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APPROXIMATION METHODS AND STABILITY
OF SINGULAR INTEGRAL EQUATIONS FOR

FREUD EXPONENTIAL WEIGHTS ON THE LINE

S.B. DAMELIN AND K. DIETHELM

ABSTRACT. We investigate approximation methods and
the stability of a class of integral equations on the line for
Freud exponential weights.

1. Introduction. In this paper, we show that there exist positive,
finite numbers µ which allow us to approximate singular integral
equations on the line of the form

µw2f − K[f ] = gw2+δ.

Here w is a fixed even exponential weight of smooth polynomial decay
at ±∞, K[·] := H[·w2]/π is a weighted Hilbert transform and g is a
fixed real valued function in a weighted locally Lipschitz space of order
0 < λ < 1. The exact form of the equations studied is motivated, in
part, by concrete applications, see [1, 2, 18, 19] and the references
cited therein, and so is of current interest and importance.

Our main aim, see Theorems 2a d below, will be to show that for a
large class of weights w (see Definition 1 below), there exist positive,
finite numbers µ depending on w and λ so that solutions of the above
equation exist, are in the same weighted Lipschitz space as g and may
be well approximated. In this sense, our approximation methods are
stable. Our results here have been made possible because of recent
investigations of the authors dealing with uniform bounds for weighted
Hilbert transforms (see [3 7], Theorems 1a and 1b below) and recent
results of the first author and Jung, see [8], dealing with pointwise con-
vergence of derivatives of Lagrange interpolation polynomials. Recent
results on Lp (0 < p < ∞) bounds for weighted Hilbert transforms can
be found in [9] and the references cited therein.
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Throughout this paper, C will denote an absolute positive constant
which may take on different values from time to time and will be
independent of all variables under consideration.

The remainder of this paper is organized as follows. In Section 2,
we present the definition of our class of weights and prove that the
weighted Hilbert transform, as defined below, is a bounded, locally
Lipschitz operator of order 0 < λ < 1. This is contained in Theorem 1a.
For compact intervals with w ≡ 1, Privalov’s classical theorem [17,
Section 14.1] can be considered an analogue of our result. A variation
of this property that includes a more complicated weight function is
stated in Theorem 1b. In Section 3, we state and prove our main
result, Theorem 2, where we provide an approximation method for the
solutions of our integral equation and we study error bounds.

2. The class of weights and the weighted Hilbert transform.
In this section, we present the definition of our class of weights and
prove that the weighted Hilbert transform, as defined below, is a
bounded, locally Lipschitz operator of order 0 < λ < 1.

2.1 Class of weights. We begin with the definition of a suitable
class of weights which is contained in:

Definition 1. Let w := exp(−Q) where Q : R → R is continuous
and even. We shall call such a weight admissible if it satisfies the
following additional conditions:

(a) Q′ is continuous in (0,∞), Q(0) = 0 and

lim
|x|→∞

Q(x) = ∞.

(b) Q′′ exists and is positive in (0,∞).

(c) The function

T (x) :=
xQ′(x)
Q(x)

, x �= 0

is quasi-increasing in (0,∞), i.e., T (x) ≤ CT (y) for x ≤ y, with

β ≤ T (x) ≤ C, x ∈ (0,∞)
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for some β > 1 which is fixed for the weight w.

(d)
Q′′(x)
|Q′(x)| ≤ C

|Q′(x)|
Q(x)

, x ∈ R.

Definition 1 defines a general class of weights of smooth polynomial
decay at infinity. A typical example of such a weight is given by the
example

(2.1) w(x) := wα(x) := exp (−|x|α) , α > 1, x ∈ R,

of which the Hermite weight (α = 2) is a special case. Such weights are
often called Freud weights in the literature. The conditions (a b) are
weak smoothness assumptions whereas conditions (c d) are regularity
conditions. For example, condition (c) forces Q to grow as a polynomial
at infinity. We refer the interested reader to [3, 4, 6, 7, 9, 21] and
the references cited therein for further perspectives and applications.

Remark. In the approximation procedure that we shall develop below,
we will need to use the zeros of the orthogonal polynomials with respect
to our weight functions. Gautschi’s ORTHPOL package [15] provides
very good routines for this purpose.

2.2 Function class. Given a fixed admissible weight w and a fixed
constant 0 < λ < 1, we are now able to define our function class. This
is contained in

Definition 2. Define for fixed 0 < λ < 1 and fixed admissible w

X := {f : R → R, fw continuous with lim
|x|→∞

f(x)w(x) = 0,

fw locally Lipschitz of order λ}.

Since we will need to approximate in this space, we will need a suitable
notion of distance and thus we find it convenient to metrize this space
with a natural norm given by

‖f‖X := ‖fw‖∞ + Lw
λ (f), f ∈ X.
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Here and throughout, ‖.‖∞ denotes the L∞ norm and Lw
λ (f) is the

smallest constant D > 0 (depending on f , λ and w) such that

|f(x)w(x) − f(y)w(y)| ≤ D|x − y|λ

for all x and y sufficiently close in R. Note that such a constant exists
for our class of functions because of the local Lipschitz property and
the condition lim|x|→∞ f(x)w(x) = 0 that asserts the boundedness of
fw on the real line.

We have:

Lemma 1. X is a Banach space.

Proof. Although straightforward, we provide a proof for the reader’s
convenience. Given α ∈ R, it is trivial that if f ∈ X,

|αfw(x) − αfw(y)| ≤ |α|Lw
λ (f)|x − y|λ

for every x and y in R close enough, thus

Lw
λ (αf) ≤ |α|Lw

λ (f).

Similarly, it follows that

Lw
λ (f) ≤ Lw

λ (αf)
|α|

if α �= 0 and clearly
Lw

λ (αf) = |α|Lw
λ (f)

if α = 0 so we have
Lw

λ (αf) = |α|Lw
λ (f)

and similarly

Lw
λ (f + g) ≤ Lw

λ (f) + Lw
λ (g), f, g ∈ X.

Clearly, if ‖f‖X = 0, then f = 0 and also as Lw
λ is the smallest constant

such that
|αfw(x) − αfw(y)| ≤ |α|Lw

λ (f)|x − y|λ
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for all y and x close enough, we must also have that f = 0 implies
Lw

λ (f) = 0. Thus, ‖ · ‖X is a norm. It remains to show that X is
complete. Thus let (fk) ∈ X be a Cauchy sequence. Then given ε > 0,
there exists N0 such that for m, n ≥ N0,

(2.2) ‖(fn − fm)w‖∞ ≤ ‖fn − fm‖X < ε.

This implies that there exists some f with

lim
|x|→∞

f(x)w(x) = 0

such that
‖(fn − f)w‖∞ → 0 as n → ∞.

As ‖ · ‖X is a norm, we have

Lw
λ ((fn − f)w) → Lw

λ (0) = 0, n → ∞

pointwise, so it follows that

(2.3) ‖fn − f‖X → 0, n → ∞.

Finally, we have, for any n and x and y close enough,

|w(x)f(x)−w(y)f(y)|≤|w(x)f(x)−w(x)fn(x)|+|w(x)fn(x)−w(y)fn(y)|
+ |w(y)fn(y)−w(y)f(y)|

≤ ‖fn‖X · |x − y|λ + 2‖(f − fn)w‖∞.

Thus we conclude that f ∈ X. Thus X is complete.

Henceforth, when we refer to the space X, we mean that X depends
on a fixed and given admissible weight w and a constant 0 < λ < 1.

2.3 Weighted Hilbert transform. We use

Definition 3. Let w be admissible and 0 < λ < 1. We set for f ∈ X
and x ∈ R,

H
[
fw2

]
(x) :=

∫
R

w2(t)f(t)
t − x

dt
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where the integral is understood in the Cauchy principal value sense.

We may now state and prove:

Theorem 1a. Let 0 < λ < 1 and w be admissible. Then

H[.w2] : X −→ X.

Moreover, H[.w2] is a bounded operator.

Remark. Note that for compact intervals and with w ≡ 1, Theorem 1a
is an analogue of Privalov’s classic theorem, see [17, Section 14.1]. For
w ∼ 1, a similar result to Theorem 1a is discussed in [13, pp. 217 221].
For bounded, continuous functions on R, analogues of Theorem 1a can
also be found in [20]. We remind the reader that Theorem 1a does not
assume, in particular, that f needs to be bounded and hence our result
is substantially stronger and requires different methods of proof than
the above results in [20] and [13].

Proof. We first show that

H[.w2] : X −→ X.

To see the Lipschitz property, let x, y ∈ R with x close enough to y.
Then for such x and y

(2.4)

w(x)H
[
fw2

]
(x) − w(y)H

[
fw2

]
(y)

= w(x)
∫
R

f(t)w2(t)
t − x

dt − w(y)
∫
R

f(t)w2(t)
t − y

dt

= w(x)f(x)
∫
R

w2(t)
t − x

dt − w(y)f(y)
∫
R

w2(t)
t − y

dt

+ w(x)
∫
R

w2(t) [f(t)−f(x)]
t − x

dt

− w(y)
∫
R

w2(t)[f(t)−f(y)]
t − y

dt

= I1 + I2
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where

I1 := w(x)f(x)
∫
R

w2(t)
t − x

dt − w(y)f(y)
∫
R

w2(t)
t − y

dt

and
(2.5)

I2 := w(x)
∫
R

w2(t) [f(t)−f(x)]
t − x

dt − w(y)
∫
R

w2(t)[f(t)−f(y)]
t − y

dt.

We proceed to estimate I1 and I2. Firstly,

I1 = w(x)f(x)
∫
R

w2(t)
t−x

dt − w(y)f(y)
∫
R

w2(t)
t−y

dt

= w(x)f(x)
[∫

R

w2(t)
t−x

dt −
∫
R

w2(t)
t−y

dt

]

+
∫
R

w2(t)
t−y

[w(x)f(x)−w(y)f(y)] dt.

We claim that

(2.6)

∣∣∣∣
∫
R

w2(t)
t − y

[w(x)f(x) − w(y)f(y)] dt

∣∣∣∣ ≤ CLw
λ |x − y|λ

≤ C‖f‖X · |x − y|λ.

To see this, let δ > 0 be fixed and small enough. Then we write

∣∣∣∣
∫
R

w2(t)
t − y

dt

∣∣∣∣ =

∣∣∣∣∣
∫
|y−t|>δ

w2(t)
t − y

dt +
∫ y+δ

y−δ

w2(t) − w2(y)
t − y

dt

∣∣∣∣∣
≤

∫
|y−t|>δ

w2(t)
|t − y| dt +

∫ y+δ

y−δ

∣∣∣∣w
2(t) − w2(y)

t − y

∣∣∣∣ dt

≤ 1
δ
‖w2‖1 + 2δ‖(w2)′‖∞.

As f ∈ X, we have our claim. Next recall that w2 is differentiable, and
hence by [13, Corollary to Theorem 2.24], we have for all λ∗ ∈ (λ, 1)
that ∣∣∣∣

∫
R

w2(t)
t − x

dt −
∫
R

w2(t)
t − y

dt

∣∣∣∣ ≤ C|x − y|λ∗
.
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So

(2.7)

|I1| ≤ |(w(x)f(x) − w(y)f(y))| · |H[w2](y)|
+ |w(x)f(x)| · ∣∣H [

w2
]
(x) − H

[
w2

]
(y)

∣∣
≤ C‖fw‖∞(|x − y|λ + |x − y|λ∗

) ≤ C‖f‖X · |x − y|λ.

Here we have used λ∗ > λ and (2.6).

Next we bound |I2|: Let us set ε := 2|x − y| and let us write

I2 := I2,1 + I2,2

where

I2,1 = w(x)
∫ x+ε

x−ε

w2(t) (f(t) − f(x))
t − x

dt

− w(y)
∫ x+ε

x−ε

w2(t) (f(t) − f(y))
t − y

dt

and

I2,2 = w(x)
∫
|x−t|>ε

w2(t) (f(t) − f(x))
t − x

dt

− w(y)
∫
|x−t|>ε

w2(t) (f(t) − f(y))
t − y

dt.

We proceed to estimate I2,1 and I2,2. Let us write

I2,1

= w(x)
∫ x+ε

x−ε

w(t) (w(t)f(t)−w(x)f(x)−w(t)f(x)+f(x)w(x))
t − x

dt

− w(y)
∫ x+ε

x−ε

w(t) (f(t)w(t)−w(y)f(y)−w(t)f(y)+w(y)f(y))
t − y

dt.
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Then
(2.8)

|I2,1| ≤ w(x)
∫ x+ε

x−ε

w(t)
(
Lw

λ |t − x|λ+ |f(x)(w(t) − w(x))|)
|t − x| dt

+ w(y)
∫ x+ε

x−ε

w(t)
(
Lw

λ |t − y|λ+ |f(y)(w(t) − w(y))|)
|t − y| dt

= w(x)
∫ x+ε

x−ε

w(t)Lw
λ |t−x|λ−1 dt+w(y)

∫ x+ε

x−ε

w(t)Lw
λ |t−y|λ−1 dt

+ |w(x)f(x)|
∫ x+ε

x−ε

w(t)|w′(ηx,t)| dt

+ |w(y)f(y)|
∫ x+ε

x−ε

w(t)|w′(ηy,t)| dt

≤ CLw
λ ελ + Cε‖fw‖∞ ≤ C‖f‖Xελ.

Finally we shall estimate I2,2: Let us write

(2.9)

I2,2 = w(x)
∫
|x−t|>ε

w2(t) (f(t) − f(x))
t − x

dt

− w(y)
∫
|x−t|>ε

w2(t) (f(t) − f(y))
t − y

dt

= −
∫
|x−t|>ε

w2(t) (f(x)w(x) − f(y)w(y))
t − x

dt

+
∫
|x−t|>ε

w2(t)
(−f(y)w(y)

t − x
+

f(y)w(y)
t − y

)
dt

+
∫
|x−t|>ε

w2(t)
(

f(t)w(x)
t − x

− f(t)w(y)
t − y

)
dt

= I221 + I222.

We must estimate each of the two terms above. Firstly,

(2.10)

|I221| = |w(x)f(x) − w(y)f(y)|
∣∣∣∣∣
∫
|x−t|>ε

w2(t)
t − x

dt

∣∣∣∣∣
≤ Lw

λ |x − y|λ
∣∣∣∣∣
∫
|x−t|>ε

w2(t)
t − x

dt

∣∣∣∣∣
≤ CLw

λ |x − y|λ.
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Next let us write
(2.11)

I222 =
∫
|x−t|>ε

w2(t)
w(y)f(y)(y−x)+f(t)w(t)(x−y)

(t−x)(t−y)
dt

+
∫
|x−t|>ε

f(t)w2(t)
w(x)(t−y) − w(y)(t−x) − w(t)(x−y)

(t − x)(t − y)
dt

= I2221 + I2222.

Notice that

(2.12)

|I2221| ≤ |x − y|
∫
|x−t|>ε

w2(t)Lw
λ |t − y|λ−1 dt

|t − x|
≤ ε|x − y|Lw

λ

∫
R

w2(t)|t − y|λ−1 dt

≤ Cε|x − y|Lw
λ .

For I2222 we proceed as follows: Assume y = x + (ε/2) (an analogous
argument works for y = x − (ε/2)). Then

(2.13)
w(x)(t−y) − w(y)(t−x) − w(t)(x−y)

= (t−x)
(
w(x) − w(x + ε/2)

)
+ ε/2

(
w(t) − w(x)

)

We now insert the representation of y and (2.13) into the definition of
I2222 in (2.11). This gives

(2.14)

I2222 =
∫
|x−t|>ε

f(t)w2(t)
w(x) − w(x + ε/2)

t − x − ε/2
dt

+
ε

2

∫
|x−t|>ε

f(t)w2(t)
w(t) − w(x)

(t − x)(t − x − ε/2)
dt,

and since

(2.15)
∫
|x−t|>ε

|f(t)w2(t)|
∣∣∣∣w(x) − w(x + ε/2)

(t − x − ε/2)

∣∣∣∣ dt

≤ ε

2
‖w′‖∞‖fw‖∞

∫
|x−t|>ε

w(t)
|t − x − ε/2| dt

≤ C
ε

2
log ε‖w′‖∞‖fw‖∞
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and
(2.16)
ε

2

∫
|x−t|>ε

|f(t)w2(t)|
∣∣∣∣ w(t) − w(x)
(t−x)(t−x−ε/2)

∣∣∣∣ dt ≤ C
ε

2
log ε‖w′‖∞‖fw‖∞,

equations (2.14), (2.15) and (2.16) easily yield that

(2.17) |I2222| ≤ C‖f‖X · |x − y|λ.

(Recall here that λ < 1.) Equations (2.12) and (2.17) then give

(2.18) |I222| ≤ C‖f‖X · |x − y|λ

and so (2.18) together with (2.10), (2.8) and (2.7) give that indeed

H[.w2] : X −→ X

as required.

Next we need to show that

H[.w2] : X −→ X

is bounded. Let us write

‖H[.w2]‖X→X := sup
‖f‖X≤1

‖H[fw2]‖X

= sup
‖f‖X≤1

{‖wH[fw2]‖L∞(R) + Lw
λ (H[fw2])

}

= sup
‖f‖X≤1

{K1 + K2} .

We now proceed to bound each of the terms Kj , j = 1, 2. We first deal
with K1. Here we need a crude form of [3, Theorem 4], which implies
that, for any ε > 0 small enough, and f ∈ X,

(2.19)∣∣(wH[fw2])(x)
∣∣

≤ ‖fw2‖L∞(R)

+ w(x)
∫ ε

0

|f(x+y/2)w(x+y/2)−f(x−y/2)w(x−y/2)|
y

dy

≤ C

[
‖fw2‖L∞(R) + Lw

λ (f)w(x)
∫ ε

0

yλ−1 dy

]

≤ C
[‖fw‖L∞(R) + Lw

λ (f)
]
.
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We stress here that the constant C is independent of f . Thus

K1 ≤ C‖f‖X .

On the other hand, we know from the first part of the proof, that if x
and y are close enough, we have

∣∣ w(x)H[fw2](x) − w(y)H[fw2](y)
∣∣ ≤ C‖f‖X · |x − y|λ

which implies that
K2 ≤ C‖f‖X .

Combining the bounds for K1 and K2, we see that

‖H[.w2]‖X→X ≤ C.

This completes the proof of Theorem 1a.

In a similar way we can prove

Theorem 1b. Let 0 < λ < 1, 0 < γ < γ∗ and w be admissible.
Then

w−γH[.wγ∗
] : X −→ X

is a bounded operator.

Proof. Using methods similar to those already exploited in the proofs
of Theorem 1a, this is a lengthy but straightforward matter.

3. The integral equation and an approximation method. In
this section, we state and prove our main result, Theorem 2. To this
end, let us fix for the remainder of this section, w admissible, 0 < λ < 1
and g ∈ X. Let µ be a positive number which will be chosen later and
consider the formal integral equation

(3.1) µw2(x)f(x) − K[f ](x) = g(x)w2+δ(x), x ∈ R,

with some δ > 0 where

K[.] :=
1
π

H[.w2].
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As usual we denote by L(X, X) the space of all bounded operators from
X to X. We recall that Theorem 1a says that K ∈ L(X, X).

We are ready to state the first part of our main result. Here and in
the following, I denotes the identity operator on X.

Theorem 2a. We have (µI − K)−1 ∈ L(X, X), the solution f of
(3.1) satisfies f ∈ X and

(3.2)

w2(x)f(x) =
µ

µ2+1
g(x)w2+δ(x) +

1
µ2+1

· 1
π

H[w2+δg](x), x ∈ R.

Proof. Apply the operator H to both sides of equation (3.1) and
divide by π. Using the identity H2 = −π2I, which readily follows from
[14, Table 15.1, Formula (2)], we deduce

µ

π
H[w2f ](x) + w2(x)f(x) =

1
π

H[w2+δg](x).

In the case µ = 0 this implies (3.2). Otherwise divide this equation by
µ and add the result to (3.1). Then rearranging yields (3.2). Dividing
by w2(x) and applying Theorem 1b then proves that f ∈ X.

We have thus shown that a unique solution for the analytic problem
exists, and this knowledge is essential for the approximation process.

Remark. The explicit solution of our problem is given by equation
(3.2) in analytic form. It is of course possible to use this relation in
combination with a numerical method for the approximation of the
Hilbert transform operator H to construct an approximate solution of
our original problem, and indeed this path has been followed elsewhere,
see, e.g., [11, 12]. However it is evident from the derivation that such
an approach is strictly limited to equations with constant coefficients,
i.e., with constant µ. We aim to provide and analyze a method that
has the potential to be generalized later to the case of non-constant
coefficients, where no explicit formula for the exact solution is available.
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Given our admissible weight w, we let pn(w2) denote the unique nth
degree orthonormal polynomial with respect to w2 defined by

∫
R

pn(w2)(x)pm(w2)(x)w2(x) dx = δmn, m, n = 0, 1, 2 . . . .

Then we introduce a polynomial interpolation operator Ln whose
interpolation array consists of the n zeroes {xj,n}, 1 ≤ j ≤ n of pn(w2)
which are contained in R and may be ordered as

xn,n < xn−1,n < · · · < x2,n < x1,n.

It follows that

Ln[f ] =
n∑

j=1

lj,n(w2)

where

lj,n(w2)(x) :=
pn(w2)(x)

p′n(w2)(xj,n)(x − xj,n)
, 1 ≤ j ≤ n, x ∈ R.

We set

‖Ln‖∞ :=

∥∥∥∥∥
n∑

k=1

∣∣lkn(·)w−1(xkn)w(·)∣∣
∥∥∥∥∥

L∞(R)

to be the Lebesgue constant for Ln with weight function w and let

En[f ]w,∞ := inf
P∈Pn

‖(f − P )w‖L∞(R)

denote the error of best weighted polynomial approximation to f from
the space Πn of polynomials of degree at most n.

We now define an approximation sequence of functions {fn}, n ≥ 1
by:

(3.3) µw2(x)fn(x) − K[Ln[fn]](x) = g(x)w2+δ(x), x ∈ R,

where, as above, Ln[h] interpolates the function h at the array
{x1,n, . . . , xn,n} of n interpolation points specified above. In other
words, fn is the approximation to f by a version of the projection
method [16, Section 4.3.4], and hence it is possible to calculate fn
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explicitly via the solution of a linear system of equations. See also
the paper [6] where the weighted Hilbert transform was approximated
using a quadrature method.

Remark. It is known [23] that the Lebesgue constants of this
interpolation operator are not optimal; other interpolation operators
with smaller Lebesgue constants have been suggested in the literature
for related problems [4, 7, 12, 23]. However, we are forced to
use this approach because for our proofs we need to know some
additional properties of the interpolation operator, and such properties
are presently known only in this special case. See the methods of [6]
and Theorem 2(d).

Theorem 2b. Assume in addition that β is as in Definition 1 with
β > 12/5 and f ′w ∈ L∞(R). Then we have (µI − Kn)−1 ∈ L(X, X)
for each fixed n ≥ 1 provided µ is not an eigenvalue of Kn. Moreover,
if µ is not an eigenvalue of Kn, for all sufficiently large and fixed n,
then

(3.4) fw2 − fnw2 = (µI − Kn)−1K[f − Ln[f ]]w2.

Moreover,

(3.5) ‖(f − fn)w2‖L∞(R) ≤ C‖(µI − Kn)−1‖X→Xn1/6En−1[f ]w,∞.

Proof. Indeed, let us write

‖Kn‖X→X = sup
‖f‖X≤1

‖Kn(f)‖X

= sup
‖f‖X≤1

{‖wKn[f ]‖L∞(R) + Lw
λ (Kn[f ])

}

≤ sup
‖f‖X≤1

[‖wK[f ]‖L∞(R) + ‖w(K − Kn)[f ]‖L∞(R)

+ Lw
λ ((K − Kn)[f ]) + Lw

λ (K[f ])
]
.

Now we apply [6, Theorem 1.3] to deduce that uniformly for large
enough n, ‖w(K −Kn)[f ]‖L∞(R) = o(1) and Lw

λ ((K −Kn)[f ]) = o(1).
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Then Kn ∈ L(X, X) follows from (a). Now as the image space of
Kn is finite dimensional, Kn is a compact operator. Thus if µ is
not an eigenvalue of Kn for the given n, the Riesz-Schauder theorem
[16, Section 1.3.9] implies that (µI − Kn)−1 ∈ L(X, X). Moreover,
our method is a projection method, and hence (3.4) follows from a
standard result for projection methods [16, Lemma 4.1.14]. Equation
(3.5) follows from (3.4) and [6] using the inequalities

‖(f − fn)w2‖L∞(R)

≤ ‖(µI − Kn)−1‖X→X‖K‖X→X‖(f − Ln(f))w2‖L∞(R)

≤ C‖(µI − Kn)−1‖X→X‖Ln‖∞En−1[f ]w,∞
≤ C‖(µI − Kn)−1‖X→Xn1/6En−1[f ]w,∞

since ‖Ln‖∞ = O(n1/6), see [23]. This completes the proof of Theo-
rem 2b.

We now proceed to estimate the right-hand side of (3.5). To this
end, and in what follows, we let an, n ≥ 1, denote the unique positive
solution of the equation

(3.6) n =
2
π

∫ 1

0

anxQ′(anx)√
1 − x2

dx.

Then it is well known, see [21], that an exists, is unique and an =
O(n1/β) for large n, where β is given in Definition 1. In particular, if
w = wα as in (2.1), then T = β = α and

an = O(n1/α), n → ∞.

For our weights we have the classical result [21] that En−1[f ]w,∞ =
O(an/n) = O(n1/β−1).

Using these results, we obtain an immediate consequence of equation
(3.5).

Theorem 2c. Assume the hypotheses used in the derivation of (3.5).
Then, for large enough n we have

(3.7)
‖(f − fn)w2‖L∞(R) ≤ C‖(µI − Kn)−1‖X→Xn1/6 an

n

≤ C‖(µI − Kn)−1‖X→Xn1/β−5/6
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This result implies that we have convergence of the sequence (fn)
of approximate solutions towards the exact solution f in the weighted
L∞ norm with weight w if ‖(µI − Kn)−1‖X→X < C as n → ∞ and
β > 6/5. Common methods for the proof of the first inequality, cf.
e.g., [16], use the compactness of the operator K a condition that
is violated in our case. We therefore use ideas of [22, Section 4] to
circumvent these difficulties.

It will now be necessary to state more precise conditions on our
constants µ. We know from the proof of Theorem 2b that

sup
n≥1

‖Kn‖X→X < D∗

where D∗ > 0 depends only on w and λ which are fixed from the start.
We assume from now on that |µ| ≥ D∗. We have:

Theorem 2d. Assume the hypotheses of Theorem 2c, and let
f ′′w ∈ L∞(R), and suppose that f ′w has limit 0 at ±∞. Then, for
large enough n,

(3.8) ‖(f − fn)w2‖L∞(R) = O(n2/β−5/4
√

log n ).

Here the O term depends on w, β and λ which are fixed but is indepen-
dent of f , fn and n.

Notice that the regularity assumptions here are a stronger than in the
previous theorems for we need estimates on the error of best weighted
approximation which is quite natural.

Remark. Theorem 2d implies that we have convergence for β > 8/5.
In view of similar results for related problems, we believe that this
restriction is due to the methods used in the proofs of the results of [6]
that we required here, and that the result is actually true for a larger
range of β whose precise nature is as yet unclear. However it seems
that the proof of this conjecture would require substantially different
methods. Note though that an inspection of the proof reveals that we
can obtain a larger range of permitted values for β if we replace our
basic assumption f (2)w ∈ L∞(R) by f (j)w ∈ L∞(R) with some j ≥ 3.
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In this case we can replace the condition β > 8/5 by β > 1+3/(4j−3).
The expression on the right-hand side of the last inequality decreases
monotonically as j increases.

Proof of Theorem 2d. We recall equation (3.4) that states

fw2 − fnw2 = (µI − Kn)−1K[f − Ln[f ]]w2.

In view of [6, Corollary 1.4 and Theorem 1.5], our assumptions on f
give

K[f − Ln[f ]](x) = O(n7/12
√

log n a2
nn−2) = O(n2/β−17/12

√
log n )

uniformly for all x ∈ R. Applying the method used in the proof of
[6, Theorem 1.5(a)] (applied there to a formula based on a different
interpolation operator) to our operator, we find that

‖Kn

[
K[f − Ln[f ]]

]‖X = O(n1/6n2/β−17/12
√

log n )

= O(n2/β−5/4
√

log n ).

We may rewrite the right-hand side of (3.4) in the form of a Neumann
series,

(µI − Kn)−1K[f − Ln[f ]]w2 =
1
µ

∞∑
ν=0

µ−νKν
n

[
K[f − Ln[f ]]

]
w2,

and we see that the series converges with a limit being of the order of
‖K[f − Ln[f ]]‖X , i.e., we have that

‖fw2 − fnw2‖L∞(R) = O(n2/β−5/4
√

log n ).
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