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POSITIVE SOLUTIONS OF A
HAMMERSTEIN INTEGRAL EQUATION
WITH A SINGULAR NONLINEAR TERM, II

MARIO MICHELE COCLITE

Dedicated to Professor Enrico Magenes for his 80th birthday

ABSTRACT. This paper concerns the existence of a pos-
itive locally summable solution of a Hammerstein equation
with a singular nonlinear term at the origin.

1. Introduction. In this paper we establish some new existence
principles for the following Hammerstein equation:

(L1) u(z) = / K. 9)g(y u(y)dy, =€,
Q

where Q C RV, 1 < N, K(z,y) > 0; g(y,s) > 0; z,y € Q, 0 < s and
g(y, s) that can be nonsmooth when s — 0F.

The literature on the Hammerstein equations with the integrand de-
pending on the reciprocal of the solution is rather limited, neverthe-
less it arises, more or less directly, in a variety of settings: semi-linear
boundary value problems with a nonlinear term depending on the recip-
rocal of the solution, see [1, 5-7, 10, 12, 13, 15, 16], mathematical
models of signal theory, see [21, 22], ecological models, see [28, pp.
103-104], continuous extension of the results on the double stochas-
tic matrix proposed by Hartfiel, see [23, 27], Boussinesq’s equation in
filtration theory, see [18].

Karlin and Nirenberg in [19], at first, proved an existence principle
for (1.1), considering K (z,x) > 0,0 < z < 1; however, they proved also
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that this assumption cannot be completely discarded. In [19], as in the
pioneering paper of Nowosad [22], they assumed K € C([0, 1] x [0, 1]).

With the exception of the regularity, the Green’s functions of some
boundary value problems do not satisfy the previous assumption. For
example, the Green’s function

6o = {

of the boundary value problem:

does not satisfy the Karlin and Nirenberg assumption because it is equal
to 0 on the boundary of the square [0,1] x [0, 1]. In this paper we prove
an existence principle valid also for G(z,y). Define a(z) = z(1 —x); we
find

a(w)aly) < G(x,); / 2G(z,y) dz < a(y).

These hypotheses, different from the ones of [19, 22, 27, p. 1172],
are sufficient to guarantee the existence of at least one solution. Also
the Green’s function of the Laplacian in a bounded open set of RY,
2 < N, with zero Dirichlet condition satisfies similar assumptions.
Other examples are listed in the next section.

We dwell upon the structure of K(z,y) in a neighborhood of the
diagonal set of 2 x Q. Another existence result has been proved by the
author in [8, 9] via assumptions formulated in terms of integral means
of the kernel on the sets of a cover of the diagonal set of Q x 2.

In this article there are considered kernels which can be discontinuous
on the diagonal set of 2 x Q. Precisely we consider kernels greater than
a strictly positive number in at least “half” of  x €, and this region
with its symmetric, with respect to the diagonal set of Q x €, cover
Q x Q. For example, the Green’s function:

1 0<z <y,

Gan={ e 20"
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of the boundary value problem

—(W" +u') = f(z), «(0)= lim wu(z)=0,

r——+00

satisfies this assumption.

There is no hypothesis on the behavior of g(y,s), when s — 0%,
therefore the following possibilities are not excluded

lim ir+1fg(y, s) = 0; limsup g(y, s) = +oo.
s—0

s—0t

Consequently, the main results of this paper (Theorems 2 and 4) follow
from the behavior of the “approximate solution” u. € L'(2), of the
problem

ue(z) = / K(@.y)g(y.e + ualy) dy, « e Q.
Q

when € — 0F. The existence of these “approximate solutions” is proved
in Appendix 2 of [9]. The first step of such analysis is based on an
assumption of “local compactness,” as in [4], see the assumption (H;).
This implies the existence of a sequence (ue,)ren which converges
almost everywhere and in every L'((,), toward a measurable function
ug. This belongs to every L'(€2,) and satisfies the identity

ug(z) = K(z,y)9(y, uo(y)) dy,
J

where (0 < wup) = {z € 2|0 < up(z)}. Next, to prove that ug is
nontrivial, we have to prescribe the behavior of g(y,s) as s — 07.
Some advances with respect to the literature on this problem, see [1,
2,12, 13, 18, 19, 22, 23, 26, 27], have been achieved by the author
in [8, 9], under the assumption

(1.2) lim 208 o
s—0 S
uniformly in Q. The result of Karlin and Nirenberg is covered by (1.2),

because they assumed: 0 < ¢o < g(y,s) <157, 0<s<2,y€Q
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with co, ¢1, 8 > 0. Here (1.2) is replaced by the assumption that there

exists p such that

(1.3) lim inf £22%)
S

s—0

> p > ME).

uniformly in some measurable set E C €, |E| > 0. A(E) is a positive
number, defined in the next section, which coincides with the minimum
characteristic value of the operator

@ — /K(vy)w(y) dy, ¢ e Li(E),
E

when it exists, see [11, Vol. II, proof of Frobenius’ theorem, p. 51]; [29,
Theorem IV.3.1]. In particular, if K(x,y) is the Green’s function of

—u" = f(x), u(0)=u(1) =0,

A([0,1])7! is the first eigenvalue of the one-dimensional Dirichlet prob-
lem in [0, 1], see [16].

Assumption (1.3) cannot be completely discarded. In fact, the

function

1 .1
— sin —
s s

g(s) = , §>0,

does not satisfy (1.3). Let
1
=—, keN7
ek km

be one solution of

1 . 1 d
sin ,
e+ u(y) e+ u(y) y

(1.4) ul) = / K(z.y)

when € = gy, is u., = 0. Therefore, there exists a sequence (ug)e>o, of
approximate solutions of (1.4) which admits one subsequence converg-
ing to 0. The solvability of (1.4) with ¢ = 0 is still an open problem.

In the next section we present the assumptions and the results. The
other sections are devoted to the proofs.
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2. Notations, assumptions and results. Let us list the notations
mostly used in this paper.

R, = [0,400[; RY :=]0,400[. Let E C RY, N > 1, be a
measurable set, |E| or meas (E) is the measure of E, |- |1 g the norm of

LY(E) and L} (E) the cone of the ¢ € L*(E), ¢ > 0 almost everywhere
in B,

Let S ¢ RY x RN, ST denotes the symmetric set of S with respect
the diagonal set of RY x RYN. Finally for two fixed functions u, v,
u < v is the set of the x such that u(z) < v(z). The same holds for
u<v,UuU>v,U>0.

Let © c RY™ be a measurable set and g : Q x R} — R be a
non-negative almost everywhere Carathéodory function, i.e., g(-,s) is
measurable in , for all s > 0 and g(y, ) is continuous in |0, +oc[, for
almost every y € € such that

g*(y,s) ==supg(y,t) € L*'(Q), s> 0.
s<t

g*(y, s) is also a Carathéodory nonincreasing function with respect to
s and g(y, s) < g*(y, ).

Let K : 2 xQ — R be a measurable non-negative almost every kernel
such that

(2.1) / K(-y)e(y) dy € L' (9); / K(x,)p(x) dr € LY(9),
Q Q

for each ¢ € LY(Q). It is well known that, for every € > 0 there exists
ue € L1(Q), ue > 0 almost everywhere, such that

ue(z) = / K2, y)g(y, e + us(y)) dy,
Q

see [9, Appendix 2]. The results of this paper follow from a suitable
analysis of u. as € — 0.

To guarantee the existence of at least one convergent subsequence we
assume that the following hypothesis of “local compactness” holds.
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(H1) There exists an increasing sequence (Q0y)nen, Qn C Q, of
measurable sets which covers €2 such that the operator

v — Ky /K

is compact from L'(Q,) into itself, for alln € N.

In [14, 17, 20, 24, 25, 29] are listed some assumptions which imply
(H1).

Using the diagonal method, as in the proof of Lemma 4 of [9], we are
able to prove

Lemma 0. Assume (H1), and let (g(-,€ + uc))eso be bounded in
every L'(Qy,). Then there exists (ex)ren, €x — 0, such that

([ Koty +uek<y>>dy)k€N
Q.

converges in L*(Q,,), for alln € N.

For simplicity of notations we write

ge ‘= g('75+u6)' /K gsk dy,
u%n =u / K(-, )9, (y) dy.

According to the previous lemma there exists an increasing sequence
(Un)neNv Un € Ll(Q), such that

lilgn|u§€7n—vn|179n:0; v, =0 in Q\Q,.

Then
() limg v}, ,(x), x€Q, ae.
vp(x) = '
" 0, r€Q\Q,.
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Therefore, there exists a non-negative measurable function u, : @ — R
such that

U, = liTILn Up, = €SSSup,,V,, a.e. in (.

Since ¢(y, ) not is defined at 0 we need that ug # 0 or, as we will see,
Ue, 7 0 almost everywhere in €. Therefore, we assume that

(Hz2) There exist p and a measurable set E C Q, 0 < |E| < 400,
such that

lim inf M >u >0,
s

s—0

uniformly with respect to y in E.

We also need the following definition. Let ¢ € L} (E) and we write
B(0) = {ve B| [ Koo o 20).
E

Define
A(E) = inf {\(E,¢)|¢ € LL(Q)}
where

= su o)
AE,¢) = yeE*Izso) Jp K(z,y)p(r) de

If the operator

(2.2) e /K(x, Yo(x)dx, @€ LYE),
E

has characteristic values, its minimum positive characteristic value
coincides with A(E), see [29, Theorem IV.3.1]. Also when it is an
operator of RV in itself, associated with an irreducible matrix with
positive terms, A\(E) is the minimum positive characteristic value of
(2.2), [11, Vol. II, proof of the Frobenius theorem, p. 51].
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Theorem 1. Assume

(H3) for alla >0 and ¢ € L (Q) there exists § > 0 such that

|[E\F|<§ = /K(m,y)cp(:t)dx<a/K(a:,y)g0(w)d:C, y e F.
E\F E

Then A(+) is left continuous in E, namely, for all @ > 0, there exists
6 > 0 such that, for all measurable sets, F' C E, we have

|[E\F| <6 = MNE)<AF)<AE)+a.

The hypothesis (H3) is fulfilled, for example, in the following three
cases.

i) E is compact, K € C(E x E) and, for each ¢ € L (FE), there
exists m(y) > 0 such that

(2.3) 0<mip) < [ Klepe@)ds, yeE.
E

ii) ¢ — [K(z,)p(z)dz is continuous from L'(E) in L*(E) and,
B

for all ¢ € L1 (E), (2.3) holds.
iii) There exist some positive functions «;, G;, 1 < i < k, with
a; € L®(E), B; € L*(E) such that

k

K(z,y) = ai(x)Bi(y).

1

The behavior of u., as € — 0, has been analyzed for two distinct
sets of hypotheses on K (x,y) and/or g(y, s). The first of them is the
following one.

(K) a) There exists n € L (Q) such that

/K(x, Jn(x)de € L (Q).
Q



HAMMERSTEIN INTEGRAL EQUATION 249

b) There exists ¢y > 0 such that

meas [\ [(c; < K)U (a1 < K)']] =0.

Remark 1. The last assumption can be rewritten as follows
decp > 0: meas [(K <c)N(K < cl)T] = 0.

Moreover, (K) can be replaced by the following
(Ky) There exist a finite cover (E;)1<i<n of Q and ¢; > 0 such that

N
meas {UE?O(K<C1)Q(K<01)T =0.
i=1

Clearly this is sharper than (K), but it adds some more technicalities
in the proofs.

Examples. The assumptions (H1), (Hs), (K) are satisfied by the
Green’s function

1 if0<z<y

T

Gte.n) = {

eV ify <ux,

of the following boundary value problem

—y" =y = f(x); y'(0) = lim y(z)=0.

r—+00
They are also satisfied by the Green’s function

e Ycoshz if0<zx<y,
e ®coshy ify<ax<2

Ge.) = {
of the boundary value problem

-y +y=f(x); Y (0)=y'(2) +y(2) =0.
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Theorem 2. Assume (Hy), (K). Then

i) there exists a measurable non-negative almost everywhere function
ug : Q@ — R with nug € LY(Q), such that

up(x) = / K(x,y)g(y,uo(y)) dy.

0<ug

ii) If also (Hz), (H3) hold and

p> AE),

then u, is nontrivial.

Corollary 3. Assume (Hi),(Hz), (Hs), (K). For all X > A(E)/u,
there exists a nontrivial map ug x : @ — R, nugx € LY(Q), such that

won(z) = A / K (2, )g(y, uoa(y) dy.
0<ug,x

Next, instead of (K), let us consider the following hypotheses.

(G) There exist a measurable function g, wo > 0 almost everywhere
n Q, and p > 1 such that

9(y,s) < %iy), yeN, 0<s<l.
S

(K) There exist two measurable non-negative almost everywhere func-
tions a, n such that

a) a(w)a(y) < K(z,y); Jo K(z,y)n(z)de < a(y).
b) For allne N: 0 <essinfycq, a(y).

¢) foleo()/(a(y)P~") dy < +oo.

Remark 2. In light of (2.1) and (), we find

/ a()ely)dy < +o0, o € LL(Q).
Q
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Examples. The assumptions (H1), (H3), (K) on K (z,y) are satisfied
by the following kernels.

i) The Green’s function

z if0<z<y,
y ify<u,

Ge.) = {
of the following boundary value problem

—y' = 1) y(0) =0, limsup|y(z)| < +oo,
with a(x) = z/(1 + z) and n(z) = 1/(1 + z)3.

ii) The Green’s function of the Laplacian in a smooth bounded
domain Q ¢ RN, 2 < N, with zero Dirichlet condition. In this case
we consider a(z) = codist (z,09Q), z € Q, and n(x) = c19(x), where
¢o, €1 are positive constants and ¢(x) is a positive eigenfunction of the
Dirichlet problem corresponding to the first eigenvalue, see [3, Lemma
3.2], [5, Theorem 9], [30, Theorem 1].

iii) The Green’s function

eV(l—e ™) if0<z<y,
e¥ —1 ify<axz<l1,

o) = {
of the boundary value problem

-y —y' =f(z);  y(0)=y'(1)=0,

with a(z) =1 —e™ %, n(z) =e L.

Theorem 4. Assume (H1), (G), (K). Then

i) there exists a measurable function ug : Q@ — R, 0 < ug almost
everywhere, with nug € L*(Q), such that

up(z) = / K (x,9)9(y,u,(y)) dy.

0<ug
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Moreover
ii) ug =0 or ug > 0 almost everywhere in §Q.
iil) If also (H1), (H2), (H3) hold and

p> AE),

then ug > 0 almost everywhere in €.

Corollary 5. Assume (H1), (Hs), (Hs), (G), (K). Then, for all
A > @’
W

there exists a positive function ug x : Q@ — R, nug € L*(Q), such that

oA (%) = A / K (. y)g(y, uoa(y) dy.

3. Proof of Theorem 1.
Lemma 3.1. Let E, F C Q be measurable sets. Then

FCE = ME)<AF).

Proof. Let ¢ € L. (FE) and Xp be the characteristic function of F.
As FNE*(pxr) = F*(pXF), we deduce

_ (<PXF)( )
AMEpXr) = ueFS*ngF K (z,y)(pXF)(z) dz
s (wXF)(y)
yer+(oxr) g K(2,9)(oXF)(7) dx
— s (@XF)(y)
yEE* (¢XF) fE SDXF)( )d
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Next in view of the definition of A(+), we find

AMF)= inf AMF.)= inf AF oxp).
(F) pell (F) (F.2) pell () (£, oxr)

According to the previous identity we conclude that

MEF)= inf MNE,oXp)> inf ME,9)=AE). o
(F) gaegi(E)( OXF) <pelLIi(E)( ¢) = AE)

Proof of Theorem 1. If AM(E) = +oo the theorem is true. Then
consider the case A(E) < +oco. Let ¢ > 0 and write

o
1 R J—

(3:1) CTIINE) +o

According to the definition of A(E), there exists g € L} (E) such that

(3.2) AME, ®) < AME)+a

In light of (H3), there exists § > 0 such that for all F C E we have
|[E\F|<d = /Kacy ?(x da:<a/ny @(z)dz, yeF.
E\F
Therefore,
AF)= inf  AF,oXp) < AF,5X
(F) e (F,pXr) < A(F, PXF)
_ ( (@XF)( Jp K (2 9)p(x) dff)
= sup —
Jp E(z,9)@(x)dr [ K )@(96) da

)
YyEF*(¥) z)
According to the definition of )\(E, ) and (3. ) we compute
x
x

o s JeE@yR@)
AF) < ME, D) veraz [o K@ y)p() do
<(E)+a) yeSFu*IZE) 1_fE\F K(z,y)p(x) dx/fE K(z,y)p(z) dz

_ )\(E) + !
1— sup_ (fE\F K(z, v)dz/ [ K () dz)
YyEF*(¥)
AME) + a

<
11—«
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In view of (3.1) we thus deduce for all F' C E:
|[E\F|<dé = MNF)<AE)+o.
Finally, recalling Lemma 3.1, the proof is concluded. o

4. Proof of Theorem 2.

Lemma 4.1 (coercivity). Let ¢ € L*(Q) be almost everywhere non-
negative. Then

gl K(z,y)
2 +e1) ¥l o <Q/Q T4 K(z,y) U(z)(y) de dy.

Proof. Since

|w|%,g—m/gw®wdxdys( / + / >¢®wdxdy,

a<K (e1<K)T

changing the variables in the second integral, according to (K), we
discover

W2, <2 / v @ dedy

1<K
2(1 + Cl) K(I,y)
<2 s vla)(y) de dy,

1<K

as desired. O

Lemma 4.2 (bounds on (gc)eso). Let A > 0 and E C Q be a
measurable set. Then we have the estimate

19:11,2 <21+ (Jg° (A e + ).
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Proof. By Tonelli’s theorem

/ Uege d = / K(z,y)g:(7)g(y) dz dy
(u, <ANNE
[(ue <A)NE]xQ

K(z,y)

> -~ 77
> / K (e.0) 9e(2)ge () dx dy
[(ue <A)NE]x E

N (/ B / ) Aoy, (2)g-(y) da dy.

1+ K(x,y)
E?  [(ue>NNE]XE

Now since ¢g*(z, -) is decreasing we discover

K(z,y)

* > S S
Noehs+ [ o@ Vg dody > [ et

E? E?

9e(7)g:(y) dx dy.

According to the previous lemma, we deduce

. 1
(\9 (5 A)|e + )‘)|ga|1,E > 5 ) |9 %E

c
(1 “+ 1
Then the stated estimate follows. u]

The absolute continuity of the indefinite integral of g*(-, A) implies
the following

Corollary 4.3. Letting A > 0, there exists 6 > 0 such that for each
measurable set E C ) we have

Bl <6 = |g|i.p <41+

Corollary 4.4 (“local” convergence). Assume (Hi), (K). Then
Lemma 0 holds.

Lemma 4.5 (pointwise convergence). ur — u, almost everywhere in
Q.
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Proof. Since
/ug,nndfc = / 9ei () dy/K(rvvy)n(x) da,
Q \Q, Q

according to the Lemma 4.2 and (K, ), we find

+ A).
yeQ LA, )

Juttando < (sup [Rea as)2e) (a7
Q Q

Since A was arbitrary and the indefinite integral of g*(-, A) is absolutely
continuous we have

lirrln/uz,nn der =0,
Q

uniformly with respect to k. Consequently, fixing any o > 0, there
exists My € N such that

(4.1) /u%mndx <o, n>DMy,, keN.
o)

For each M > M, we deduce

/Lwdx:/ 77 |u;€,'n+u;§l,n_vn+vn_u0‘dx
1+n 1T+wuo 147 1+ ug

Qn
ug—v
< [ Win—vnldot [+ [ 520
Qn Q Q

1,0, = 0 holds for each n > M, according to (4.1)

QM

. . ,
Since limy, |uk7n — vy,
we find

1imsup/Lde§a+/uo_vndx.
k 147 14wy 14+ ug

Qum
Applying Beppo Levi’s theorem we thus deduce
. N |ug — uo
lim su —— ——dx =0, M > M,.
i / I+n 14w ’ 0

Qum
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Then up — ug almost everywhere in Qy, for all M > My, as required.
]

Next we claim a technical lemma of “partial” convergence which
depends essentially on Corollary 4.3 and the definition of v,. In the
next section we prove Lemma 5.5 which is slightly more general than
the following.

Lemma 4.6. Assume ¢ € C(Ry)NL>®(Ry). Then

i [ () = 9(00) g, do =0
Qp

and

limsup/ga(uzm)gsk dx = lim sup/go(vn)gsk dz,
k k
Qn Qn

for each n € N.

Proof. Let A > 0. Since the integral of g¢g*(-,A) is absolutely
continuous, there exists & > 0 such that, for all measurable sets E C €,
we have

|E|<é = 9" A, <A

Since limy ujwl = v, almost everywhere in €2,, it follows that
limg ¢(uy, ,,) = ¢(v,) almost everywhere in ,, and then in measure.
Thus, set

Qe = {z € Q| |(uy, ) (2) = @(vn) ()] > A},
there exists k such that

k>k = |Qnl <6
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Next, observe that

k>k = I = “P(u:’c,n) — p(vn)|ge, dz
Qp

- ( / * / >|<P(U2,n) — o(vn)lge, dx

Qen W\
<2l [ gudotr [ g do
Qkon 0\
Recalling Corollary 4.3 and Lemma 4.2, we have
k>k = I, <2/¢lor, 41+ )N+ 190, [0, A
< 8leloor, (T+er )A+2(14er ) (1975 D, DA

This holds true for each A > 0, therefore limy, It , = 0. This concludes
the proof. i

Proof of Theorem 2;. If 0 < essinf ug, the claim follows by Lemma
4.5 and Lemma 3 of [9]. If 0 = essinf ug, there exists a decreasing
sequence (X;)ien, |X;| > 0, such that

1
<
T 141

Since ug = esssup v,, we see:

Vo d Xp: L < up(x).

(4.2) Vo e X;: up(z) 5

Vo e Qnle : ’Un(l') S %—]—l

In view of the definition of uj ,,, we deduce:

[

L+, (x)
Q,.NX; 5
K(z,y)
- / mgsk(ﬂﬁ)gsk(y) dx dy
(QnNX)XQ .
K(x,y) 1
- dx dy.
- / L+ K(z,9) 1+ up,,(2) 9o, (2)9e, (y) dx dy

(Qnr‘lX[)2
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K(z,y) 1
Ak,n = 7
14+ K(z,y) | 1+u;, ,(z)

(QnNX;)? '

ot
1+, (z)
1

1
< —
~ |gEk|1aQn / ‘ 1 _|- ’u,;c n(.’L‘) 1 + ’l}n(flf)
D ’

ey, (2)ge, (y) dz dy

ey, () dz,

according to Lemma 4.2 we have:

Apn <2147 (lg" (L Do, +1)

/ 1 1
X

[t u),@ 1+

Je,, (z) dx.

Next, employing Lemma 4.6 we deduce

(4.4) lim Ay, = 0.

Therefore, applying Lemma 4.6 and (4.4) at (4.3), letting k — 400, we
compute

. U ()
lim sup / Tro.@) 9e, (z) dx

k 1+Un(
(2,NX;)
. K(z,y) !
>1 dx dy.
stimsw [ g, (@), () dady
(QV,LOXZ)Q

Recalling Lemma 4.1, we discover

lim sup / ge,, (T) dx
k

1+2
(anXl)
I4+1 K(z,y)
> 1 — = g - dx d
> g tms [ g (@), () dady
(Q,,,ﬁXl)2
1+1

> lim sup

s 19y
12 PP\ o ) el )
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Then, since (g:)c > 0 is bounded, see Lemma 4.2, we deduce that

1 -1
(4.5) H—12(1+c1 ) >

bn

Remember the identity

() = ((/ [ Kt

AXD Q.NX

Employing the second part of (4.2) and Lemma 3 of [9], sending
k — 400, we discover

/"mequwMy

Q\ Xy

+lim / K(z,9)9:,(y)dy, €%, ae.
Q,NX;

Then

%m—‘/KWwM%w@Mym

Qn \Xl

Tip = /ﬂ(f)

Qp
/(@mmn/'wah@My

Q,NX;

< (esssup/K (x,y)n dx) hmlnf |9er 1.0, X, -
yeN

Furthermore, by (4.5),

1
Tipn < (esssup/K(x,y) n(x) dx) I 2(1+¢rt).

y€eN

Thus,
VneN: lilka’n =0.
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Consequently, for all n € N, we have

vn = lim / K(x,y)9(y,uo(y)) dy
Qn\Xl

= / K(z,y)9(y,uo(y)) dy, y € Qnae.

Qnm(o<u0)

Passing to the limit, as n — +o0, we find:

uo(z) = / K (2, 9)g(y, wo(y)) dy.

0<ug

Next, we conclude the proof proving that nug € L*(£2). Remembering
the definition of w,,, using Tonelli’s theorem, we discover:

0 te, |10 = / Gex dy / K(z,9)n(x) de.
Q Q

In light of Lemma 4.2 and the assumption (K,), the sequence
(In e, |1,0)ken is bounded. Moreover, since |nugl1,0 < limkinf [nue, 1.0,

we can conclude the proof. ]

Proof of Theorem 2;;. Let 0 < p < p and oy > 0 be such that

(4.6) yeFE, 0<s<oy — @>u—p.

Assume that (ue, )ren converges to ug. Suppose, on the contrary, that
up = 0 in Q. Then u,, — 0 almost everywhere in 2 and thus in E.
Since the measure of E is finite, according to Egorov-Severini’s theorem,
we have u., — 0 almost uniformly in £. Then for each ¢ > 0, there
exist £, C FE and kg such that

|[Ey|] <o and (ye€ E\E,, k>ky = e+ ue <o0op).
Therefore (4.6) implies

Y€ E \ Eaa k> kO = gEk(y) > (,[L - p)(5k + uEk(y))
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Let ¢ € L1 (E). In view of the definition of u.,, (1.1) and Tonelli’s
theorem we compute, for k > ko,

[ wa@e@dr= [a.tdy [ Kpe o

E\E, Q E\E,
> /gsk(y)dy / K(z,y)p(x) dx
E\E, E\E,
>(n-p) [ @+ [ Kepeds
E\E, E\E,
(y)
>(u-p) | (et ue,¥) ool dy.
E\/E ) MEN\ Eq, )
Then

[ et v @nete) o > st — / (60 + 14 (1)) dy
E\E, E\E,

and
MEN\ Eg,0) > p—p-
Passing to the infimum with respect to ¢ € L} (E), we find
)‘(E\Ea) Zﬂ_p'
Since o and p are arbitrary, according to Theorem 1 we deduce
ME) = p,
but this contradicts the assumption of the Theorem. Then the proof is
complete. ]

5. Proof of Theorem 4.

Lemma 5.1 (bounds on (age)eso0). Assuming A >0 and E C Q a
measurable set, if e + X < 1 we have the estimate

lage|1.e < (Ag + Bg)?/ P 4 (Ap + Bg),
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where Ap = [ag* (- X)], 5. Be = |eoa! 7|}/%.

Proof. Employing Tonelli’s theorem and the assumption (/Ea), we
deduce

ue ()92 (z) do = / K (2, 9)g: (2)ge () de dy

(ue<M)NE [(ue<A)NE]xQ

> / a(2)ge (2)a(y)ge (v) de dy.

[(ue<A)NE]xE

Then

2
[ w@e@arr [ a@ede gl = ol
(ue<ANNE (ue>NNE
Making use of the definition of g*(-, A) and Remark 2, we discover

(5.1) / ue(2)ge(w) do + |ag* (-, )\)|1,E ' |a9€|1,E Z |a9€|i,E'

(ue<A)NE

In light of the assumptions (G), (IEC), since € + A < 1, we compute

[ wn@des [ )+ @) o) do

(ue<A)NE (ue<A)NE
1/p
wo(x)
< [ e+ (i)
(e <MNNE :

’

o)V (a2)go () VP do
T 1/p ,
— [ (252) " (ol o
E

a(z)r—t

1/p’

< |‘P0a17p|i,/1§ : |ag€ LE "
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Substituting this estimate in (5.1) we obtain:

(52)  leoa [\ Jage)t + [ag (N, - lagele > |age|;

For short, we define 0 = |agc|1, g, A = Ag, B = Bg, so that (5.2)
becomes:
pL+1/p < /P A + B.

Then
<1l = p1+(1/p) <A+B — 6#< (A+B)P/(P+1)7
0>1 = 07T <pV/P(A+B) — 6<(A+B).

Thus
0 < (A+ BP/®) L (A4 B),

as required. a

The absolute continuity of the indefinite integral of ag*(-, A) and of
wpa'~P implies that

Corollary 5.2. Assuming 0 < A < 1, then there exists 6 > 0 such
that, for every measurable set E C Q and e+ X <1,

|E|<éd = ’agE‘LE <A

Lemma 5.3 (“local” convergence). Assume Hi, (G), (K). Then
Lemma 0 holds.

Proof. By the previous lemma (age)c>o is bounded in L'(£2) and
consequently in all L(£2,,). In view of the assumption (l%b), also (ge)eso
is bounded in every L'(€,). Thus, the hypotheses of Lemma 0 are
satisfied. a

Lemma 5.4 (pointwise convergence). ur — ug almost everywhere in
Q.
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Proof. According to Tonelli’s and Fubini’s theorems and the assump-
tion (K,), we discover

/ uy, () n(x) de = / 9=, (y) dy / K(z,y)n(z) de
Q

Q o\,

< / 9er (Y)a(y) dy

A\,

= / age, dy.

o\,

Using Corollary 5.2 we obtain
lim/ugﬁnn dz =0,
Q

uniformly with respect to k.

The rest of the proof runs as that of the Lemma 4.5. O

We next claim a lemma of “partial” convergence slightly more general
than Lemma 4.6.

Lemma 5.5. Assume ¢ € C(Ry)NL>®R,), B € L'(Q), B8 > 0,
almost everywhere. Then

i [ [(0h,0) = (00)| 37 (age, )17 di =0
Qn

and

lim sup/ cp(uﬁc’n)ﬁl/P(agEk)l/P’ dr = lim sup/ (P('Un),ﬁl/p(agek)l/p/ dr,
k k
Qn Qn

for each n € N.

Proof. Let 0 < A < 1/2 and ko € N such that ¢, < 1/2, ko < k.
According to Corollary 5.2, there exists § > 0 such that

El<d = lage |, p <X
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for every measurable set £ C Q and ko < k. Since liin ufcn = v, almost
everywhere in ), then lilgn o(up,.,) = ¢(v,) almost everywhere in €,

and also in measure. Precisely, if we define

Qe = {2 € Q[ |o(uh ) (@) = 9(vn) (@) > A},
there exists k > kg such that
(5.3) k>k = |[Qnl<d = lage |, <A

Then we compute
>k = k= / [Ptk ) = 9(va)] 87 (age, )" da
Qn

1/ 1/p’ 1/p
< ‘6’1,5,1{2‘50’00,R+’a95k 1,s€k,n+)“agfk 1,;2),1}'

Next, utilizing (5.3) and Lemma 5.1, we deduce that

k>]_€ — Ik,n

< (B {2lploen, A7+ AT P 4 (0,07 ).

Since A was arbitrary we conclude the proof. O

Proof of Theorem 4;. If 0 < essinfug, applying Lemma 5.4 and
Lemma 3 of [9], we deduce the claim. If 0 = essinfug, there exists a
decreasing sequence (X;);en of measurable sets such that |X;| > 0, and

1
Ve & X;: T3 < uo(z).

(5.4) Vo e X;: up(x) T

<—7
141

Since ug = sup vy, it follows also that
n

1
Remembering the definition of u; , and the assumption (Ka), we
discover

uy, () > a(x) / a(y)ge, (y)dy, =z € Q.
Qp
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Hence, if we multiply both sides for

ey,
14,

and integrate on §2,, N X, it follows that

ag
lage, |10, / —=kdy

1"‘“;@@

Q,.NX;

u/
< / Tou ﬁ_’ngfk dx

U
Q,.NX; .m
uj,

_ m o 1/(2p) . 1/(2p)
- * ) a9V de

QnﬂXm(ek+u5k§1) Qnﬁxlﬂ(6k+u5k>l)

o 1/(2p) ,
- / ko ( ?o > a1/ (qg YU/ gy
B 1+u§c,n (€k+u5k)p :

QuNXiN(e+ue, <1)

uj,

n *

__kn - 1d

- / 1+u;mg (1) do
QNX;N(ep+ue, >1) ’

\/ u;c n Yo 1/(2p) e )/ U;C

’ P ;1 * (0

= / 1+uy, , <a2p—1> (age,) dz+ / 1+ g (-, 1) dz.
Q,NX; ’ Q,.NX;

s

Since (|age,|1.0,)ken is bounded, see Lemma 5.1, according to
Lemma 5.5 we discover

1 1
lim (|ag5k |1,Q” / ‘ 7 - age, da’,‘) =0.
b T+d,,  T+o,

Q,NX;

Therefore, from the latter estimate, in view of Lemma 5.5 and (5.5),
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we deduce

1+17/..
—(hm sup |age, \1,anxl)
k

241
) age,,
<1 ——d
i (. [ 1)

Q,NX;
1/(2p)
. V' Un %0 1/(2p)’
< hmksup / 1+, \a2r—1 (age,) dz
Q,NX,
Un
*(-,1)d
- / 1o, 9 (1de
Q,.NX;
—p|1/(2p)
VIFI lpat p|1,sznmel . 1/(2p)’
< . limsup |age, |'o
2+1 fessinfa k o
Qn
L)
2+l g ) 119717

and consequently

. 2
(lim sup |age, |1,0,nx,)
k

_n11/(2
1 |poat p|1,/s(2f)

. ey
< - (hmsup \agsk\lﬂnﬂxl) e
JItl esgs)lnf& k
1519 e,
Define 1/(2p)
|poa' Plig, *
Sn _ —17QTI —+ ‘g (',1)‘179"7

/essinfa
Qn
exactly as in the proof of Lemma 5.1, and we have

S 1/2 S (2p)/(142p)
5.6) i < (7= - '
(5.6) 1mksup|agak|1,9,,mxl = (\/1—+l> (\/1_+l)

Qn\Xl Q,NX,;
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we see from the second of (5.4), Lemma 3 of [9] and Lemma 5.4, upon
passing to the limit, as k — 400, that

@)= [ Kapguw)dy+lim [ Koo
Qn\Xl Q,.NX;

Multiplying the above identity by n(z) and integrating over ,, we

deduce
A, = / (@) |on () - / K (2, 1)9(y, uo(y)) dy
Qn Q. \ X

dx

Employing (5.6) in the last inequality we find

g 1/2 S (2p)/(1+2p)
A, < i n )
B <\/1+l> - (\/1+l)

Passing to the limit, as | — +o00, we deduce for all n € N:

li}n / n(x)
Qn

Thus, for n € N,

on(z) — / (2,99 (. un(y)) dy| dz = 0.

QN (1/(1+1)<u,)

n@=tm [ K@) dy

QnN((1/141)<uo)

- / K(z.y)g(y,uo() dy, = €Q e

Q,N(0<ug)

Letting n — +00, we deduce the proof. a
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Proof of Theorem 4;;. Let N := (up = 0). If |[N| = 0, the claim is
true, if [N] > 0 we observe, remembering the condition (K,), that

VeeN: a(z) / a(y)g(y,uo(y)) dy < 0.
Q\N

Then

VneN: / a(y)g(y, uo(y)) dy = 0.
Qn\N

Now, according to the assumption (K;), we deduce
VneN: g(up) =0 ae. in Q,\N,

and thus
g(-up) =0 ae. in Q\N.

The latter equality implies

up(z) = / K(z,y)9(y,uo(y))dy =0, xz€Q ae,
QN

then Q = N. o

Proof of Theorem 4;;;. The proof is like that of Theorem 2;;. O
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