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POSITIVE SOLUTIONS OF A
HAMMERSTEIN INTEGRAL EQUATION

WITH A SINGULAR NONLINEAR TERM, II

MARIO MICHELE COCLITE

Dedicated to Professor Enrico Magenes for his 80th birthday

ABSTRACT. This paper concerns the existence of a pos-
itive locally summable solution of a Hammerstein equation
with a singular nonlinear term at the origin.

1. Introduction. In this paper we establish some new existence
principles for the following Hammerstein equation:

(1.1) u(x) =
∫
Ω

K(x, y)g(y, u(y))dy, x ∈ Ω,

where Ω ⊂ RN , 1 ≤ N , K(x, y) ≥ 0; g(y, s) ≥ 0; x, y ∈ Ω, 0 < s and
g(y, s) that can be nonsmooth when s→ 0+.

The literature on the Hammerstein equations with the integrand de-
pending on the reciprocal of the solution is rather limited, neverthe-
less it arises, more or less directly, in a variety of settings: semi-linear
boundary value problems with a nonlinear term depending on the recip-
rocal of the solution, see [1, 5 7, 10, 12, 13, 15, 16], mathematical
models of signal theory, see [21, 22], ecological models, see [28, pp.
103 104], continuous extension of the results on the double stochas-
tic matrix proposed by Hartfiel, see [23, 27], Boussinesq’s equation in
filtration theory, see [18].

Karlin and Nirenberg in [19], at first, proved an existence principle
for (1.1), considering K(x, x) > 0, 0 ≤ x ≤ 1; however, they proved also
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that this assumption cannot be completely discarded. In [19], as in the
pioneering paper of Nowosad [22], they assumed K ∈ C([0, 1] × [0, 1]).

With the exception of the regularity, the Green’s functions of some
boundary value problems do not satisfy the previous assumption. For
example, the Green’s function

G(x, y) =
{
x(1 − y) 0 ≤ x ≤ y,
y(1 − x) y ≤ x ≤ 1,

of the boundary value problem:

−u′′ = f(x), u(0) = u(1) = 0,

does not satisfy the Karlin and Nirenberg assumption because it is equal
to 0 on the boundary of the square [0, 1]× [0, 1]. In this paper we prove
an existence principle valid also for G(x, y). Define a(x) = x(1−x); we
find

a(x)a(y) ≤ G(x, y);

1∫
0

2G(x, y) dx ≤ a(y).

These hypotheses, different from the ones of [19, 22, 27, p. 1172],
are sufficient to guarantee the existence of at least one solution. Also
the Green’s function of the Laplacian in a bounded open set of RN ,
2 ≤ N , with zero Dirichlet condition satisfies similar assumptions.
Other examples are listed in the next section.

We dwell upon the structure of K(x, y) in a neighborhood of the
diagonal set of Ω×Ω. Another existence result has been proved by the
author in [8, 9] via assumptions formulated in terms of integral means
of the kernel on the sets of a cover of the diagonal set of Ω × Ω.

In this article there are considered kernels which can be discontinuous
on the diagonal set of Ω×Ω. Precisely we consider kernels greater than
a strictly positive number in at least “half” of Ω × Ω, and this region
with its symmetric, with respect to the diagonal set of Ω × Ω, cover
Ω × Ω. For example, the Green’s function:

G(x, y) =
{

1 0 ≤ x ≤ y,
ey−x y ≤ x,
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of the boundary value problem

−(u′′ + u′) = f(x), u′(0) = lim
x→+∞u(x) = 0,

satisfies this assumption.

There is no hypothesis on the behavior of g(y, s), when s → 0+,
therefore the following possibilities are not excluded

lim inf
s→0+

g(y, s) = 0; lim sup
s→0+

g(y, s) = +∞.

Consequently, the main results of this paper (Theorems 2 and 4) follow
from the behavior of the “approximate solution” uε ∈ L1(Ω), of the
problem

uε(x) =
∫
Ω

K(x, y)g(y, ε+ uε(y)) dy, x ∈ Ω.

when ε→ 0+. The existence of these “approximate solutions” is proved
in Appendix 2 of [9]. The first step of such analysis is based on an
assumption of “local compactness,” as in [4], see the assumption (H1).
This implies the existence of a sequence (uεk

)k∈N which converges
almost everywhere and in every L1(Ωn), toward a measurable function
u0. This belongs to every L1(Ωn) and satisfies the identity

u0(x) =
∫

0<u0

K(x, y)g(y, u0(y)) dy,

where (0 < u0) = {x ∈ Ω | 0 < u0(x)}. Next, to prove that u0 is
nontrivial, we have to prescribe the behavior of g(y, s) as s → 0+.
Some advances with respect to the literature on this problem, see [1,
2, 12, 13, 18, 19, 22, 23, 26, 27], have been achieved by the author
in [8, 9], under the assumption

(1.2) lim
s→0

g(y, s)
s

= +∞,

uniformly in Ω. The result of Karlin and Nirenberg is covered by (1.2),
because they assumed: 0 < c0 ≤ g(y, s) ≤ c1s

−β , 0 < s < 2, y ∈ Ω
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with c0, c1, β > 0. Here (1.2) is replaced by the assumption that there
exists µ such that

(1.3) lim inf
s→0

g(y, s)
s

≥ µ > λ(E).

uniformly in some measurable set E ⊂ Ω, |E| > 0. λ(E) is a positive
number, defined in the next section, which coincides with the minimum
characteristic value of the operator

ϕ �−→
∫
E

K(·, y)ϕ(y) dy, ϕ ∈ L1
+(E),

when it exists, see [11, Vol. II, proof of Frobenius’ theorem, p. 51]; [29,
Theorem IV.3.1]. In particular, if K(x, y) is the Green’s function of

−u′′ = f(x), u(0) = u(1) = 0,

λ([0, 1])−1 is the first eigenvalue of the one-dimensional Dirichlet prob-
lem in [0, 1], see [16].

Assumption (1.3) cannot be completely discarded. In fact, the
function

g(s) =
∣∣∣∣1s sin

1
s

∣∣∣∣, s > 0,

does not satisfy (1.3). Let

εk =
1
kπ
, k ∈ N∗,

be one solution of

(1.4) u(x) =

1∫
0

K(x, y)
∣∣∣∣ 1
ε+ u(y)

sin
1

ε+ u(y)

∣∣∣∣ dy,
when ε = εk, is uεk

= 0. Therefore, there exists a sequence (uε)ε>0, of
approximate solutions of (1.4) which admits one subsequence converg-
ing to 0. The solvability of (1.4) with ε = 0 is still an open problem.

In the next section we present the assumptions and the results. The
other sections are devoted to the proofs.
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2. Notations, assumptions and results. Let us list the notations
mostly used in this paper.

R+ := [0,+∞[; R∗
+ := ]0,+∞[. Let E ⊂ RN , N ≥ 1, be a

measurable set, |E| or meas (E) is the measure of E, | · |1,E the norm of
L1(E) and L1

+(E) the cone of the ϕ ∈ L1(E), ϕ > 0 almost everywhere
in E.

Let S ⊂ RN × RN , ST denotes the symmetric set of S with respect
the diagonal set of RN × RN . Finally for two fixed functions u, v,
u ≤ v is the set of the x such that u(x) ≤ v(x). The same holds for
u < v, u ≥ v, u > v.

Let Ω ⊂ RN be a measurable set and g : Ω × R∗
+ → R be a

non-negative almost everywhere Carathéodory function, i.e., g(·, s) is
measurable in Ω, for all s > 0 and g(y, ·) is continuous in ]0,+∞[, for
almost every y ∈ Ω such that

g∗(y, s) := sup
s≤t

g(y, t) ∈ L1(Ω), s > 0.

g∗(y, s) is also a Carathéodory nonincreasing function with respect to
s and g(y, s) ≤ g∗(y, s).

Let K : Ω×Ω → R be a measurable non-negative almost every kernel
such that

(2.1)
∫
Ω

K(·, y)ϕ(y) dy ∈ L1(Ω);
∫
Ω

K(x, ·)ϕ(x) dx ∈ L1(Ω),

for each ϕ ∈ L1(Ω). It is well known that, for every ε > 0 there exists
uε ∈ L1(Ω), uε > 0 almost everywhere, such that

uε(x) =
∫
Ω

K(x, y)g(y, ε+ uε(y)) dy,

see [9, Appendix 2]. The results of this paper follow from a suitable
analysis of uε as ε→ 0.

To guarantee the existence of at least one convergent subsequence we
assume that the following hypothesis of “local compactness” holds.
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(H1) There exists an increasing sequence (Ωn)n∈N, Ωn ⊂ Ω, of
measurable sets which covers Ω such that the operator

ϕ �→ Kn(ϕ) :=
∫
Ωn

K(·, y)ϕ(y) dy

is compact from L1(Ωn) into itself, for all n ∈ N.

In [14, 17, 20, 24, 25, 29] are listed some assumptions which imply
(H1).

Using the diagonal method, as in the proof of Lemma 4 of [9], we are
able to prove

Lemma 0. Assume (H1), and let (g(·, ε + uε))ε>0 be bounded in
every L1(Ωn). Then there exists (εk)k∈N, εk → 0, such that( ∫

Ωn

K(·, y)g(y, εk + uεk
(y)) dy

)
k∈N

converges in L1(Ωn), for all n ∈ N.

For simplicity of notations we write

gε := g(·, ε+ uε); u′k,n :=
∫
Ωn

K(·, y)gεk
(y) dy;

u′′k,n := u
k
− u′k,n =

∫
Ω\Ωn

K(·, y)gεk
(y) dy.

According to the previous lemma there exists an increasing sequence
(vn)n∈N, vn ∈ L1(Ω), such that

lim
k

∣∣u′k,n − vn

∣∣
1,Ωn

= 0; vn = 0 in Ω \ Ωn.

Then

vn(x) :=
{

limk u
′
k,n(x), x ∈ Ωn a.e.

0, x ∈ Ω \ Ωn.
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Therefore, there exists a non-negative measurable function u0 : Ω → R
such that

u0 = lim
n
vn = ess supnvn, a.e. in Ω.

Since g(y, ·) not is defined at 0 we need that u0 �= 0 or, as we will see,
uεk

�→ 0 almost everywhere in Ω. Therefore, we assume that

(H2) There exist µ and a measurable set E ⊂ Ω, 0 < |E| < +∞,
such that

lim inf
s→0

g(y, s)
s

≥ µ > 0,

uniformly with respect to y in E.

We also need the following definition. Let ϕ ∈ L1
+(E) and we write

E∗(ϕ) :=
{
y ∈ E

∣∣∣∣
∫
E

K(x, y)ϕ(x) dx �= 0
}
.

Define

λ(E) := inf
{
λ(E,ϕ)

∣∣ϕ ∈ L1
+(Ω)

}
where

λ(E,ϕ) := sup
y∈E∗(ϕ)

ϕ(y)∫
E
K(x, y)ϕ(x) dx

.

If the operator

(2.2) ϕ �→
∫
E

K(x, ·)ϕ(x) dx, ϕ ∈ L1(E),

has characteristic values, its minimum positive characteristic value
coincides with λ(E), see [29, Theorem IV.3.1]. Also when it is an
operator of RN in itself, associated with an irreducible matrix with
positive terms, λ(E) is the minimum positive characteristic value of
(2.2), [11, Vol. II, proof of the Frobenius theorem, p. 51].
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Theorem 1. Assume

(H3) for all α > 0 and ϕ ∈ L1
+(Ω) there exists δ > 0 such that

|E \ F | < δ =⇒
∫

E\F

K(x, y)ϕ(x) dx < α

∫
E

K(x, y)ϕ(x) dx, y ∈ F.

Then λ(·) is left continuous in E, namely, for all α > 0, there exists
δ > 0 such that, for all measurable sets, F ⊂ E, we have

|E \ F | < δ =⇒ λ(E) ≤ λ(F ) ≤ λ(E) + α.

The hypothesis (H3) is fulfilled, for example, in the following three
cases.

i) E is compact, K ∈ C(E × E) and, for each ϕ ∈ L1
+(E), there

exists m(ϕ) > 0 such that

(2.3) 0 < m(ϕ) ≤
∫
E

K(x, y)ϕ(x) dx, y ∈ E.

ii) ϕ �→ ∫
E

K(x, ·)ϕ(x) dx is continuous from L1(E) in L∞(E) and,

for all ϕ ∈ L1
+(E), (2.3) holds.

iii) There exist some positive functions αi, βi, 1 ≤ i ≤ k, with
αi ∈ L∞(E), βi ∈ L1(E) such that

K(x, y) =
k∑
1

αi(x)βi(y).

The behavior of uε, as ε → 0, has been analyzed for two distinct
sets of hypotheses on K(x, y) and/or g(y, s). The first of them is the
following one.

(K) a) There exists η ∈ L1
+(Ω) such that∫

Ω

K(x, ·) η(x) dx ∈ L∞(Ω).
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b) There exists c1 > 0 such that

meas
[
Ω2 \ [

(c1 < K) ∪ (c1 < K)T
] ]

= 0.

Remark 1. The last assumption can be rewritten as follows

∃ c1 > 0 : meas
[
(K ≤ c1) ∩ (K ≤ c1)T

]
= 0.

Moreover, (K) can be replaced by the following

(Kb′) There exist a finite cover (Ei)1≤i≤N of Ω and c1 > 0 such that

meas
[ N⋃

i=1

E2
i ∩ (K ≤ c1) ∩ (K ≤ c1)T

]
= 0.

Clearly this is sharper than (K), but it adds some more technicalities
in the proofs.

Examples. The assumptions (H1), (H3), (K) are satisfied by the
Green’s function

G(x, y) =
{

1 if 0 ≤ x ≤ y

ey−x if y ≤ x,

of the following boundary value problem

−y′′ − y′ = f(x); y′(0) = lim
x→+∞ y(x) = 0.

They are also satisfied by the Green’s function

G(x, y) =
{
e−y coshx if 0 ≤ x ≤ y,
e−x cosh y if y ≤ x ≤ 2,

of the boundary value problem

−y′′ + y = f(x); y′(0) = y′(2) + y(2) = 0.



250 M.M. COCLITE

Theorem 2. Assume (H1), (K). Then

i) there exists a measurable non-negative almost everywhere function
u0 : Ω → R with η u0 ∈ L1(Ω), such that

u0(x) =
∫

0<u0

K(x, y)g(y, u0(y)) dy.

ii) If also (H2), (H3) hold and

µ > λ(E),

then u0 is nontrivial.

Corollary 3. Assume (H1), (H2), (H3), (K). For all λ > λ(E)/µ,
there exists a nontrivial map u0,λ : Ω → R, η u0,λ ∈ L1(Ω), such that

u0,λ(x) = λ

∫
0<u0,λ

K(x, y)g(y, u0,λ(y)) dy.

Next, instead of (K), let us consider the following hypotheses.

(G̃) There exist a measurable function ϕ0, ϕ0 ≥ 0 almost everywhere
in Ω, and p ≥ 1 such that

g(y, s) ≤ ϕ0(y)
sp

, y ∈ Ω, 0 < s ≤ 1.

(K̃) There exist two measurable non-negative almost everywhere func-
tions a, η such that

a) a(x)a(y) ≤ K(x, y);
∫
Ω
K(x, y) η(x) dx ≤ a(y).

b) For all n ∈ N : 0 < ess infy∈Ωn
a(y).

c)
∫
Ω
(ϕ0(y))/(a(y)p−1) dy < +∞.

Remark 2. In light of (2.1) and (K̃a), we find∫
Ω

a(y)ϕ(y) dy < +∞, ϕ ∈ L1
+(Ω).
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Examples. The assumptions (H1), (H3), (K̃) onK(x, y) are satisfied
by the following kernels.

i) The Green’s function

G(x, y) =
{
x if 0 ≤ x ≤ y,
y if y ≤ x,

of the following boundary value problem

−y′′ = f(x); y(0) = 0, lim sup
x→+∞

|y(x)| < +∞,

with a(x) = x/(1 + x) and η(x) = 1/(1 + x)3.

ii) The Green’s function of the Laplacian in a smooth bounded
domain Ω ⊂ RN , 2 ≤ N , with zero Dirichlet condition. In this case
we consider a(x) = c0dist (x, ∂Ω), x ∈ Ω, and η(x) = c1ϕ(x), where
c0, c1 are positive constants and ϕ(x) is a positive eigenfunction of the
Dirichlet problem corresponding to the first eigenvalue, see [3, Lemma
3.2], [5, Theorem 9], [30, Theorem 1].

iii) The Green’s function

G(x, y) =
{
ey(1 − e−x) if 0 ≤ x ≤ y,

ey − 1 if y ≤ x ≤ 1,

of the boundary value problem

−y′′ − y′ = f(x); y(0) = y′(1) = 0,

with a(x) = 1 − e−x, η(x) = e−1.

Theorem 4. Assume (H1), (G̃), (K̃). Then

i) there exists a measurable function u0 : Ω → R, 0 ≤ u0 almost
everywhere, with η u0 ∈ L1(Ω), such that

u0(x) =
∫

0<u0

K(x, y)g(y, u0(y)) dy.
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Moreover

ii) u0 = 0 or u0 > 0 almost everywhere in Ω.

iii) If also (H1), (H2), (H3) hold and

µ > λ(E),

then u0 > 0 almost everywhere in Ω.

Corollary 5. Assume (H1), (H2), (H3), (G̃), (K̃). Then, for all

λ >
λ(E)
µ

,

there exists a positive function u0,λ : Ω → R, η u0,λ∈L1(Ω), such that

u0,λ(x) = λ

∫
Ω

K(x, y)g(y, u0,λ(y)) dy.

3. Proof of Theorem 1.

Lemma 3.1. Let E, F ⊂ Ω be measurable sets. Then

F ⊂ E =⇒ λ(E) ≤ λ(F ).

Proof. Let ϕ ∈ L1
+(E) and χF be the characteristic function of F .

As F ∩ E∗(ϕχF ) = F ∗(ϕχF ), we deduce

λ(F, ϕχF ) = sup
y∈F∗(ϕχF )

(ϕχF )(y)∫
F
K(x, y)(ϕχF )(x) dx

= sup
y∈F∗(ϕχF )

(ϕχF )(y)∫
E
K(x, y)(ϕχF )(x) dx

= sup
y∈E∗(ϕχF )

(ϕχF )(y)∫
E
K(x, y)(ϕχF )(x) dx

= λ(E,ϕχF ).
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Next in view of the definition of λ(·), we find

λ(F ) = inf
ϕ∈L1

+(F )
λ(F, ϕ) = inf

ϕ∈L1
+(E)

λ(F, ϕχF ).

According to the previous identity we conclude that

λ(F ) = inf
ϕ∈L1

+(E)
λ(E,ϕχF ) ≥ inf

ϕ∈L1
+(E)

λ(E,ϕ) = λ(E).

Proof of Theorem 1. If λ(E) = +∞ the theorem is true. Then
consider the case λ(E) < +∞. Let σ > 0 and write

(3.1) α =
σ

1 + λ(E) + σ
.

According to the definition of λ(E), there exists ϕ ∈ L1
+(E) such that

(3.2) λ(E,ϕ) < λ(E) + α.

In light of (H3), there exists δ > 0 such that for all F ⊂ E we have

|E \ F | < δ =⇒
∫

E\F

K(x, y)ϕ(x) dx < α

∫
E

K(x, y)ϕ(x) dx, y ∈ F.

Therefore,

λ(F ) = inf
ϕ∈L1

+(E)
λ(F, ϕχF ) ≤ λ(F, ϕχF )

= sup
y∈F∗(ϕ)

(
(ϕχF )(y)∫

E
K(x, y)ϕ(x) dx

∫
E
K(x, y)ϕ(x) dx∫

F
K(x, y)ϕ(x) dx

)
.

According to the definition of λ(E,ϕ) and (3.2), we compute

λ(F ) ≤ λ(E,ϕ) sup
y∈F∗(ϕ)

∫
E
K(x, y)ϕ(x) dx∫

F
K(x, y)ϕ(x) dx

< (λ(E) + α) sup
y∈F∗(ϕ)

1
1−∫

E\F
K(x, y)ϕ(x) dx

/∫
E
K(x, y)ϕ(x) dx

=
λ(E) + α

1 − sup
y∈F∗(ϕ)

(∫
E\F

K(x, y)ϕ(x) dx
/∫

E
K(x, y)ϕ(x) dx

)
<
λ(E) + α

1 − α
.
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In view of (3.1) we thus deduce for all F ⊂ E:

|E \ F | < δ =⇒ λ(F ) < λ(E) + σ.

Finally, recalling Lemma 3.1, the proof is concluded.

4. Proof of Theorem 2.

Lemma 4.1 (coercivity). Let ψ ∈ L1(Ω) be almost everywhere non-
negative. Then

c1
2(1 + c1)

|ψ|21,Ω ≤
∫

Ω×Ω

K(x, y)
1 +K(x, y)

ψ(x)ψ(y) dx dy.

Proof. Since

|ψ|21,Ω =
∫

Ω×Ω

ψ ⊗ ψ dx dy ≤
( ∫

c1<K

+
∫

(c1<K)T

)
ψ ⊗ ψ dx dy,

changing the variables in the second integral, according to (Kb), we
discover

|ψ|21,Ω ≤ 2
∫

c1<K

ψ ⊗ ψ dx dy

≤ 2(1 + c1)
c1

∫
c1<K

K(x, y)
1 +K(x, y)

ψ(x)ψ(y) dx dy,

as desired.

Lemma 4.2 (bounds on (gε)ε>0). Let λ > 0 and E ⊂ Ω be a
measurable set. Then we have the estimate

|gε|1,E ≤ 2
(
1 + c−1

1

)(|g∗(·, λ)|1,E + λ
)
.
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Proof. By Tonelli’s theorem∫
(uε≤λ)∩E

uεgε dx =
∫

[(uε≤λ)∩E]×Ω

K(x, y)gε(x)gε(y) dx dy

≥
∫

[(uε≤λ)∩E]×E

K(x, y)
1+K(x, y)

gε(x)gε(y) dx dy

=
( ∫

E2

−
∫

[(uε>λ)∩E]×E

)
K(x, y)

1+K(x, y)
gε(x)gε(y) dx dy.

Now since g∗(x, ·) is decreasing we discover

λ|gε|1,E +
∫

E2

g∗(x, λ)gε(y) dx dy ≥
∫

E2

K(x, y)
1+K(x, y)

gε(x)gε(y) dx dy.

According to the previous lemma, we deduce

(|g∗(·, λ)|1,E + λ
)|gε|1,E ≥ c1

2(1 + c1)
|gε|21,E .

Then the stated estimate follows.

The absolute continuity of the indefinite integral of g∗(·, λ) implies
the following

Corollary 4.3. Letting λ > 0, there exists δ > 0 such that for each
measurable set E ⊂ Ω we have

|E| < δ =⇒ |gε|1,E < 4
(
1 + c−1

1

)
λ.

Corollary 4.4 (“local” convergence). Assume (H1), (K). Then
Lemma 0 holds.

Lemma 4.5 (pointwise convergence). uk → u0 almost everywhere in
Ω.
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Proof. Since∫
Ω

u′′k,nη dx =
∫

Ω\Ωn

gεk
(y) dy

∫
Ω

K(x, y) η(x) dx,

according to the Lemma 4.2 and (Ka), we find∫
Ω

u′′k,nη dx ≤
(

sup
y∈Ω

∫
Ω

K(x, y) η(x) dx
)

2
(
1+c−1

1

)(|g∗(·, λ)|1,Ω\Ωn
+ λ

)
.

Since λ was arbitrary and the indefinite integral of g∗(·, λ) is absolutely
continuous we have

lim
n

∫
Ω

u′′k,nη dx = 0,

uniformly with respect to k. Consequently, fixing any σ > 0, there
exists M0 ∈ N such that

(4.1)
∫
Ω

u′′k,nη dx < σ, n > M0, k ∈ N.

For each M >M0 we deduce∫
ΩM

η

1+η
|uk−u0|
1 + u0

dx =
∫

ΩM

η

1+η
|u′k,n+u′′k,n − vn + vn − u0|

1 + u0
dx

≤
∫

ΩM

|u′k,n−vn| dx+
∫
Ω

u′′k,nη dx+
∫
Ω

u0−vn

1+u0
dx.

Since limk |u′k,n − vn|1,Ωn
= 0 holds for each n > M , according to (4.1)

we find

lim sup
k

∫
ΩM

η

1 + η

|uk − u0|
1 + u0

dx ≤ σ +
∫
Ω

u0 − vn

1 + u0
dx.

Applying Beppo Levi’s theorem we thus deduce

lim sup
k

∫
ΩM

η

1 + η

|uk − u0|
1 + u0

dx = 0, M > M0.
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Then uk → u0 almost everywhere in ΩM , for all M >M0, as required.

Next we claim a technical lemma of “partial” convergence which
depends essentially on Corollary 4.3 and the definition of vn. In the
next section we prove Lemma 5.5 which is slightly more general than
the following.

Lemma 4.6. Assume ϕ ∈ C(R+) ∩ L∞(R+). Then

lim
k

∫
Ωn

|ϕ(u′k,n) − ϕ(vn)|gεk
dx = 0

and

lim sup
k

∫
Ωn

ϕ(u′k,n)gεk
dx = lim sup

k

∫
Ωn

ϕ(vn)gεk
dx,

for each n ∈ N.

Proof. Let λ > 0. Since the integral of g∗(·, λ) is absolutely
continuous, there exists δ > 0 such that, for all measurable sets E ⊂ Ω,
we have

|E| < δ =⇒ |g∗(·, λ)|1,E < λ.

Since limk u
′
k,n = vn almost everywhere in Ωn, it follows that

limk ϕ(u′k,n) = ϕ(vn) almost everywhere in Ωn and then in measure.
Thus, set

Ωk,n =
{
x ∈ Ωn

⏐⏐ |ϕ(u′k,n)(x) − ϕ(vn)(x)| > λ
}
,

there exists k̄ such that

k > k̄ =⇒ |Ωk,n| < δ.
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Next, observe that

k > k̄ =⇒ Ik,n :=
∫
Ωn

|ϕ(u′k,n) − ϕ(vn)|gεk
dx

=
( ∫

Ωk,n

+
∫

Ωn\Ωk,n

)
|ϕ(u′k,n) − ϕ(vn)|gεk

dx

≤ 2|ϕ|∞,R+

∫
Ωk,n

gεk
dx+ λ

∫
Ωn\Ωk,n

gεk
dx.

Recalling Corollary 4.3 and Lemma 4.2, we have

k > k̄ =⇒ Ik,n < 2|ϕ|∞,R+4
(
1+c−1

1

)
λ+ |gεk

|Ωn
λ

≤ 8|ϕ|∞,R+

(
1+c−1

1

)
λ+2

(
1+c−1

1

)
(|g∗(·, 1)|1,Ωn

+1)λ.

This holds true for each λ > 0, therefore limk Ik,n = 0. This concludes
the proof.

Proof of Theorem 2i. If 0 < ess inf u0, the claim follows by Lemma
4.5 and Lemma 3 of [9]. If 0 = ess inf u0, there exists a decreasing
sequence (Xl)l∈N, |Xl| > 0, such that

(4.2) ∀x ∈ Xl : u0(x) ≤ 1
1+l

; ∀x /∈ Xl :
1

1+l
< u0(x).

Since u0 = ess sup vn, we see:

∀x ∈ Ωn ∩Xl : vn(x) ≤ 1
1 + l

.

In view of the definition of u′k,n, we deduce:∫
Ωn∩Xl

u′k,n(x)
1 + u′k,n(x)

gεk
(x) dx

=
∫

(Ωn∩Xl)×Ω

K(x, y)
1 + u′k,n(x)

gεk
(x)gεk

(y) dx dy

≥
∫

(Ωn∩Xl)2

K(x, y)
1 +K(x, y)

1
1 + u′k,n(x)

gεk
(x)gεk

(y) dx dy.
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Now

∆k,n :=
∫

(Ωn∩Xl)2

K(x, y)
1 +K(x, y)

⏐⏐⏐⏐ 1
1+u′k,n(x)

− 1
1+vn(x)

⏐⏐⏐⏐gεk
(x)gεk

(y) dx dy

≤ |gεk
|1,Ωn

∫
Ωn

⏐⏐⏐⏐ 1
1 + u′k,n(x)

− 1
1 + vn(x)

⏐⏐⏐⏐gεk
(x) dx,

according to Lemma 4.2 we have:

∆k,n ≤ 2
(
1 + c−1

1

)(|g∗(·, 1)|1,Ωn
+ 1

)
×

∫
Ωn

⏐⏐⏐⏐ 1
1 + u′k,n(x)

− 1
1 + vn(x)

⏐⏐⏐⏐gεk
(x) dx.

Next, employing Lemma 4.6 we deduce

(4.4) lim
k

∆k,n = 0.

Therefore, applying Lemma 4.6 and (4.4) at (4.3), letting k → +∞, we
compute

lim sup
k

∫
(Ωn∩Xl)

vn(x)
1 + vn(x)

gεk
(x) dx

≥ lim sup
k

∫
(Ωn∩Xl)2

K(x, y)
1 +K(x, y)

1
1 + vn(x)

gεk
(x)gεk

(y) dx dy.

Recalling Lemma 4.1, we discover

1
l + 2

lim sup
k

∫
(Ωn∩Xl)

gεk
(x) dx

≥ l + 1
l + 2

lim sup
k

∫
(Ωn∩Xl)2

K(x, y)
1 +K(x, y)

gεk
(x)gεk

(y) dx dy

≥ l + 1
l + 2

lim sup
k

(
c1

2(1 + c1)

∣∣gεk

∣∣2
1,Ωn∩Xl

)
.



260 M.M. COCLITE

Then, since (gε)ε > 0 is bounded, see Lemma 4.2, we deduce that

(4.5)
1

l + 1
2
(
1 + c−1

1

) ≥ lim sup
k

|gεk
|1,Ωn∩Xl

.

Remember the identity

u′k,n(x) =
( ∫

Ωn\Xl

+
∫

Ωn∩Xl

)
K(x, y)gεk

(y) dy.

Employing the second part of (4.2) and Lemma 3 of [9], sending
k → +∞, we discover

v
n
(x) =

∫
Ωn\Xl

K(x, y)g(y, u0(y)) dy

+ lim
k

∫
Ωn∩Xl

K(x, y)gεk
(y) dy, x ∈ Ωn a.e.

Then

Γk,n :=
∫
Ωn

η(x)
⏐⏐⏐⏐vn(x) −

∫
Ωn\Xl

K(x, y)g(y, u0(y)) dy
⏐⏐⏐⏐ dx

=
∫
Ωn

η(x) dx lim
k

∫
Ωn∩Xl

K(x, y)gεk
(y) dy

≤
(

ess sup
y∈Ω

∫
Ω

K(x, y) η(x) dx
)

lim inf
k

|gεk
|1,Ωn∩Xl

.

Furthermore, by (4.5),

Γk,n ≤
(

ess sup
y∈Ω

∫
Ω

K(x, y) η(x) dx
)

1
l + 1

2
(
1 + c−1

1

)
.

Thus,
∀n ∈ N : lim

l
Γk,n = 0.
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Consequently, for all n ∈ N, we have

vn = lim
l

∫
Ωn\Xl

K(x, y)g(y, u0(y)) dy

=
∫

Ωn∩(0<u0)

K(x, y)g(y, u0(y)) dy, y ∈ Ωn a.e.

Passing to the limit, as n→ +∞, we find:

u0(x) =
∫

0<u0

K(x, y)g(y, u0(y)) dy.

Next, we conclude the proof proving that η u0 ∈ L1(Ω). Remembering
the definition of uεk

, using Tonelli’s theorem, we discover:

|η uεk
|1,Ω =

∫
Ω

gεk
dy

∫
Ω

K(x, y) η(x) dx.

In light of Lemma 4.2 and the assumption (Ka), the sequence
(|η uεk

|1,Ω)k∈N is bounded. Moreover, since |η u0|1,Ω≤ lim inf
k

|η uεk
|1,Ω,

we can conclude the proof.

Proof of Theorem 2ii. Let 0 < ρ < µ and σ0 > 0 be such that

(4.6) y ∈ E, 0 < s < σ0 =⇒ g(y, s)
s

> µ− ρ.

Assume that (uεk
)k∈N converges to u0. Suppose, on the contrary, that

u0 = 0 in Ω. Then uεk
→ 0 almost everywhere in Ω and thus in E.

Since the measure of E is finite, according to Egorov-Severini’s theorem,
we have uεk

→ 0 almost uniformly in E. Then for each σ > 0, there
exist Eσ ⊂ E and k0 such that

|Eσ| < σ and (y ∈ E \ Eσ, k > k0 =⇒ εk + uεk
< σ0).

Therefore (4.6) implies

y ∈ E \ Eσ, k > k0 =⇒ gεk
(y) > (µ− ρ)(εk + uεk

(y)).
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Let ϕ ∈ L1
+(E). In view of the definition of uεk

, (1.1) and Tonelli’s
theorem we compute, for k > k0,∫
E\Eσ

uεk
(x)ϕ(x) dx =

∫
Ω

gεk
(y) dy

∫
E\Eσ

K(x, y)ϕ(x) dx

≥
∫

E\Eσ

gεk
(y) dy

∫
E\Eσ

K(x, y)ϕ(x) dx

≥ (µ− ρ)
∫

E\Eσ

(εk + uεk
(y)) dy

∫
E\Eσ

K(x, y)ϕ(x) dx

≥ (µ− ρ)
∫

E\Eσ

(εk + uεk
(y))

ϕ(y)
λ(E \ Eσ, ϕ)

dy.

Then∫
E\Eσ

(εk + uεk
(x))ϕ(x) dx ≥ µ− ρ

λ(E \ Eσ, ϕ)

∫
E\Eσ

(εk + uεk
(y))ϕ(y) dy

and
λ(E \ Eσ, ϕ) ≥ µ− ρ.

Passing to the infimum with respect to ϕ ∈ L1
+(E), we find

λ(E \ Eσ) ≥ µ− ρ.

Since σ and ρ are arbitrary, according to Theorem 1 we deduce

λ(E) ≥ µ,

but this contradicts the assumption of the Theorem. Then the proof is
complete.

5. Proof of Theorem 4.

Lemma 5.1 (bounds on (agε)ε>0). Assuming λ > 0 and E ⊂ Ω a
measurable set, if ε+ λ ≤ 1 we have the estimate

|agε|1,E ≤ (AE +BE)p/(1+p) + (AE +BE),
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where AE =
∣∣ag∗(·, λ)

∣∣
1,E

, BE =
∣∣ϕ0a

1−p
∣∣1/p

1,E
.

Proof. Employing Tonelli’s theorem and the assumption (K̃a), we
deduce∫

(uε≤λ)∩E

uε(x)gε(x) dx =
∫

[(uε≤λ)∩E]×Ω

K(x, y)gε(x)gε(y) dx dy

≥
∫

[(uε≤λ)∩E]×E

a(x)gε(x)a(y)gε(y) dx dy.

Then∫
(uε≤λ)∩E

uε(x)gε(x) dx+
∫

(uε>λ)∩E

a(x)gε(x) dx · ∣∣agε

∣∣
1,E

≥ ∣∣agε

∣∣2
1,E

.

Making use of the definition of g∗(·, λ) and Remark 2, we discover

(5.1)
∫

(uε≤λ)∩E

uε(x)gε(x) dx+
∣∣ag∗(·, λ)

∣∣
1,E

· ∣∣agε

∣∣
1,E

≥ ∣∣agε

∣∣2
1,E

.

In light of the assumptions (G̃), (K̃c), since ε+ λ < 1, we compute

∫
(uε≤λ)∩E

uε(x)gε(x) dx ≤
∫

(uε≤λ)∩E

(uε(x) + ε)gε(x)1/pgε(x)1/p′
dx

≤
∫

(uε≤λ)∩E

(uε(x) + ε)
(

ϕ0(x)
(uε(x) + ε)p

)1/p

· a(x)−1/p′
(a(x)gε(x))1/p′

dx

=
∫
E

(
ϕ0(x)
a(x)p−1

)1/p

(a(x)gε(x))1/p′
dx

≤ ∣∣ϕ0a
1−p

∣∣1/p

1,E
· ∣∣agε

∣∣1/p′

1,E
.
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Substituting this estimate in (5.1) we obtain:

(5.2)
∣∣ϕ0a

1−p
∣∣1/p

1,E
· ∣∣agε

∣∣1/p′

1,E
+

∣∣ag∗(·, λ)
∣∣
1,E

· ∣∣agε|1,E ≥ ∣∣agε

∣∣2
1,E

.

For short, we define θ = |agε|1,E , A = AE , B = BE , so that (5.2)
becomes:

θ1+1/p ≤ θ1/pA+B.

Then

θ ≤ 1 =⇒ θ1+(1/p) ≤ A+B =⇒ θ ≤ (A+B)p/(p+1),

θ > 1 =⇒ θ1+(1/p) ≤ θ1/p(A+B) =⇒ θ ≤ (A+B).

Thus
θ ≤ (A+B)p/(p+1) + (A+B),

as required.

The absolute continuity of the indefinite integral of ag∗(·, λ) and of
ϕ0a

1−p implies that

Corollary 5.2. Assuming 0 < λ < 1, then there exists δ > 0 such
that, for every measurable set E ⊂ Ω and ε+ λ ≤ 1,

|E| < δ =⇒ ∣∣agε

∣∣
1,E

< λ.

Lemma 5.3 (“local” convergence). Assume H1, (G̃), (K̃). Then
Lemma 0 holds.

Proof. By the previous lemma (agε)ε>0 is bounded in L1(Ω) and
consequently in all L1(Ωn). In view of the assumption (K̃b), also (gε)ε>0

is bounded in every L1(Ωn). Thus, the hypotheses of Lemma 0 are
satisfied.

Lemma 5.4 (pointwise convergence). uk → u0 almost everywhere in
Ω.
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Proof. According to Tonelli’s and Fubini’s theorems and the assump-
tion (K̃a), we discover∫

Ω

u′′k,n(x) η(x) dx =
∫

Ω\Ωn

gεk
(y) dy

∫
Ω

K(x, y) η(x) dx

≤
∫

Ω\Ωn

gεk
(y)a(y) dy

=
∫

Ω\Ωn

agεk
dy.

Using Corollary 5.2 we obtain

lim
n

∫
Ω

u′′k,nη dx = 0,

uniformly with respect to k.

The rest of the proof runs as that of the Lemma 4.5.

We next claim a lemma of “partial” convergence slightly more general
than Lemma 4.6.

Lemma 5.5. Assume ϕ ∈ C(R+) ∩ L∞(R+), β ∈ L1(Ω), β ≥ 0,
almost everywhere. Then

lim
k

∫
Ωn

∣∣ϕ(u′k,n) − ϕ(vn)
∣∣β1/p(agεk

)1/p′
dx = 0

and

lim sup
k

∫
Ωn

ϕ(u′k,n)β1/p(agεk
)1/p′

dx = lim sup
k

∫
Ωn

ϕ(vn)β1/p(agεk
)1/p′

dx,

for each n ∈ N.

Proof. Let 0 < λ ≤ 1/2 and k0 ∈ N such that εk ≤ 1/2, k0 < k.
According to Corollary 5.2, there exists δ > 0 such that

|E| < δ =⇒ ∣∣agεk

∣∣
1,E

< λ,
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for every measurable set E ⊂ Ω and k0 < k. Since lim
k
u′k,n = vn almost

everywhere in Ωn, then lim
k
ϕ(u′k,n) = ϕ(vn) almost everywhere in Ωn

and also in measure. Precisely, if we define

Ωk,n =
{
x ∈ Ωn

∣∣ |ϕ(u′k,n)(x) − ϕ(vn)(x)| > λ
}
,

there exists k̄ ≥ k0 such that

(5.3) k > k̄ =⇒ |Ωk,n| < δ =⇒ |agεk
|1,Ωk,n

< λ.

Then we compute

k > k̄ =⇒ Ik,n :=
∫
Ωn

|ϕ(u′k,n) − ϕ(vn)|β1/p(agεk
)1/p′

dx

≤ ∣∣β∣∣1/p

1,Ωn

{
2
∣∣ϕ∣∣

∞,R+

∣∣agεk

∣∣1/p′

1,Ωk,n
+ λ

∣∣agεk

∣∣1/p′

1,Ωn

}
.

Next, utilizing (5.3) and Lemma 5.1, we deduce that

k > k̄ =⇒ Ik,n

≤ ∣∣β∣∣1/p

1,Ωn

{
2|ϕ|∞,R+λ

1/p′
+ λ

[
T (Ωn)p/(p+1) + T (Ωn)

]1/p′}
.

Since λ was arbitrary we conclude the proof.

Proof of Theorem 4i. If 0 < ess infu0, applying Lemma 5.4 and
Lemma 3 of [9], we deduce the claim. If 0 = ess infu0, there exists a
decreasing sequence (Xl)l∈N of measurable sets such that |Xl| > 0, and

(5.4) ∀x ∈ Xl : u0(x) ≤ 1
1 + l

, ∀x �∈ Xl :
1

1 + l
< u0(x).

Since u0 = sup
n
vn, it follows also that

(5.5) ∀x ∈ Xl : vn(x) ≤ 1
1 + l

.

Remembering the definition of u′k,n and the assumption (K̃a), we
discover

u′k,n(x) ≥ a(x)
∫
Ωn

a(y)gεk
(y) dy, x ∈ Ω.



HAMMERSTEIN INTEGRAL EQUATION 267

Hence, if we multiply both sides for

gεk

1 + u′k,n

and integrate on Ωn ∩Xl, it follows that

|agεk
|1,Ωn

∫
Ωn∩Xl

agεk

1 + u′k,n

dx

≤
∫

Ωn∩Xl

u′k,ngεk

1 + u′k,n

dx

=
( ∫

Ωn∩Xl∩(εk+uεk
≤1)

+
∫

Ωn∩Xl∩(εk+uεk
>1)

)
u′k,n

1+u′
k,n

g1/(2p)
εk,n

g1/(2p)′
εk,n

dx

≤
∫

Ωn∩Xl∩(εk+uεk
≤1)

u′k,n

1+u′k,n

(
ϕ0

(εk+uεk
)p

)1/(2p)

a−1/(2p)′(agεk
)1/(2p)′ dx

+
∫

Ω∩Xl∩(εk+uεk
>1)

u′k,n

1 + u′k,n

g∗(·, 1) dx

≤
∫

Ωn∩Xl

√
u′k,n

1+u′k,n

(
ϕ0

a2p−1

)1/(2p)

(agεk
)1/(2p)′ dx+

∫
Ωn∩Xl

u′k,n

1+u′k,n

g∗(·, 1) dx.

Since (|agεk
|1,Ωn

)k∈N is bounded, see Lemma 5.1, according to
Lemma 5.5 we discover

lim
k

(
|agεk

|1,Ωn

∫
Ωn∩Xl

∣∣∣ 1
1 + u′k,n

− 1
1 + vn

∣∣∣ agεk
dx

)
= 0.

Therefore, from the latter estimate, in view of Lemma 5.5 and (5.5),
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we deduce
1 + l

2 + l

(
lim sup

k
|agεk

|1,Ωn∩Xl

)2

≤ lim sup
k

(
|agεk

|1,Ωn

∫
Ωn∩Xl

agεk

1 + u′
k,n

dx

)

≤ lim sup
k

∫
Ωn∩Xl

√
vn

1 + vn

(
ϕ0

a2p−1

)1/(2p)

(agεk
)1/(2p)′ dx

+
∫

Ωn∩Xl

vn

1 + vn
g∗(·, 1) dx

≤
√

1 + l

2 + l

|ϕ0a
1−p|1/(2p)

1,Ωn∩Xl√
ess inf

Ωn

a
lim sup

k
|agεk

|1/(2p)′

1,Ωn

+
1

2 + l
|g∗(·, 1)|1,Ωn

,

and consequently(
lim sup

k
|agεk

|1,Ωn∩Xl

)2

≤ 1√
1+l

|ϕ0a
1−p|1/(2p)

1,Ωn√
ess inf

Ωn

a

(
lim sup

k
|agεk

|1,Ωn∩Xl

)1/(2p)′

+
1

1 + l
|g∗(·, 1)|1,Ωn

.

Define

Sn =
|ϕ0a

1−p|1/(2p)
1,Ωn√

ess inf
Ωn

a
+ |g∗(·, 1)|1,Ωn

,

exactly as in the proof of Lemma 5.1, and we have

(5.6) lim sup
k

|agεk
|1,Ωn∩Xl

≤
( Sn√

1 + l

)1/2

+
( Sn√

1 + l

)(2p)/(1+2p)

.

Since

u′k,n(x) =
( ∫

Ωn\Xl

+
∫

Ωn∩Xl

)
K(x, y)gεk

(y) dy,
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we see from the second of (5.4), Lemma 3 of [9] and Lemma 5.4, upon
passing to the limit, as k → +∞, that

vn(x) =
∫

Ωn\Xl

K(x, y)g(y, u0(y)) dy + lim
k

∫
Ωn∩Xl

K(x, y)gεk
(y) dy.

Multiplying the above identity by η(x) and integrating over Ωn, we
deduce

∆n :=
∫
Ωn

η(x)
∣∣∣∣vn(x) −

∫
Ωn\Xl

K(x, y)g(y, u0(y)) dy
∣∣∣∣ dx

≤ lim inf
k

∫
Ωn∩Xl

gεk
(y) dy

∫
Ωn

K(x, y) η(x) dx

≤ lim inf
k

∫
Ωn∩Xl

a(y)gεk
(y) dy.

Employing (5.6) in the last inequality we find

∆n ≤
(

Sn√
1 + l

)1/2

+
(

Sn√
1 + l

)(2p)/(1+2p)

.

Passing to the limit, as l → +∞, we deduce for all n ∈ N:

lim
l

∫
Ωn

η(x)
∣∣∣∣ vn(x) −

∫
Ωn∩(1/(1+l)<u0)

(x, y)g(y, u0(y)) dy
∣∣∣∣ dx = 0.

Thus, for n ∈ N,

v
n
(x) = lim

l

∫
Ωn∩((1/1+l)<u0)

K(x, y)g(y, u0(y)) dy

=
∫

Ωn∩(0<u0)

K(x, y)g(y, u0(y)) dy, x ∈ Ωn a.e.

Letting n→ +∞, we deduce the proof.
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Proof of Theorem 4ii. Let N := (u0 = 0). If |N | = 0, the claim is
true, if |N | > 0 we observe, remembering the condition (K̃a), that

∀x ∈ N : a(x)
∫

Ωn\N

a(y)g(y, u0(y)) dy ≤ 0.

Then
∀n ∈ N :

∫
Ωn\N

a(y)g(y, u0(y)) dy = 0.

Now, according to the assumption (K̃b), we deduce

∀n ∈ N : g(·, u0) = 0 a.e. in Ωn \ N ,

and thus
g(·, u0) = 0 a.e. in Ω \ N .

The latter equality implies

u0(x) =
∫

Ω\N

K(x, y)g(y, u0(y)) dy = 0, x ∈ Ω a.e.,

then Ω = N .

Proof of Theorem 4iii. The proof is like that of Theorem 2ii.
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