (2.3),

−
∫

Ω

∇Δu · ∇v dx+
∫

Ω

κ (u− ψ)+v dx = (q, v) ∀ v ∈ H2
0 (Ω).

By a density argument, we then have

(2.4) −
∫

Ω

∇Δu · ∇v dx+
∫

Ω

κ (u− ψ)+v dx = (q, v) ∀ v ∈ H1
0 (Ω).

For a domain D and an integer k ≥ 0, we will use ‖·‖k,D and |·|k,D for
the norm and semi-norm on the Sobolev space Hk(D). When D = Ω,
we will simply write ‖ · ‖k and | · |k.

3. Nonconforming finite element methods. Let {Th}h be a
family of finite element partitions of the domain Ω. Here h → 0+ is
a discretization parameter. A typical element in Th is denoted by T .
Let {Vh}h be a family of corresponding finite element spaces used to
approximate the space V . We consider nonconforming approximations.
Thus in general, Vh 
⊂ V . Then the discrete approximation problem is
to find uh ∈ Vh such that

(3.1) ah(uh, vh) + j(uh, vh) = (q, vh) ∀ vh ∈ Vh,

where the discrete bilinear form is

(3.2)
ah(v, w) =

∑
T∈Th

∫
T

[
ΔvΔw+ (1−σ)

× (2 ∂12v ∂12w − ∂11v ∂22w − ∂22v ∂11w)
]
dx.
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Assume

(3.3) ‖vh‖h =
( ∑

T∈Th

|vh|22,T

)1/2

, vh ∈ Vh

is a norm on Vh. This assumption is usually easy to verify, and is valid
for the nonconforming elements mentioned in later sections. Since

ah(v, w) =
∑

T∈Th

∫
T

[
σΔvΔw+ (1−σ)

× (2 ∂12v ∂12w + ∂11v ∂11w + ∂22v ∂22w)
]
dx,

the bilinear form (3.2) is coercive on Vh:

ah(vh, vh) ≥ α ‖vh‖2
h ∀ vh ∈ Vh

with α = 1 − σ. Obviously, ah(·, ·) is continuous:

|ah(v, w)| ≤M ‖v‖h‖w‖h ∀ v, w ∈ V + Vh.

We will need the following elementary inequality

(3.4) (t+ − s+) (t− s) ≥ 0 ∀ t, s ∈ R.

Proposition 3.1. The discrete problem (3.1) has a unique solution.
Moreover, ‖uh‖h and ‖(uh−ψ)+‖0 are uniformly bounded, with a bound
that is independent of h.

Proof. It is easy to see that (3.1) is equivalent to the minimization
problem

(3.5) Jh(uh) ≤ Jh(vh) ∀ vh ∈ Vh,

where the energy functional

Jh(vh) =
1
2
ah(vh, vh) +

1
2

∫
Ω

κ [(vh − ψ)+]2 dx− (q, vh).
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Since q ≥ 0 a.e. in Ω,

−(q, vh) = − (q, vh − ψ) − (q, ψ)
≥ − (q, (vh − ψ)+) − (q, ψ)

≥ − 1
4

∫
Ω

κ [(vh − ψ)+]2 dx+ c

with a constant c depending only on q and ψ. Thus,

(3.6)
Jh(vh) ≥ 1

2
ah(vh, vh) +

1
4

∫
Ω

κ [(vh − ψ)+]2 dx+ c

≥ α

2
‖vh‖2

h +
κ0

4

∫
Ω

[(vh − ψ)+]2 dx+ c,

and so
Jh(vh) → ∞ as ‖vh‖h → ∞.

Since Vh is finite dimensional and Jh is continuous, there is a solution
to the problem (3.5).

To show the uniqueness, let u(1)
h and u

(2)
h be two solutions of (3.1).

Then

ah(u(1)
h − u

(2)
h , vh) + j(u(1)

h , vh) − j(u(2)
h , vh) = 0 ∀ vh ∈ Vh.

Let vh = u
(1)
h − u

(2)
h and apply the inequality (3.4),

ah(u(1)
h − u

(2)
h , u

(1)
h − u

(2)
h ) ≤ 0.

Hence, u(1)
h = u

(2)
h .

Uniform boundedness of ‖uh‖h and ‖(uh − ψ)+‖0 follows from the
inequality

Jh(uh) ≤ Jh(0) =
∫

Ω

κ

2
(−ψ)2+ dx

and the lower bound (3.6) for Jh(uh).

We note that the discrete problem (3.1) is equivalent to the discrete
variational inequality of finding uh ∈ Vh such that

ah(uh, vh − uh) +
∫

Ω

κ

2
[(vh − ψ)+]2 dx−

∫
Ω

κ

2
[(uh − ψ)+]2 dx

≥ (q, vh − uh) ∀ vh ∈ Vh.
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We will study continuous family (Vh ⊂ C0) and discontinuous family
(Vh 
⊂ C0) of nonconforming finite elements separately. For each
family, we consider finite elements satisfying one of the following two
assumptions.

(A1) There exists a constant c such that

(3.7)
∣∣∣ ∑

T∈Th

∫
∂T

[Δw − (1 − σ) ∂ττw] ∂νvh ds
∣∣∣

≤ c h ‖w‖3‖vh‖h ∀w ∈ V ∩H3(Ω), vh ∈ Vh,

(3.8) ‖w − Πhw‖0 + h2‖w − Πhw‖h ≤ c h3‖w‖3 ∀w ∈ V ∩H3(Ω),

where Πh is the finite element interpolation operator.

(A2) There exists a constant c such that

(3.9)
∣∣∣ ∑

T∈Th

∫
∂T

[Δw − (1 − σ) ∂ττw] ∂νvh ds
∣∣∣

≤ c h2‖w‖4‖vh‖h ∀w ∈ V ∩H4(Ω), vh ∈ Vh,

(3.10) ‖w − Πhw‖0 + h2‖w − Πhw‖h ≤ c h4‖w‖4 ∀w ∈ V ∩H4(Ω),

For the concrete nonconforming finite elements, we will comment on
the validity of these relations.

4. Continuous nonconforming finite element approximation.
We consider some continuous nonconforming plate elements in this
section. Assume Ω is a polygonal domain. Let {Th}h be a family of
regular triangulations of Ω, and let {Vh}h ⊂ C0(Ω) be a corresponding
family of nonconforming finite element subspaces of V .

The following theorem provides optimal order error estimates.

Theorem 4.1. Assuming ω < 180◦ and (A1), we have the error
bound

(4.1) ‖u− uh‖h ≤ c h ‖u‖3.
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Assuming ω < 126.283696 . . .◦ and (A2), we have the error bound

(4.2) ‖u− uh‖h ≤ c h2‖u‖4.

Proof. For any vh ∈ Vh, we have

(4.3)
α ‖uh − vh‖2

h ≤ ah(uh − vh, uh − vh)
= ah(u− vh, uh − vh) + ah(uh − u, uh − vh).

The first term in the summation is bounded as follows:

(4.4)
ah(u− vh, uh − vh) ≤M ‖u− vh‖h‖uh − vh‖h

≤ c ‖u− vh‖2
h +

α

2
‖uh − vh‖2

h.

To bound the second term, we notice that for any wh ∈ Vh,

ah(u,wh) =
∑

T∈Th

∫
T

[ΔuΔwh + (1−σ)

×(2 ∂12u∂12wh − ∂11u∂22wh − ∂22u∂11wh)] dx

=
∑

T∈Th

∫
∂T

Δu ∂νwh ds−
∑

T∈Th

∫
T

∇(Δu) · ∇wh dx

+ (1−σ)
∑

T∈Th

∫
∂T

(− ∂ττu∂νwh + ∂ντu∂τwh) ds

=
∑

T∈Th

∫
∂T

[Δu− (1−σ) ∂ττu] ∂νwh ds−
∫

Ω

∇(Δu) · ∇wh dx,

where we have used the relation, see [4, pp. 368 369],
∑

T∈Th

∫
∂T

∂ντu∂τwh ds = 0,

valid for continuous nonconforming finite elements. Using the equality
(2.4), we get

ah(u,wh) =
∑

T∈Th

∫
∂T

[Δu− (1 − σ) ∂ττu] ∂νwh ds

+ (q, wh) −
∫

Ω

κ (u− ψ)+wh dx.
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Thus, recalling the defining equation (3.1) for the finite element solution
uh, we have

(4.5)

ah(uh − u,wh) = ah(uh, wh) − a(u,wh)

= −
∑

T∈Th

∫
∂T

[Δu− (1 − σ) ∂ττu] ∂νwh ds

+
∫

Ω

κ [(u− ψ)+ − (uh − ψ)+]wh dx.

The first term on the righthand side will be bounded by (3.7) or
(3.9). For the second term with wh = uh − vh, we use the elementary
inequality (3.4),

∫
Ω

κ [(u− ψ)+ − (uh − ψ)+] (uh − vh) dx

≤
∫

Ω

κ [(u− ψ)+ − (uh − ψ)+] (u− vh) dx

≤ c [‖(u− ψ)+‖0 + ‖(uh − ψ)+‖0] ‖u− vh‖0.

Since ‖(uh − ψ)+‖0 is uniformly bounded independently of h, we have

(4.6)
∫

Ω

κ [(u− ψ)+ − (uh − ψ)+] (uh − vh) dx ≤ c ‖u− vh‖0.

Combining (4.3), (4.4), (4.5) and (4.6), we have

‖uh − vh‖2
h ≤ c

∣∣∣ ∑
T∈Th

∫
∂T

[Δu− (1 − σ) ∂ττu] ∂ν(uh − vh) ds
∣∣∣

+ c
(
‖u− vh‖2

h + ‖u− vh‖0

)
.

Under the assumptions ω < 180◦ and (A1), we can then derive the
following relation:

‖uh − vh‖h ≤ c h ‖u‖3 + c
(
‖u− vh‖h + ‖u− vh‖1/2

0

)
.

From this, the inequality

‖u− uh‖h ≤ ‖u− vh‖h + ‖uh − vh‖h,
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and the arbitrariness of vh ∈ Vh, we obtain

‖u− uh‖h ≤ c h ‖u‖3 + c inf
vh∈Vh

(
‖u− vh‖h + ‖u− vh‖1/2

0

)
.

Finally, using the interpolation error estimate (3.8), we get the error
bound (4.1).

The error bound (4.2) is derived similarly.

One example of a continuous nonconforming finite element is the
Zienkiewicz triangle. Assume Ω is such that it is possible to split it
into triangles with all sides parallel to three fixed directions. This
property is valid if Ω is the union of rectangles with sides parallel to
two fixed directions and right triangles with two sides parallel to the
two fixed directions. Let {Th} be a regular family of partitions of Ω
into such triangles. Then the Zienkiewicz triangle consists of piecewise
incomplete polynomials of degree less than or equal to 3. On each
triangle, the polynomial is determined by its values and the values of
its two first-order derivatives at the three vertices; for details, see [4].
For this element, the inequalities (3.7) and (3.8) are valid, cf. [12].

Another example is Adini’s rectangle. Assume Ω ⊂ R2 can be
partitioned into rectangles, e.g., if Ω is the union of rectangles with
sides parallel to two fixed directions. Let {Th}h be a regular family of
partitions of Ω into rectangles with sides parallel to the coordinate
axes. Then Adini’s rectangle is defined as a piecewise polynomial
corresponding to the partition Th such that on each element, it is a
third degree polynomial plus a linear combination of x3

1x2 and x1x
3
2,

with the values of the function and of the two first partial derivatives
with respect to x1 and x2 at the four vertices of the element as the
finite element parameters. The interpolation error estimates (3.8) and
(3.10) hold. A proof of the bound (3.7) is found in [4] or [15]. The
bound (3.9) is shown in [10], see also [11].

Therefore, if ω < 180◦, for the Zienkiewicz triangle and Adini’s
rectangle, we have the optimal order error estimate (4.1), and if
ω < 126.283696 . . .◦, we have the optimal order error estimate (4.2)
for Adini’s rectangle.
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5. Discontinuous nonconforming finite element approxi-
mation. In this section, we consider discontinuous nonconform-
ing finite element approximations of the plate contact problem. Let
{Vh}h 
⊂ C0(Ω) be a family of nonconforming finite element subspaces
of V corresponding to a regular family {Th}h of triangulations of Ω into
triangles such that the finite element functions are continuous at the
triangle vertices.

Theorem 5.1. Assuming ω < 180◦ and (A1), we have the error
bound

(5.1) ‖u− uh‖h ≤ c h ‖u‖3.

Proof. The proof is similar to that of Theorem 4.1. However, since
Vh 
⊂ C(Ω) implies Vh 
⊂ H1

0 (Ω), we need to make the following
modification in bounding the term ah(uh − u,wh) with wh = uh − vh.

Let wI
h be the continuous piecewise linear interpolant of wh. Since

wI
h ∈ C (Ω), wI

h ∈ H1(Ω). Consider the term

ah(u,wh) =
∑

T∈Th

∫
T

[ΔuΔwh + (1−σ)

×(2 ∂12u∂12wh − ∂11u∂22wh − ∂22u∂11wh)] dx

=
∑

T∈Th

∫
∂T

[Δu− (1−σ) ∂ττu] ∂νwh dx

−
∑

T∈Th

∫
T

∇(Δu) · ∇wh dx+ (1−σ)
∑

T∈Th

∫
∂T

∂ντu ∂τwh ds.

Write

−
∑

T∈Th

∫
T

∇(Δu) · ∇wh dx = −
∑

T∈Th

∫
T

∇(Δu) · ∇wI
h dx

−
∑

T∈Th

∫
T

∇(Δu) · ∇(wh − wI
h) dx.

By (2.4), since wI
h ∈ H1

0 (Ω),

−
∑

T∈Th

∫
T

∇(Δu) · ∇wI
h dx = (q, wI

h) −
∫

Ω

κ (u− ψ)+wI
h dx.
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Hence,

ah(u,wh) =
∑

T∈Th

∫
∂T

[Δu− (1 − σ) ∂ττu] ∂νwh dx

+ (q, wI
h) −

∫
Ω

κ (u− ψ)+ wI
h dx

− Lu + (1 − σ)
∑

T∈Th

∫
∂T

∂ντu ∂τwh ds,

where

(5.2) Lu =
∑

T∈Th

∫
T

∇(Δu) · ∇(wh − wI
h) dx.

Thus,

ah(uh − u,wh) = ah(uh, wh) − a(u,wh)

= (q, wh) −
∫

Ω

κ (uh − ψ)+wh dx− ah(u,wh)

= (q, wh − wI
h) +

∫
Ω

κ (u− ψ)+(wI
h − wh) dx

−
∑

T∈Th

∫
∂T

[Δu− (1 − σ) ∂ττu] ∂νwh ds

+ Lu − (1 − σ)
∑

T∈Th

∫
∂T

∂ντu ∂τwh ds

+
∫

Ω

κ [(u− ψ)+ − (uh − ψ)+]wh dx.

We have

|(q, wh − wI
h)| +

∣∣∣∣
∫

Ω

κ (u− ψ)+(wI
h − wh) dx

∣∣∣∣ ≤ c ‖wI
h − wh‖0

≤ c h2‖wh‖h,

where c depends on ‖q‖0 and ‖(u− ψ)+‖0. The term

∑
T∈Th

∫
∂T

[Δu− (1 − σ) ∂ττu] ∂νwh ds
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is bounded by (3.7). The term
∫

Ω

κ [(u− ψ)+ − (uh − ψ)+]wh dx

with wh = uh − vh is bounded by (4.6). Finally, write

∑
T∈Th

∫
∂T

∂ντu ∂τwh ds =
∑

T∈Th

∫
∂T

∂ντu ∂τw
I
h ds

+
∑

T∈Th

∫
∂T

∂ντu ∂τ (wh − wI
h) ds.

For each side γ of the elements, define a piecewise constant projection

P γ
0 (v) =

1
|γ|

∫
γ

v ds.

Since ∫
γ

∂τ (wh − wI
h) ds = 0,

we have
∑

T∈Th

∫
∂T

∂ντu ∂τ (wh − wI
h) ds

=
∑

T∈Th

∑
γ⊂∂T

∫
γ

∂ντu ∂τ (wh − wI
h) ds

=
∑

T∈Th

∑
γ⊂∂T

∫
γ

[∂ντu− P γ
0 (∂ντu)] ∂τ (wh − wI

h) ds.

By a scaling argument,

∑
T∈Th

∫
∂T

∂ντu ∂τ (wh − wI
h) ds ≤ c h |u|3‖wh‖h.

Since wI
h ∈ C(Ω) and u ∈ V ∩H3(Ω), we have

∑
T∈Th

∫
∂T

∂ντu ∂τw
I
h ds =

∫
∂Ω

∂ντu ∂τw
I
h ds = 0.
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The term Lu defined in (5.2) is bounded as follows:

(5.3) |Lu| ≤
∑

T∈Th

|u|3,T |wh − wI
h|1,T ≤ c h |u|3‖wh‖h.

Thus, by a procedure similar to the proof of Theorem 4.1, we have

‖uh − vh‖h ≤ c ‖u− vh‖h + c (‖(u− ψ)+‖0

+ ‖(uh − ψ)+‖0)1/2‖u− vh‖1/2
0

+ c (‖q‖0 + ‖(u− ψ)+‖0)h2 + c h |u|3.

Finally, we use

‖u− uh‖h ≤ ‖u− vh‖h + ‖uh − vh‖h,

and take vh = Πhu. Then the error bound (5.1) can be derived.

As examples of discontinuous nonconforming finite element spaces
for the plate contact problem, we mention Morley’s triangle and the
Fraeijs de Veubeke triangle. Assume Ω is a polygonal domain, and let
{Th} be a regular family of partitions of Ω into triangles. For Morley’s
triangle, on each element, the finite element function is quadratic and
is uniquely determined by the function values at the three vertices and
the normal derivative at the three mid-side nodes. For the Fraeijs de
Veubeke triangle, on each element, the finite element function is cubic
and is uniquely determined by the function values at the three vertices
and at the center, and the normal derivative at the Gaussian points of
second order on each side. From their constructions, we see that for
both Morley’s triangle and the Fraeijs de Veubeke triangle, the finite
element functions are continuous at the vertices of the corresponding
triangulation. For both elements, the bounds (3.7) and (3.8) are valid,
see [12] for Morley’s triangle and [15] for the Fraeijs de Veubeke
triangle. So if ω < 180◦, for both elements, we have the optimal order
error estimates (5.1).

For the Fraeijs de Veubeke triangle, we also have (3.9) and (3.10).
A proof of (3.9) can be given based on results similar to Lemmas
10.3.7 and 10.3.9 of [3]. Thus, assuming ω < 126.283696 . . .◦, we have
u ∈ H4(Ω) and would expect the following error bound

(5.4) ‖u− uh‖h ≤ c h2‖u‖4.
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However, the proof of Theorem 5.1 does not work for this, due to the
error bound (5.3) for the term Lu defined in (5.2).
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