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MARCINKIEWICZ FUNCTIONS ALONG FLAT
SURFACES WITH HARDY SPACE KERNELS

AHMAD AL-SALMAN

ABSTRACT. In this paper, we study Marcinkiewicz inte-
gral operators along subvarieties determined by flat surfaces
with kernels in the Hardy space H1(Sn−1). We establish the
Lp boundedness of our operators under weak convexity as-
sumptions on the surfaces. Moreover, we establish the Lp

boundedness of the corresponding Marcinkiewicz integral op-
erators that are related to area integral and Littlewood-Paley
g∗λ functions. Our results offer substantial improvements of
previously known results.

1. Introduction and statement of results. Let Rn, n ≥ 2,
be the n-dimensional Euclidean space and Sn−1 the unit sphere in
Rn equipped with the induced Lebesgue measure dσ. Let Ω be a
homogeneous function of degree zero on Rn that is integrable on Sn−1

and satisfies

(1.1)
∫
Sn−1

Ω(y) dσ(y) = 0.

For a suitable mapping Φ : Rn → Rn, consider the Marcinkiewicz
integral operator

(1.2) μΩ,Φ f(x) =
(∫ ∞

−∞
|FΩ,Φ,t(x)|2 2−2t dt

)1/2

,

where

(1.3) FΩ,Φ,t(x) =
∫
|y|≤2t

f(x− Φ(y)) |y|1−n Ω(y) dy.
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For the sake of simplicity, we denote μΩ,Φ = μΩ if Φ(y) = y. The
operator μΩ was introduced by E.M. Stein [15]. In [15], Stein proved
that if Ω is continuous and satisfies a Lipα(0 < α ≤ 1) condition on
Sn−1, then μΩ is bounded on Lp for all 1 < p ≤ 2 and is of weak
type (1, 1). Subsequently, Benedek, Calderón, and Panzone proved
the Lp boundedness of μΩ for all 1 < p < ∞ provided that Ω is
continuously differentiable on Sn−1 [4]. In [8], Ding, Fan and Pan
proved that the operator μΩ is bounded on Lp for all 1 < p < ∞
provided that Ω ∈ H1(Sn−1), the Hardy space on Sn−1 (in the sense
of Coifman and Weiss [6]; see also [7]). Concerning the operators
μΩ,Φ for general mappings Φ, there has been notable progress in
obtaining Lp boundedness results provided that the mappings Φ satisfy
∂αΦ/∂yα(0) �= 0 for some multi-index α ∈ Nn ([3, 5, 8], among
others). For mappings Φ with ∂αΦ/∂yα(0) = 0 for all multi-indices
α ∈ Nn, very little is known about the Lp boundedness of μΩ,Φ [1].

The primary focus of our investigation is the Lp boundedness of the
operators μΩ,Φ when Φ is allowed to be very flat in the sense that
∂αΦ/∂yα(0) = 0 for all multi-indices α ∈ Nn and Ω is rough in
H1(Sn−1). To be more specific, we focus our attention in this paper
on the operators μΩ,Φ when Φ(y) = ϕ(|y|)y′, where ϕ : R+ → R
is a suitable nonnegative function. In what follows, we shall simply
denote μΩ,Φ by μΩ,ϕ. We remark here that one of our main concerns
is to obtain the Lp boundedness of μΩ,ϕ without imposing heavy
conditions like “finite doubling time condition” ϕ′(Ct) ≥ ϕ′(t) or
“growth condition” ϕ(2t) ≤ c ϕ(t). In fact, we shall study μΩ,ϕ

under much weaker conditions. In stating our main results, we shall
be considering nonnegative C1 functions ϕ : R+ → R that satisfy the
following weak convexity conditions:

A(ϕ) = inf
r>0

rϕ′(r)
ϕ(r)

> 0(1.4)

B(ϕ) = inf
r>0

ϕ(2r)
ϕ(r)

> 1.(1.5)

Model examples for functions ϕ that satisfy (1.4) and (1.5) are
t

α

(α > 0), real valued polynomials on R with positive coefficients,
C2 strictly increasing convex functions ϕ with ϕ(0) = 0. Amazingly,
a lot of flat functions satisfy the conditions (1.4) (1.5). For example,
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we cite the function ϕ(t) = t2e−1/t2 . Moreover, there are many non-
convex functions that satisfy (1.4) (1.5). It is worth pointing out that,
many authors have considered the conditions (1.4) (1.5) in their study
of some singular integral operators and oscillatory singular integral
operators ([10, 12], among others). But in most cases one of the
two heavy conditions; “finite doubling time condition” and “growth
condition,” were added as an extra condition.

Our first result is the following.

Theorem A. Suppose that ϕ : R+ → R is a strictly increas-
ing function with ϕ(0) = 0 and satisfying the convexity conditions
(1.4) (1.5). If Ω ∈ H1(Sn−1) and satisfying (1.1), then the operator
μΩ,ϕ is bounded on Lp(Rn) for 1 < p <∞.

As a consequence of Theorem A, we obtain the Lp boundedness of the
parametric Marcinkiewicz integral operators introduced by Hörmander
in 1960 [14] (for more results see [9]). Our result below gives an answer
for a long standing open problem, as pointed out in [9].

Theorem B. Suppose that ρ > 0, and let Ω ∈ H1(Sn−1) satisfy
(1.1). Then the parametric Marcinkiewicz integral operator

(1.6) μρ
Ωf(x) =

(∫ ∞

−∞

∣∣∣∣2−ρt

∫
|y|≤2t

f(x−y) |y|−n+ρ Ω(y) dy
∣∣∣∣2 dt)1/2

,

is bounded on Lp(Rn) for 1 < p <∞.

It should be pointed out here that Ding, Lu and Yabuta studied the
operator μ

ρ

Ω and showed that it is bounded on L2(Rn) provided that
Ω ∈ L logL(Sn−1) [9]. Therefore, since L log L(Sn−1) � H1(Sn−1),
Theorem B gives a substantial improvement of Ding, Lu and Yabuta’s
result as far as the operator μρ

Ω is concerned.

Concerning the result in Theorem A, it can be generalized as follows.
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Theorem C. Let ϕ : R+ → R be a strictly increasing function
with ϕ(0) = 0 and satisfying the convexity conditions (1.4) (1.5). Let
Ω ∈ H1(Sn−1) and satisfying (1.1). For each λ ∈ R, define the operator
μΩ,ϕ,λ by

(1.7) μΩ,ϕ,λf(x)

=
(∫ ∞

−∞

∣∣∣∣ ∫|y|≤2t

f (x− λϕ(|y|)y′) |y|−n+1 Ω(y′) dy
∣∣∣∣2 2−2t dt

)1/2

.

Then the operators {μΩ,ϕ,λ}λ∈R are uniformly bounded on Lp(Rn) for
1 < p <∞.

Also, in this paper, we shall establish the following Lp boundedness
result of the corresponding Marcinkiewicz integral operators that are
related to area integral and Littlewood-Paley g∗λ functions.

Theorem D. Suppose that ϕ : R+ → R is strictly increasing func-
tion with ϕ(0) = 0 and satisfying the convexity conditions (1.4) (1.5).
If Ω ∈ H1(Sn−1) and satisfying (1.1), then for 2 ≤ p < ∞ and s > 1,
the operators μ̃Ω,ϕ and μ∗

Ω,ϕ,s satisfy

‖μ̃Ω,ϕ(f)‖p ≤ Cp ‖f‖p(1.8) ∥∥μ∗
Ω,ϕ,s (f)

∥∥
p
≤ Cp ‖f‖p ,(1.9)

where

(1.10)
μ̃Ω,ϕf(x) =

(∫
Υ(x)

|FΩ,ϕ,t(z)|2 2−(2+n)t dz dt

)1/2

,

Υ(x) =
{
(z, t) ∈ Rn+1 : |x− z| < 2t

}
,

(1.11) μ∗
Ω,ϕ,sf(x)

=
(∫∫

Rn+1

(
2t(2t + |x− z|)−1

)ns |FΩ,ϕ,t(z)|2 2−(2+n)t dz dt

)1/2

,

and FΩ,ϕ,t is given by (1.3) with Φ(y) = ϕ(|y|)y′.
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Remarks. (1) It is well known that, for 1 < q ≤ ∞ and 0 < α < 1
the relations

(1.12)
C1(Sn−1) � Lipα(Sn−1) � L log L(Sn−1) � H1(Sn−1)

� L1(Sn−1)

hold. Therefore, our condition on the function Ω in Theorems A D is
the weakest among all above function spaces on Sn−1.

(2) It should be noticed that if ϕ is allowed to be very flat at the
origin (which is of course our case), then the singularity of μΩ,ϕ at
the origin will be too severe. Therefore, to obtain the Lp boundedness
of μΩ,ϕ, we have to work a little bit harder than in the case for the
classical Marcinkiewicz integral operator. In fact, due to the flatness
of the surface and the absence of the finite doubling time condition or
even the growth condition, specially constructed square functions are
needed.

This paper is organized as follows. In Section 2, we shall review the
definition of the Hardy space H1(Sn−1). In Section 3, we establish
some preliminary estimates. In Section 4, we shall prove Theorem A,
Theorem B, Theorem C and Theorem D.

Finally, throughout this paper, the letter C is a positive constant
that may vary at each occurrence but it is independent of the essential
variables. Also, we shall use exp(·) to denote e(·).

The Hardy space H1(Sn−1). In this section, we recall the definition
of the hardy space H1(Sn−1). The Hardy space H1(Sn−1) can be
defined by using atoms:

Definition 2.1. A function a : Sn−1 → � C is called an H1 atom if
it satisfies the following:

(i) supp (a) ⊆ Sn−1 ∩ {y ∈ Rn : |y − y0| < ρ} for some y0 ∈ Sn−1

and ρ > 0;

(ii) ‖a‖ ≤ ρ−(n−1);

(iii)
∫
Sn−1 a(x) dσ(x) = 0.
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For the sake of simplicity, we shall refer to ρ and y0 in the above
definition by rad (a) and cent (a), respectively.

Definition 2.2. A function Ω : Sn−1 → � C is in H1(Sn−1) if there
are H1 atoms a1,a2, . . . , on Sn−1, a sequence of complex numbers {cj}
with

∑
j |cj | <∞, and Ω0 ∈ L∞ such that

Ω = Ω0 +
∑

j

cjaj .

Here,
∑

j |cj | ≤ ‖Ω‖1
H (Sn−1).

3. Preparation. Given a strictly increasing function ϕ : R+ → R
with ϕ(0) = 0 and satisfying the convexity conditions (1.4) (1.5). For
a homogeneous function Ω of degree zero on Rn that is integrable on
Sn−1 and satisfies (1.1), define the function HΩ,ϕ on R ×Rn by

(3.1)

HΩ,ϕ(ξ, t) =
1
2t

∫
2t−1≤|y|<2t

exp (−i (ξ · ϕ(|y|)y′)) Ω(y′) |y|1−n
dy.

Then, we have the following:

Lemma 3.1. If Ω is an H1 atom on Sn−1 with cent (Ω) = y0 =
(0, . . . , 1) and rad (Ω) = ρ. Then

(i) |HΩ,ϕ(ξ, t)| ≤ C
∣∣ϕ(2t−1)

∣∣ρ2ξ
∣∣∣∣−β for 0 < ρ < 1/n and ξ ∈ Rn.

(ii) |HΩ,ϕ(ξ, t)| ≤ C
∣∣ϕ(2t−1)

∣∣ρξ0∣∣∣∣−β for 0 < ρ < 1/n and ξ0 ∈
Rn−1 with ξ = (ξ0, 0).

(iii) |HΩ,ϕ(ξ, t)| ≤ C
∣∣ϕ(2t−1) |ξ|∣∣−β for ρ ≥ 1/n and ξ ∈ Rn.

Here C is a constant independent of ρ, ξ and t.

Proof. Let g be the real valued function that is defined on Sn−1 ×
Sn−1 × Sn−1 by g(ξ′, y′, z′) = ξ′ · (y′ − z′). Then it is straightforward
to show that

(3.2) sup
ξ′∈Sn−1

∫
Supp (Ω)

|g(ξ′, y′, z′)|−1/4n
dσ(y′) ≤ Cρ(n−1)

∣∣ρ2
∣∣−1/4n
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(3.3) sup
ξ′∈Sn−1,
ξ′·y0=0

∫
Supp (Ω)

|g(ξ′, y′, z′)|−1/4n
dσ(y′) ≤ Cρ(n−1) |ρ|−1/4n

for 0 < ρ < 1/n, where C is a constant independent of ρ [2]. Here,
Supp (Ω) denotes the support of the function Ω.

Now, it is easy to see that
(3.4)

|HΩ,ϕ(ξ, t)|2 ≤ Cρ−2(n−1)

∫
Supp (Ω)

∫
Supp (Ω)

I(t, ξ′, y′, z′) dσ(y′) dσ(z′),

where

I(t, ξ′, y′, z′) =
∣∣∣∣ ∫ 2

1

exp
(−i (|ξ|ϕ(2t−1r)(ξ′ · (y′ − ·z′)))) dr∣∣∣∣.

By (1.4) and an application of the van der Corput lemma [17], we
obtain

(3.5) I(t, ξ′, y′, z′) ≤ min
{
1, {A(ϕ)}−1

∣∣|ξ|ϕ(2t) g(ξ′, y′, z′)
∣∣−1
}
.

Thus, by (3.5), (3.4), (3.2), (3.3) and the observation |Supp (Ω)| =
Cρn−1, we immediately obtain (i) and (ii).

The proof of (iii) is straightforward. In fact, by (3.5) and condition
(ii) in Definition 2.1, we get

(3.6)

|HΩ,ϕ(ξ, t)| ≤ ρ−(n−1)

∫
Sn−1

I(t, ξ, y′, 0) dσ(y′)

≤ ρ−(n−1){A(ϕ)}−1
∣∣|ξ|ϕ(2t)

∣∣−1/2n
∫
Sn−1

|ξ′ · y′|−1/2n

≤ C
∣∣|ξ|ϕ(2t)

∣∣−1/2n
,

where the last inequality follows by the fact that ρ ≥ 1/n and the
boundedness of the integral in the second inequality in (3.6). This
completes the proof of the lemma.

Now, for ξ ∈ Rn, consider the maximal function

(3.7) Mϕ,ξf(x) = sup
t∈R

∣∣∣∣ 1
2t

∫ 2t

0

f(x− ϕ(r)ξ) dr
∣∣∣∣.
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Clearly, if ξ = 0, then Mϕ,ξ reduces to the identity operator on Rn.
Therefore, in the rest of this section, we shall assume that ξ �= 0. Our
concern here is Lp boundedness of the operator Mϕ,ξ. If ϕ satisfies an
additional condition like ϕ(t) ≤ c ϕ(2t) for all t > 0 and some fixed
c > 0, then we can use a theorem in [17, p. 477] and establish the
desired Lp boundedness result, see also [12]. But, obviously, such a
condition might not be available in our case. However, this obstacle
can be resolved by first noticing that

(3.8) Mϕ,ξf(x) ≤ 4 M̃ϕ,ξf(x) = sup
j∈Z

∣∣∣∣ ∫ 2j+1

2j+1
|f(x− ϕ(r)ξ)| dr

r

∣∣∣∣.
Then, by a well-known bootstrapping argument [10, 11], we obtain the
Lp boundedness of M̃ϕ,ξ for all 1 < p <∞ with Lp bounds independent
of ξ, for more details see [2]. Hence, by this and (3.8), we obtain

(3.9) ‖Mϕ,ξ(f)‖p ≤ Cp ‖f‖p

for all 1 < p <∞ with constant Cp independent of ξ.

Finally, we end this section by the following relation between the
operators μΩ,ϕ and μ∗

Ω,ϕ,s, which can be obtained by following a similar
argument as in the proof of Lemma 4.1 in [8].

Lemma 3.2. Let s > 1. Then, for any nonnegative function g, we
have

(3.10)
∫
Rn

(
μ∗

Ω,ϕ,sf(x)
)2
g(x) dx ≤ Cs

∫
Rn

(μΩ,ϕf(x))2 (Hg)(x) dx,

where H is the classical Hardy-Littlewood maximal operator on Rn.

Proof. The proof is simple. In fact, the inequality (3.10) is an
immediate consequence of the definition of μ∗

Ω,ϕ,s in (1.6) and the
following simple inequality:

sup
t∈R

2−nt

∫
Rn

(
2t

2t+ |x− y|
)ns

g(x) dx ≤ Cs(Hg)(y).
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4. Proof of main results. In this section, we prove Theorem B
and Theorem C. In order to do so, we start by proving the following:

Lemma 4.1. Let ϕ : R+ → R be a strictly increasing function
with ϕ(0) = 0 and satisfying the convexity conditions (1.4) (1.5). Let
Ω be an H1 atom on Sn−1 with Cent (Ω) = y0 = (0, . . . , 1) and
rad (Ω) = ρ < 1/n. For t ∈ R, let Λ(t) = {y ∈ Rn : 2t ≤ |y| < 2t}.
For a fixed κ ∈ Z, let μκ

Ω,ϕ,λ be the operator given by

(4.1) μκ
Ω,ϕ,λ(f)(x)

=

(∫ ∞

−∞

∣∣∣∣∣ 1
2t+κ

∫
Λ(t+κ)

f (x− λϕ(|y|)y′) Ω(y′)
|y|n−1 dy

∣∣∣∣∣
2

dt

)1/2

.

Then

(4.2)
∥∥μκ

Ω,ϕ,λ(f)
∥∥

p
≤ Cp ‖f‖p

for all 1 < p <∞, where Cp independent of ρ, λ and κ.

Proof. For t ∈ R, let σt,ϕ,λ and νt,ϕ,λ be the measures defined on the
Fourier transform side by

σ̂t,ϕ,λ(ξ) = HΩ,λϕ(ξ, t)(4.3)
ν̂t,ϕ,λ(ξ) = HΩ,λϕ(ξ, t),(4.4)

where, ξ = (ξ1, . . . , ξn−1, 1) for ξ = (ξ1, . . . , ξn−1, ξn) and HΩ,λϕ is
given by (3.1) with ϕ replaced by λϕ. Then, it is clear that

(4.5) μκ
Ω,ϕ,λ(f)(x) =

(∫ ∞

−∞
|σt+κ,ϕ,λ ∗ f(x)|2 dt

)1/2

.

Moreover, by the definitions of σt,ϕ,λ and νt,ϕ,λ, it follows

(4.6) ‖σt+κ,ϕ,λ‖ ≤ 1 and ‖νt+κ,ϕ,λ‖ ≤ 1.

Now, by the cancelation property (iii) in Definition 2.1, we immediately
obtain

σ̂t+κ,ϕ,λ(0) = ν̂t+κ,ϕ,λ(0) = 0.
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By Lemma 3.1, there exist constants 0 < β < 1 and C > 0 independent
of ρ, κ, t and ξ such that

|σ̂t+κ,ϕ,λ(ξ)| ≤ C
∣∣ϕ(2t+κ−1)

∣∣λρ2ξ
∣∣∣∣−β

,(4.7)

|ν̂t+κ,ϕ,λ(ξ)| ≤ C
∣∣ϕ(2t+κ−1)

∣∣λρξ∣∣∣∣−β
.(4.8)

On the other hand, by the cancelation property (iii), we have

|σ̂t+κ,ϕ,λ(ξ) − ν̂t+κ,ϕ,λ(ξ)| ≤ C
∣∣ϕ(2t+κ)

∣∣λρ2ξ
∣∣∣∣ ,(4.9)

|ν̂t+κ,ϕ,λ(ξ)| ≤ C
∣∣ϕ(2t+κ)

∣∣λρξ∣∣∣∣ .(4.10)

Let σ∗
ϕ,λ,κ and ν∗ϕ,λ,κ be the operators given by

σ∗
ϕ,λ,κ(f)(x) = sup

t∈R
|σt+κ,ϕ,λ ∗ f(x)|

and

ν∗ϕ,λ,κ(f)(x) = sup
t∈R

|νt+κ,ϕ,λ ∗ f(x)| .

Then by Hölder’s inequality, the fact that ‖Ω‖L1 ≤ 1, and (3.9), we
obtain

∥∥σ∗
ϕ,λ,κ(f)

∥∥
p
≤ Cp ‖f‖p(4.11) ∥∥ν∗ϕ,λ,κ(f)

∥∥
p
≤ Cp ‖f‖p(4.12)

for all 1 < p <∞ with constant Cp independent of κ and λ.

Now choose θ ∈ C∞
0 (R) such that θ(t) = 1 for |t| ≤ 1/2 and θ(t) = 0

for |t| ≥ 1. Let {ϑt+κ,ϕ,λ : t ∈ R} and {�t+κ,ϕ,λ : t ∈ R} be the
families of measures given by

(4.13) ϑ̂t+κ,ϕ,λ(ξ) = ν̂t+κ,ϕ,λ(ξ) θ
(∣∣ϕ(2t+κ−1)

∣∣λρ2ξ
∣∣∣∣2)

(4.14) �̂t+κ,ϕ,λ(ξ) = σ̂t+κ,ϕ,λ(ξ) − ϑ̂t+κ,ϕ,λ(ξ).
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Then, by (4.6), (4.7) (4.10), (4.13) (4.14), and the properties of θ,
we have

(4.15)
∣∣�̂t+κ,ϕ,λ(ξ)

∣∣ ≤ C
∣∣ϕ(2t+κ−1)

∣∣λρ2ξ
∣∣∣∣−α

;

(4.16)
∣∣�̂t+κ,ϕ,λ(ξ)

∣∣ ≤ C
∣∣ϕ(2t+κ)

∣∣λρ2ξ
∣∣∣∣α ;

(4.17)
∣∣∣ϑ̂t+κ,ϕ,λ(ξ)

∣∣∣ ≤ C
∣∣ϕ(2t+κ−1)

∣∣λρξ∣∣∣∣−α
;

(4.18)
∣∣∣ϑ̂t+κ,ϕ,λ(ξ)

∣∣∣ ≤ C
∣∣ϕ(2t+κ−1)

∣∣λρξ∣∣∣∣α ;

(4.19) ‖�t+κ,ϕ,λ‖ ‖ϑt+κ,ϕ,λ‖ ≤ C,

where C is a constant independent of ρ, ξ, t, λ and κ. Moreover, by
(4.11) (4.12) and (4.13) (4.14), we have

∥∥�∗
ϕ,λ,κ(f)

∥∥
p
≤ Cp ‖f‖p(4.20) ∥∥ϑ∗ϕ,λ,κ(f)

∥∥
p
≤ Cp ‖f‖p(4.21)

for all 1 < p <∞ with constant Cp independent of κ and λ.

Now since

σt+κ,ϕ,λ = �t+κ,ϕ,λ + ϑt+κ,ϕ,λ,

we immediately obtain

(4.22) μκ
Ω,ϕ,λ(f)(x) ≤ μκ,1

Ω,ϕ,λ(f) + μκ,2
Ω,ϕ,λ(f),

where μκ,1
Ω,ϕ,λ and μκ,2

Ω,ϕ,λ are the operators that are given by (4.5) with
σt+κ,ϕ,λ is replaced by �t+κ,ϕ,λ and ϑt+κ,ϕ,λ, respectively.

Since ∥∥μκ
Ω,ϕ,λ(f)

∥∥
p
≤
∥∥∥μκ,1

Ω,ϕ,λ(f)
∥∥∥

p
+
∥∥∥μκ,2

Ω,ϕ,λ(f)
∥∥∥

p
,

it suffices to prove (4.2) for the operators μκ,1
Ω,ϕ,λ and μκ,2

Ω,ϕ,λ. We shall
prove (4.2) for μκ,1

Ω,ϕ,λ while the proof for μκ,2
Ω,ϕ,λ is similar. To do so,

we argue as follows.
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By an elementary procedure, choose a collection of C∞ functions
{ωk}k∈Z on (0,∞) with the following properties:

(a) supp (ωk) ⊆ [1/ϕ(2k+1), 1/ϕ(2k−1)
]
;

(b) 0 ≤ ωk ≤ 1;

(c) |dsωk/du
s(u)| ≤ Cs/u

s;

(d)
∑

k∈Z ωk(u) = 1.

Define the functions {ψk : k ∈ Z} on Rn by ψ̂k(y) = ωk(ρ2 |λy|).
Then, by property (d), we have

(4.23) μκ,1
Ω,ϕ,λ(f)(x) ≤

∑
k∈Z

Iκ,k(f)(x),

where

(4.24) Iκ,k(f)(x) =
(∫ ∞

−∞

∣∣f ∗ �t+κ,ϕ,λ ∗ ψ�t+κ�+k(x)
∣∣2 dt)1/2

.

Here, �x
 is the greatest integer function less than or equal to x. As in
[1], for k ∈ Z, let S

κ

k be the operator given by

(4.25) Sκ
k f(x) =

(∫ ∞

−∞

∣∣f ∗ ψ�t+κ�+k(x)
∣∣2 dt)1/2

.

Then, by the properties of {ψj} and a well-known argument, see [17,
p. 46] and [16, pp. 245 246], it is easy to show that

(4.26) ‖Sκ
k (f)‖p ≤ C ‖f‖p

for all p ∈ (1,∞) with constant C depends only on p and the dimension
of the underlying space Rn.

Next, for p > 2, set q = (p/2)′ and choose a nonnegative function
v ∈ Lq

+(Rn) with ‖v‖q = 1 such that

‖Iκ,k(f)‖2
p =

∫
Rn

∫ ∞

−∞

∣∣f ∗ �t+κ,ϕ,λ ∗ ψ�t+κ�+k(x)
∣∣2 v(x) dt dx.

Therefore, we have

‖Iκ,k(f)‖p ≤ ‖Sκ
k (f)‖p

∥∥�∗
ϕ,λ,κ(v)

∥∥1/2

q
(4.27)

≤ C ‖f‖p ,(4.28)
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where the last inequality follows by (4.20) and (4.26).

By duality, we get

(4.29) ‖Iκ,k(f)‖(p)′ ≤ C ‖f‖(p)′ .

In conclusion, we get

(4.30) ‖Iκ,k(f)‖p ≤ C ‖f‖p

for all 1 < p <∞.

Now, we estimate ‖Iκ,k(f)‖2. For l ∈ Z and nonzero ξ ∈ Rn, let
El(ξ) be the interval in R given by

El(ξ) =
[
log2

(
2l−1ϕ−1

(|ξ|−1
))
, log2

(
2l+2ϕ−1

(‖ξ|−1
))]

.

It is radially seen that

(4.31) |El(ξ)| = 3.

Moreover, for k, κ ∈ Z and nonzero ξ ∈ Rn, we have

(4.32) ϕ
(
2−k−1ϕ−1

(|ξ|−1
)) ≤ ϕ

(
2t+κ

) ≤ ϕ
(
2−k+2ϕ−1

(|ξ|−1
))

for all t ∈ Ek−κ(ξ). Therefore, for κ ∈ Z, ξ ∈ Rn\{0}, conditions
(1.4) (1.5) imply

ϕ
(
2t+κ

) ≤ {B(ϕ)}−k+2 |ξ|−1(4.33)
for k ≥ 3 and t ∈ Ek−κ(ξ)

and

ϕ
(
2t+κ−1

) ≥ {B(ϕ)}−k−2 |ξ|−1(4.34)
for k ≤ − 2 and t ∈ Ek−κ(ξ).

Thus, for k ≥ 3, by Plancherel’s theorem, (4.15), (4.31) and (4.34), we
have

(4.35)

‖Iκ,k(f)‖2
2 ≤ C

∫
Rn

∣∣∣f̂(ξ)
∣∣∣2 ∫ ∞

−∞

∣∣ϕ(2t+κ)
∣∣ρ2λξ

∣∣∣∣2α

× ∣∣ω�t+κ�+k

(∣∣ρ2λξ
∣∣)∣∣2 dt dξ

≤ C {B(ϕ)}2(−k+3)α
∫
Rn

∣∣∣f̂(ξ)
∣∣∣2 dξ.
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Hence,

(4.36) ‖Iκ,k(f)‖2 ≤ C {B(ϕ)}(−k+2)α ‖f‖2 for k ≥ 3.

Similarly, by Plancherel’s theorem, (4.16), (4.31) and (4.34), we have

(4.37) ‖Iκ,k(f)‖2 ≤ C {B(ϕ)}(k+2)α ‖f‖2 for k ≤ − 3.

One more application of Plancherel’s theorem along with (4.20) and
(4.32), we obtain

(4.38) ‖Iκ,k(f)‖2 ≤
√

3 ‖f‖2 for k = −2,−1, 0, 1, 2.

Now, by (4.30), (4.36), (4.37), (4.38) and an interpolation argument,
we obtain

(4.39) ‖Iκ,k(f)‖p ≤ C {B(ϕ)}−|k|αθ(p) ‖f‖p ,

for 1 < p <∞ with constant C independent of ρ and κ. Hence,
(4.40)∥∥∥μκ,1

Ω,ϕ,λ(f)
∥∥∥

p
≤
∑
k∈Z

‖Iκ,k(f)‖p ≤ C

{∑
k∈Z

{B(ϕ)}−|k|αθ(p)

}
‖f‖p

≤ Cp ‖f‖p ,

where, Cp, C and θ(p) are constants independent of ρ and κ. This
completes the proof.

By following exactly the same argument as in the proof of Lemma 4.2,
we have

Lemma 4.2. Let ϕ, y0, ρ, κ and μκ
Ω,ϕ,λ be as in Lemma 4.1. If Ω

is an L∞ function on Sn−1 or an H1(Sn−1) atom with rad (Ω) = ρ ≥
1/n, then

(4.41)
∥∥μκ

Ω,ϕ,λ(f)
∥∥

p
≤ Cp ‖f‖p

for all 1 < p <∞, where Cp is a constant independent of λ. Moreover,
it is also independent of ρ if Ω is an H1(Sn−1) atom.
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Now we are ready to prove Theorem C which is more general than
Theorem A.

Proof of Theorem C. Let ϕ, Ω, λ and μΩ,ϕ,λ be as in the statement
of Theorem C. Since Ω ∈ H1(Sn−1), there are H1 atoms a1, a2, . . . ,
on Sn−1, a sequence of complex numbers {cj} with

∑
j |cj | < ∞, and

Ω0 ∈ L∞ such that

(4.42) Ω = Ω0 +
∑

j

cjaj

with
∑

j |cj | ≤ ‖Ω‖H1(Sn−1). Therefore,

μΩ,ϕ,λ(f)(x) ≤ μΩ0,ϕ,λ(f)(x) +
∑

j

|cj | μaj ,ϕ,λ(f)(x).

First, by Lemma 4.2, we have∥∥μΩ0,ϕ,λ(f) = μ0
Ω,ϕ,λ(f)

∥∥
p
≤ Cp ‖f‖p

Lp for all 1 < p <∞. Therefore, to prove the desired Lp boundedness
of μΩ,ϕ,λ, it suffices to show that μaj ,ϕ,λ is bounded on Lp for all
1 < p <∞ and any H1 atom aj with

∥∥μaj ,ϕ,λ

∥∥
p

independent of λ and
any particular atom.

Thus, given an H1(Sn−1) atom aj . By using a proper rotation on
Sn−1, we may assume that cent (aj) = (0, . . . , 1). Now, it is easy to
see that

(4.43) μaj ,ϕ,λ(f)(x) ≤
∞∑

κ=0

2−κ μ−κ
aj ,ϕ,λ(f)(x).

By Lemmas 4.1 and 4.2, we have∥∥∥μ−κ
aj ,ϕ,λ(f)

∥∥∥
p
≤ C ‖f‖p

for all 1 < p < ∞ with constant C independent of the atom aj and κ.
Hence, by this and (4.43), we get

(4.44)
∥∥μaj ,ϕ,λ(f)

∥∥
p
≤ C ‖f‖p
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for all 1 < p < ∞ with constant C independent of the atom aj . This
completes the proof of Theorem C.

Proof of Theorem B. The result of Theorem B is a simple consequence
of Theorem A and a suitable change of variable. We omit the details.

We end this section by presenting a proof of Theorem D.

Proof of Theorem D. We shall follow the same lines of the proof of
Theorem 5 in [8]. Since μ̃Ω,ϕ(f)(x) ≤ Cs[μ∗

Ω,ϕ,s(f)(x)], it suffices to
prove (1.9). By Lemma 3.2 and Theorem A, we immediately get (1.9)
for p = 2. In order to handle the case p > 2, we only need to use
Lemma 3.2, Theorem A, and the observation that

∥∥μ∗
Ω,ϕ,s(f)

∥∥2

p
= sup

‖g‖(p/2)′=1

∣∣∣∣ ∫
Rn

(
μ∗

Ω,ϕ,s(f)(x)
)2
g(x) dx

∣∣∣∣.
This completes the proof.
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integrals, Tôhoku Math. J. 51 (1999), 141 161.

13. L. Grafakos and A. Stefanov, Lp bounds for singular integrals and maximal
singular integrals with rough kernels, Indiana Univ. Math. J. 47 (1998), 455 469.
Mr 99i: 42019. Zb1 913.42014.
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