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FAST BOOLEAN APPROXIMATION METHODS
FOR SOLVING INTEGRAL EQUATIONS

IN HIGH DIMENSIONS

YUESHENG XU AND AIHUI ZHOU

ABSTRACT. Solving integral equations in high dimensions
requires a huge computational effort and hence fast methods
are desirable. We develop and analyze Boolean approximation
methods using the piecewise constant functions for solving in-
tegral equations of the second kind on a unit cube in Rd,
including the Boolean Galerkin method and the Boolean col-
location method. These schemes are based on an idea from
Boolean sum approximation to obtain a linear combination of
multiple coarse levels of approximations. We prove that these
schemes provide fast computational methods. Specifically,
they have convergence in order O(h logd−1(h−1)), with com-

putational cost in order O(h−1 logd−1(h−1)), as h → 0, where
h is the mesh size used in the methods. For the special case
when d = 2, we develop an iterated Boolean Galerkin method
and prove the super-convergence property of this method.

1. Introduction. Integral equations of the second kind with smooth
kernels in high dimensions have important applications in many areas
such as physics, engineering and finance. Regularization of integral
equations of the first kind also leads to integral equations of the second
kind with smooth kernels (see, for example, [12] and the references
cited therein). In particular, for applications of high-dimensional inte-
gral kernels in learning theory, see a recent paper [6]. In some areas
of machine learning, a meaningful dimension is in the hundreds. Solv-
ing integral equations in high dimensions is a very challenging task
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due to huge computational cost, and thus, fast numerical schemes are
highly desirable. In this paper we propose fast methods using a com-
bination technique based on Boolean approximations for solving high-
dimensional integral equations of the second kind with a smooth ker-
nel. Due to the high-dimensional nature of these equations, we will use
the space of the piecewise constant functions as our approximation
space and consider both Boolean Galerkin and Boolean collocation
methods. In these methods, we construct Boolean sums of approxi-
mate solutions obtained from the Galerkin method or the collocation
method using different mesh sizes to reduce order of computational
complexity while preserving order of convergence of the correspond-
ing standard method. Specifically, the proposed methods have con-
vergence of order O(h logd−1(h−1)), with computational cost in order
O(h−1 logd−1(h−1)), where d is the dimension and h is the mesh size
used in the methods. Let us now explain what we mean in this paper
by the computational cost. The term computational cost used in this
paper refers to the total number of grid points in the partitions with
different mesh sizes used in the methods. These methods have almost
the same order of convergence as that O(h) for the standard methods
and reduce significantly the computational cost O(h−d) for the stan-
dard methods. Another important property of this method is that it
can be parallelized in a very efficient manner.

We now use the two-dimensional case as an example to demonstrate
the key idea of these methods. Let hx and hy denote the mesh-size
in x-axis and y-axis, respectively, and let Rhx,hy

u be the Galerkin
approximation of the solution u of an equation on a uniform rectangle
grid of hx and hy. Suppose that h := 2−n is the finest mesh-size. The
combination solution of level n is defined by

uc
h :=

n∑
i=1

R2−i,2i−n−1u−
n−1∑
i=1

R2−i,2i−nu.

We will call uc
h the multi-level Boolean-Galerkin approximation of

u. Usually the approximate solution uc
h is nearly as accurate as the

approximate solution Rh,hu while the computational cost required for
the calculation of solutions Rhx,hy

u, which are used for the calculation
of uc

h, is much less than that for the calculation of Rh,hu. Note that
the computational cost for Rh,hu is O(22n) while that for uc

h is O(n2n).
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The Boolean sum approximation is also used in [11] in conjunction
with the degenerate kernel scheme for solving integral equations to
achieve a higher order of convergence. The d-dimensional Boolean
sum approximation studied in this paper is closely related to the d-
dimensional Boolean interpolation which is first constructed in [7]. This
technique is originally used in [9] to reduce computational complexity
in the numerical solutions of partial differential equations and it has
been extensively studied in, e.g., [3, 4, 16 18]. This combination
technique is analogous to the sparse grid method and the multi-
parameter extrapolation method discussed in [19, 21, 22].

In this paper we will study the Boolean approximation methods for
solving integral equations of the second kind, including the Boolean
Galerkin and Boolean collocation methods, aiming at reducing the
computational complexity with preserving the order of accuracy. In
Section 2 we describe a combination technique based on the Boolean ap-
proximation and review results on the convergence order of the Boolean
approximations. Sections 3 and 4 are devoted to the development of
the Boolean Galerkin method and Boolean collocation method for solv-
ing integral equations of the second kind, respectively. In Section 5
we develop the Boolean iterated Galerkin approximation for solving
two-dimensional integral equations of the second kind and prove the
super-convergence property of the iterated method.

2. The Boolean approximation. In this section we describe
a combination technique based on the Boolean approximation. This
technique will be used in the next three sections to develop Boolean
approximation schemes for solving Fredholm integral equations of the
second kind defined on the unit cube in Rd.

We begin with the definition of notations. Let := [0, 1]d be the unit
cube in Rd. We use W s,p( ) to denote the standard Sobolev spaces
of functions whose derivatives of order less than or equal to s are in
Lp( ). We denote by N0 the set of all nonnegative integers. For a
function v ∈W s,p( ), a point x := (x0, x1, . . . , xd−1) ∈ and an index
α := (α0, α1, . . . , αd−1) ∈ Nd

0 , we let

(Dαv)(x) :=
(
∂α0

∂xα0
0

· · · ∂
αd−1v

∂x
αd−1
d−1

)
(x).
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The norms and semi-norms for the space W s,p( ) are defined by

‖v‖s,p :=
( ∑

|α|≤s

‖Dαv‖p
p

)1/p

and |v|s,p :=
( ∑

|α|=s

‖Dαv‖p
p

)1/p

,

respectively, see, e.g., [1, 5]. When p = 2, we let Hs( ) = W s,p( ),
‖ ·‖s = ‖ ·‖s,p, ‖ ·‖ = ‖ ·‖0 and we use (·, ·) for the standard L2( ) inner
product. We will also use the negative norm ‖ · ‖−1, which is defined
for w ∈ H−1( ) := (H1( ))∗ by

‖w‖−1 = sup
φ∈H1( )

(w, φ)
‖φ‖1

.

One of our purposes in this section is to describe the multi-dimensional
tensor product interpolation operator. To this end, we first define the
interpolation operator in one dimension. For a positive integer n, we
let Zn := {0, 1, . . . , n − 1} and h := 1/n. Let Th[0, 1] be a uniform
mesh of the interval [0, 1] with the mesh size h, i.e.,

Th[0, 1] := {[ih, (i+ 1)h) : i ∈ Zn}.
We use ∂2Th[0, 1] to denote the set of the midpoints of the subintervals
in the mesh Th[0, 1], namely,

∂2Th[0, 1] =
{(

i+
1
2

)
h : i ∈ Zn

}
.

Define the space of piecewise constant functions in L∞[0, 1] by setting

Sh[0, 1] := {v ∈ L∞[0, 1] : v|τ is constant, τ ∈ Th[0, 1], v(0) = v(1)}.
We consider the space of continuous periodic functions on [0, 1]

Cp[0, 1] := {v ∈ C[0, 1] : v(0) = v(1)}
and note that the derivative of a differentiable function in Cp[0, 1] is
also periodic. Let Ih : Cp[0, 1] → Sh[0, 1] be the Lagrange interpolation
operator defined for v ∈ Cp[0, 1] by the equations

(Ihv)(t) = v(t), t ∈ ∂2Th[0, 1], and (Ihv)(1) = v

(
h

2

)
.
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We next describe the multi-dimensional notation. For h = (h0, . . . ,
hd−1), where hj is either 0 or 2−ij with ij ∈ N0, define a mesh of the
unit cube in Rd by

Th = Th0 [0, 1] × · · · × Thd−1 [0, 1]

and note that Th provides a partition for the unit cube . The
corresponding space of piecewise constant functions on is then defined
by

Sh( ) = Sh0 [0, 1] ⊗ · · · ⊗ Shd−1 [0, 1].

We remark that Sh( ) is the tensor product space of the space of
piecewise constant functions on the interval [0, 1]. The interpolation
operator from Cp( ) := Cp[0, 1] × · · · × Cp[0, 1], d times, into Sh( ) is
defined by

Ih = Ih0 ◦ · · · ◦ Ihd−1 .

For α = (α0, α1, . . . , αd−1) we set

hα := hα0
0 · · ·hαd−1

d−1 ,

and
hα := (h0α0, . . . , hd−1αd−1).

We define the order α ≤ β for the elements α, β ∈ {0, 1}d by αi ≤ βi

for all i ∈ Zd. Furthermore, we denote 0 := (0, . . . , 0) ∈ Rd,
e := (1, . . . , 1) ∈ Rd and for i ∈ Zd, ei := (0, . . . , 0, 1, 0, . . . , 0) ∈ Rd

whose ith component is one and zero otherwise. We observe that, if
α+ β ≤ e, then

(2.1) DαIh(e−β) = Ih(e−β)D
α.

We also need the notion of the mixed Sobolev space (cf., [18]), defined
for α ∈ {0, 1}d and 1 ≤ p ≤ ∞ by

Wα,p
mix( ) := {w ∈ Lp( ) : Dβw ∈ Lp( ), for all β with 0 ≤ β ≤ α}

with the associated norm given for v ∈Wα,p
mix( ) by

‖v‖W α,p
mix

:=
( ∑

0≤β≤α

‖Dβv‖2
p

)1/2

.
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In particular, we denote

Hα( ) := Wα,2
mix( ).

Noticing the basic interpolation estimate, that is, there exists a
positive constant c such that, for i ∈ Zd,

(2.2) ‖v − Ihei
v‖ ≤ chi‖Deiv‖, for all v ∈ Hei( ),

we conclude that there exists a positive constant c for all v ∈ He( )
such that

(2.3) ‖v − Ihv‖ ≤ cmax{h0, . . . , hd−1}‖v‖He .

For 0 ≤ α ≤ e, we define the error operator Πα
h by

Πα
h :=

∏
0≤β≤α
|β|=1

(I − Ihβ)

and record in the next lemma a result regarding this operator which
was established in [18].

Lemma 2.1. There hold the following statements.

(i) For 0 ≤ β ≤ e,

I − Ihβ = −
∑

0≤α≤β
|α|≥1

(−1)|α|Πα
h.

(ii) For α, β, α + β ∈ {0, 1}d, if v ∈ Hα+β( ), then there exists a
positive constant c such that

‖Πα
hv‖Hβ ≤ chα‖v‖Hα+β .

We next define the orthogonal projection from L2( ) onto Sh( ). Let
Ph : L2( ) → Sh( ) be the L2 projection defined as follows. For every
v ∈ L2( )

(v − Phv, s) = 0 for all s ∈ Sh.
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It can be verified that, for any 0 ≤ α, β ≤ e with α + β ≤ e, there
holds the identity that, for every v ∈ Hα( ) ∩ Cp( ),

(2.4) DαPhβv = PhβD
αv.

We also have the estimates of the order of convergence for the projection
Ph which we describe below. If v ∈ He( ), then there exists a positive
constant c for all i ∈ Zd,

(2.5) ‖v − Phei
v‖ ≤ chi‖Deiv‖

and

(2.6) ‖v − Phv‖ ≤ cmax{h0, . . . , hd−1}‖v‖He .

Next we describe the Boolean approximation to a given function. For
this purpose we define the index set Jd

n := {1, 2, . . . , n}d for a given
integer n ∈ N . For a vector i = (i0, . . . , id−1) ∈ Jd

n, we choose

h = hi = (h0, . . . , hd−1) := (2−i0 , . . . , 2−id−1).

Let Wn := {whi
: i ∈ Jd

n} be a sequence of approximations to a function
w ∈ L2( ). We construct from this sequence of approximations the
Boolean approximation wc

h, h := 2−n to w by the formula

(2.7) wc
h :=

d−1∑
k=0

(−1)k

(
d− 1
k

) ∑
|i|=n+d−k−1

i∈Jd
n

whi
.

In particular, for interpolation projection Ihi
, we have the Boolean

interpolation Ic
hu for u ∈ C( ) defined by

Ic
hu :=

d−1∑
k=0

(−1)k

(
d− 1
k

) ∑
|i|=n+d−k−1

i∈Jd
n

Ihi
u.

Likewise, for the orthogonal projection Phi
, we have the Boolean

orthogonal projection P c
hu for u ∈ L2( ) defined by

P c
hu :=

d−1∑
k=0

(−1)k

(
d− 1
k

) ∑
|i|=n+d−k−1

i∈Jd
n

Phi
u.
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When d = 2 formula (2.7) reduces to

(2.8) wc
h :=

n∑
k=1

w(2−k,2−(n+1−k)) −
n−1∑
k=1

w(2−k,2−(n−k)).

We also have similar formulas for Ic
hu and P c

hu in the two-dimensional
case. Formulas of this type use a combination of approximations from
Wn to construct a better approximation for w. This technique was used
in [7] to develop a Boolean interpolation for a function of d variables,
in [11] to obtain an approximation solution of integral equations of
higher convergence order with a fixed computational complexity and
also in [16, 17] and [18] to construct fast numerical solutions of partial
differential equations with preserving order of convergence.

We now remark on the computational complexity of this Boolean
combination technique. To do this, we define the sparse grid and sparse
space associated with the partition The( ), respectively, by

Gn
d :=

⋃
|i|=n+d−1

i∈Jd
n

∂2Thi( ),

and

Sn
d :=

⋃
|i|=n+d−1

i∈Jd
n

Shi( ).

Clearly, wc
h ∈ Sh

d is defined on Gh
d . It follows from [16] and [8] that

both the cardinality of Gn
d and dimension of Sh

d are of order O(2nnd−1).
Thus the computational complexity for wc

h is O(2nnd−1), which is
significantly less than O(2nd).

We next demonstrate that the Boolean approximation preserves more
or less the order of convergence. The convergence of the Boolean
approximations depends on the properties of the hierarchical surplus
which will be defined below. For α ∈ Jd

n, we define the hierarchical
surplus operator for δα by

δαwh :=
∑

0≤β≤α

(−1)|β|wh(e+β)
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and call δαwh an |α|-dimensional hierarchical surplus of wh. Let us
illustrate this operator by two simple examples in the case d = 2.
When α = (1, 0), we have that

δ(1,0)wh0,h1 = wh0,h1 − w2h0,h1

and when α = (1, 1) we have that

δ(1,1)wh0,h1 = wh0,h1 − w2h0,h1 − w2h0,h1 + w2h0,h1 .

We now return to the discussion of the hierarchical surplus in a general
case. Note that

whe =
∑

0≤α≤e
0≤i≤e

δαwh =
∑

1≤|hα|≤nd

δαwh

=
∑

|hα|≥n+d

δαwh +
∑

|hα|≤n+d−1

δαwh.

By an induction argument we obtain the equation∑
|hα|≤n+d−1

δαwh = wc
h,

which implies that

(2.9)
∑

|hα|≥n+d

δαwh = whe − wc
h.

Moreover, if there exists a positive constant c(w) depending only on w
such that

(2.10) ‖δαwh‖ ≤ c(w)hα

then there holds the estimate∥∥∥∥ ∑
|hα|≥n+d

δαwh

∥∥∥∥ ≤ c(w)
∑

|hα|≥n+d

2−|hα| ≤ c(w)h(log h−1)d−1.

Using this estimate, we then obtain an estimate of convergence order
of the combination solution, cf. [16] and [18], which we state in the
next theorem.



92 Y. XU AND A. ZHOU

Theorem 2.2. Suppose that there exists a positive constant c(w)
depending only on w such that inequality (2.10) holds for every 0 ≤
α ≤ e and

‖w − wh‖ ≤ c(w) max{h0, . . . , hd−1}.
Then

‖w − wc
h‖ ≤ c(w)h logd−1(h−1).

Let wh denote either the interpolation projection or the orthogonal
projection of w. From (2.1) and (2.4), it is not difficult to show that
estimate (2.10) holds for these cases.

Lemma 2.3. Let w ∈ Hα( ). If wh := Ihw or wh := Phw, then

‖δαwh‖ ≤ chα‖w‖Hα .

By Lemma 2.3 and Theorem 2.2, we obtain the next result.

Theorem 2.4. Let w ∈ He( ) and wh := Ihw or wh := Phw. Then

‖w − wc
h‖ ≤ ch logd−1(h−1)‖w‖He .

3. The Boolean Galerkin method. This section is devoted to
the development of the Boolean Galerkin method for solving integral
equations. The main purpose of this section is to estimate the order of
convergence and computational complexity of the method.

Suppose that kernel k ∈ Cp( × ) is periodic, i.e.,

k(x+ ei, y) = k(x, y) = k(x, y + ei), x, y ∈ , i ∈ Zd

and is nonnegative, i.e.,

k(x, y) ≥ 0 and k(x, y) 
≡ 0, x, y ∈ .

As a result, the operator K : L2( ) → L2( ) defined by

(Ku)(x) =
∫
k(x, y)u(y) dy, x ∈ , u ∈ L2( )
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is a compact, positive integral operator. With the integral operators
of this type, we consider the Fredholm integral equations of the second
kind

(3.1) u+Ku = f

where u ∈ L2( ) is the unknown to be determined and f ∈ L2( ) is
a given function. Obviously, the inverse operator (I + K)−1 exists as
a bounded operator on L2( ). In other words, equation (3.1) has a
unique solution u in L2( ) and there exists a positive constant c such
that

‖u‖ ≤ c‖f‖.

The Galerkin projection Rh : L2( ) → Sh( ) is defined by

((I +K)(Rhu− u), v) = 0, for all v ∈ Sh( ).

In the next theorem we present an estimate for the derivatives of the
Galerkin projection Rhu for any u ∈ Hα( ) ∩ Cp( ). For this purpose,
in addition, we require that kernel k ∈ Hα( × ) ∩ Cp( × ).

Theorem 3.1. Suppose kernel k ∈ Hα( × ) ∩ Cp( × ) is
nonnegative. Let α, β ∈ {0, 1}d with α+ β ≤ e. If w ∈ Hα( ) ∩ Cp( ),
then

‖DαRhβw‖ ≤ c(‖Dαw‖ + ‖w‖).

Proof. From (2.4) and the identity

(I + PhβK)Rhβw = Phβ(I +K)w,

we obtain

(3.2) DαRhβw = PhβD
α(I +K)w − PhβD

αKRhβw.

Since K is positive, we have that the operators

(I + PhβK)−1 : L2( ) → L2( )
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exist and are uniformly bounded. As a result, we get

(3.3) ‖Rhβw‖ ≤ c‖w‖.

Combining (3.2) and (3.3) we obtain

‖DαRhβw‖ ≤ ‖PhβD
α(I +K)w‖ + ‖PhβD

αKRhβw‖
≤ c(‖Dαw‖ + ‖w‖) + c‖Rhβw‖
≤ c(‖Dαw‖ + ‖w‖).

This completes the proof.

We will assume that the kernel k is nonnegative without further
mention.

Corollary 3.2. (i) If k ∈ He( × )∩Cp( × ) and u ∈ He( ), then
there exists a positive constant c such that

(3.4) ‖u−Rhu‖ ≤ c inf
v∈Sh

‖u− v‖ ≤ cmax{h0, . . . , hd−1}‖u‖He .

(ii) If k ∈ Hei( × ) ∩Cp( × ) and u ∈ Hei( ) ∩Cp( ) for i ∈ Zd,
then there exists a positive constant c such that

(3.5) ‖δeiRhu‖ ≤ chi(‖Dxi
u‖ + ‖u‖), i ∈ Zd.

Proof. Part (i) follows immediately from estimate (2.5). It remains to
prove part (ii). To this end, for i ∈ Zd, we define êi = e− ei, noticing
that the ith component of the vector êi is zero and one otherwise. Note
that

Rhu−Rhêi
u = (Rh − I)Rhêi

u.

By part (i) of this corollary and Theorem 3.1, we have that there exists
a positive constant c such that

‖Rhu−Rhêi
u‖ ≤ chi‖DeiRhêi

u‖ ≤ chi(‖Deiu‖ + ‖u‖).

The triangle inequality then completes the proof.
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We now turn our attention to the convergence analysis of the com-
bination solution based on the Galerkin method for integral equation
(3.1).

Theorem 3.3. Suppose that k ∈ He( × ) ∩ Cp( × ) and
u ∈ He( ) ∩ Cp( ). If 0 ≤ α ≤ e, then

(3.6) ‖δαRhu‖ ≤ chα‖u‖Hα .

Proof. Since for 0 ≤ α ≤ e and u ∈ Hα( ) ∩ Cp( ) we have that

δαRhu = δαRhRh(e−α)u,

and there exists a positive constant c such that

‖Rh(e−α)u‖Hα ≤ c‖u‖Hα ,

we only need to prove (3.6) for u ∈ Sh(e−α) ∩Hα( ) ∩ Cp( ).

For this purpose, following [18], we employ induction on |α| =
1, 2, . . . , d. When |α| = 1, this is the case in part (ii) of Corollary
3.2. We now assume that (3.6) holds for the case |α| = l − 1 and
proceed to the case when |α| = l. Because u ∈ Sh(e−α) ∩ Cp( ), we
obtain that Ihαu ∈ Sh ∩Cp( ). Thus, by Lemma 2.1, we conclude that

δαRhu = δαRh(I − Ihα)u+ δαRhIhαu

= −δαRh

( ∑
β≤α
|β|≥1

(−1)|β|Πβ
hu

)
+ δαIhαu.

Lemma 2.3 ensures that there exists a positive constant c such that

‖δαIhαu‖ ≤ chα‖u‖Hα .

Therefore, it suffices to show that there exists a positive constant c
such that for β ≤ α and |β| ≥ 1,

‖δαRhΠβ
hu‖ ≤ chα‖u‖Hα .
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Suppose that |β| ≥ 1 and β ≤ α. This implies |α − β| < |α| ≤ l
and thus, by the induction hypothesis, we conclude that there exists a
positive constant c such that

‖δαRhΠβ
hu‖ = ‖δβδα−βRhΠβ

hu‖
≤ cmax

β
(‖δα−βRhΠβ

hu‖)

≤ cmax
β

(‖δα−βRhRh(e−(α−β))Π
β
hu‖)

≤ cmax
β

(hα−β‖Rh(e−(α−β))Π
β
hu‖Hα−β ),

where
max

β
(wh) = max

0≤γ≤β
|wh(e+γ)|.

By employing Theorem 3.1 and Lemma 2.1, we obtain that there exists
a positive constant c such that

‖δαRhΠβ
hu‖ ≤ cmax

β
(hα−β‖Πβ

hu‖Hα−β )

≤ cmax
β

(hα−βhβ‖u‖Hα)

≤ chα‖u‖Hα ,

which advances the induction process and proves the result.

We now present the main result of this section. We will use #(uc
h) for

the number of multiplications required to construct uc
h. Throughout

this paper, we assume that solving uh requires the number of multi-
plications proportional to the dimension of the vector representing uh.
This can be done by using matrix compression techniques.

Theorem 3.4. Suppose that k ∈ He( × ) ∩ Cp( × ) and
u ∈ He( ) ∩ Cp( ). If uh = Rhu, then there exists a positive constant
c such that

‖u− uc
h‖ ≤ c2−nnd−1‖u‖He

and
#(uc

h) = O(2nnd−1).
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Proof. The first result follows directly from Theorems 3.3 and 2.2
and the convergence of the finite element solution Rhu.

To obtain the estimate for #(uc
h), for each l ∈ Zd, we let

Jl := {i ∈ Jd
n : |i| = n+ d− l − 1}

and note that
#(Jl) ≤ (n+ d− l − 1)d−1.

Therefore, there exists a positive constant c such that

#(uc
h) ≤

d−1∑
l=0

(
d− 1
l

)
#(Jl)2n+d−l−1 ≤ c2nnd−1,

which completes the proof.

We remark that the standard Galerkin method using the piecewise
constant functions has order of convergence given by O(2−n) and
requires computational cost at order O(2dn). Theorem 3.4 shows that,
with a little price at order of convergence, our method reduces the
computational complexity from O(2dn) to O(2nnd−1). This reduction
is significant when d or n is large.

4. The Boolean collocation method. In this section we discuss
the Boolean collocation method for solving integral equation (3.1) when
f ∈ L∞( ). Let K : L∞( ) → L∞( ) be a bounded integral operator
with a kernel k satisfying the conditions described in Section 3. Thus
the inverse operator (I+K)−1 exists as a bounded operator on L∞( ).
Namely, equation (3.1) has a unique solution u ∈ L∞( ) and there
exists a positive constant c such that

‖u‖∞ ≤ c‖f‖∞.

The collocation projection Rh : L∞( ) → Sh is defined by

(4.1) (I + IhK)Rhu = Ihf,

recalling that Ih is the interpolation projection defined in Section 2.
We have the following result similar to Theorem 3.1.
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Theorem 4.1. Suppose that the kernel k ∈ Wα,∞
mix ( × ). Let

α, β ∈ {0, 1}d with α + β ≤ e. If w ∈ Wα,∞
mix ( ) ∩ Cp( ), then there

exists a positive constant c such that

(4.2) ‖DαRhβw‖∞ ≤ c(‖Dαw‖∞ + ‖w‖∞).

Proof. In the proof of Theorem 3.1, replacing the orthogonal projec-
tion Ph by the interpolation projection Ih, we prove this result.

Corollary 4.2. If k ∈ W e,∞
mix ( × ) and u ∈ W e,∞

mix ( ), then there
exists a positive constant c such that

(4.3) ‖u−Rhu‖∞ ≤ cmax{h0, . . . , hd−1}‖u‖W e,∞
mix

.

If k ∈ W ei,∞
mix ( × ) and u ∈ W ei,∞( ) ∩ Cp( ) for i = 0, 1, . . . , d− 1,

then there exists a positive constant c such that

(4.4) ‖δeiRhu‖∞ ≤ chi(‖Deiu‖∞ + ‖u‖∞).

Proof. Estimate (4.3) follows directly from the fact that there exists
a positive constant c such that

‖u−Rhu‖∞ ≤ c inf
v∈Sh

‖u− v‖∞ ≤ cmax{h0, . . . , hd−1}‖u‖W e,∞
mix

.

To show estimate (4.4), it suffices to prove the identity

(4.5) RhRhêi
u = Rhu, i = 0, 1, . . . , d− 1.

Note that
IhIhêi

= Ih.

This identity ensures that

Ih(I +K)Rhêi
u = Ih((I + Ihêi

K)Rhêi
u)

= IhIhêi
(I +K)u)

= Ih(I +K)u.
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Hence, from definition (4.1), we have that

(I + IhK)RhRhêi
u = (I + IhK)Rhu.

This yields equation (4.5).

Using Corollary 4.2 and replacing the orthogonal projections in The-
orem 3.3 by the corresponding interpolation projections, we obtain the
next result regarding the surplus of the collocation projection of u.

Theorem 4.3. Suppose that k ∈ W e,∞
mix ( × ) and u ∈ W e,∞

mix ( ) ∩
Cp( ). If 0 ≤ α ≤ e, then there exists a positive constant c such that

‖δαReu‖∞ ≤ chα‖u‖W α,∞
mix

.

The main result of this section follows directly from Theorem 4.3.

Theorem 4.4. Suppose that k ∈ W e,∞
mix ( × ) and u ∈ W e,∞

mix ( ) ∩
Cp( ). If uh := Rhu, then there exists a positive constant c such that

‖u− uc
h‖∞ ≤ c2−nnd−1‖u‖W e,∞

mix

and

#(uc
h) = O(2nnd−1).

5. The Boolean iterated Galerkin approximation. In this
section we derive the Boolean iterated Galerkin approximation for
integral equations on a unit cube := [0, 1] × [0, 1] in R2. Specifically,
we consider Fredholm integral equations of the second kind

(5.1) u(x, y) +
∫ 1

0

∫ 1

0

k(x, y; s, t)u(s, t) ds dt = f(x, y), (x, y) ∈ ,

where k ∈ H1( × ). We develop a Boolean combination solution based
on the iterated Galerkin approximation for the solution of equation
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(5.1) and show such a solution possesses super-convergence. Through-
out this section we will write hx and hy for h0 and h1, Dx and Dy for
D(1,0) and D(0,1). In order to obtain a super-convergence result, we
assume that the kernel k and the solution u of equation (5.1) has a
higher order of smoothness. Precisely, we consider the space

(5.2) H1,2( ) := {w ∈ H1( ) : DxDyw ∈ L2( )},

with the norm defined for w ∈ H1,2( ) by

‖w‖H1,2 := ‖w‖H1 + ‖DxDyw‖,

and assume that k ∈ C2( × ). For the Galerkin approximation
uh := uh = Rh,hu to the solution of equation (5.1) with h := 2−n,
we define the iterated Galerkin approximation by the equation

(5.3) ũh := f −Kuh

and the Boolean iterated Galerkin approximation ũc
h by formula (2.7)

with wh replaced by
ũh := f −Kuh,

where uh := Rhu. The main purpose of this section is to prove the
super-convergence property of the Boolean iterated Galerkin approxi-
mation ũc

h. To this end, we first develop a sequence of estimates.

Proposition 5.1. There exists a positive constant c such that

‖u− uh‖−1 + ‖u− ũh‖ ≤ cmax{h0, . . . , hd−1}‖u− uh‖.

Lemma 5.2. For w ∈ H1( ), set

(5.4) g := Phx,0(I +K)(I − Phx,0)w.

Then there exists a positive constant c such that

(5.5) ‖g‖ ≤ ch2
x‖Dxw‖.
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Moreover, if w ∈ H1,2( ), then there exists a positive constant c such
that

(5.6) ‖Dyg‖ ≤ ch2
x‖DxDyw‖.

Proof. Let h1 := (hx, 0) ∈ R2. For v ∈ Sh1( ), we set

φ := (I +K)v.

Since the kernel of the operator K is symmetric, we have that

(5.7) (I +K)∗ = I +K.

Therefore, using the definition of g and equation (5.7), we conclude
that

(g, v) = ((I +K)(I − Phx,0)w, v) = ((I − Phx,0)w, φ).

Noting that there holds the identity (I − Phx,0)2 = I − Phx,0 and the
operator I − Phx,0 is self-adjoint, it follows that

(g, v) = ((I − Phx,0)w, (I − Phx,0)φ).

The fact that, for any v ∈ Sh1( ),

((I − Phx,0)w, v) = 0

implies that

(g, v) = ((I − Phx,0)w, (I − Phx,0)Kv).

Consequently, there exists a positive constant c such that

|(g, v)| ≤ ch2
x‖Dxw‖‖v‖.

Choosing v := g in the last inequality proves (5.5). Finally, from the
identity

Dyg = Phx,0(I −K)(I − Phx,0)Dyw

and the same argument used in proving (5.5), we obtain (5.6).
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Proposition 5.3. Suppose that u ∈ H1,2( ) ∩ Cp( ). Then there
exists a function ψ ∈ L2( ) satisfying

(5.8) Rhx,hy
((I − Phx,0)u) = Rhx,hy

ψ

and there exists a positive constant c such that

(5.9) ‖Dyψ‖ ≤ ch2
x‖u‖H1,2 .

Proof. As in (5.4), we let

g := Phx,0(I +K)(I − Phx,0)u.

Then we have that
g = Phx,0g

and, by Lemma 5.2, there exists a positive constant c such that

(5.10) ‖Dyg‖ ≤ ch2
x‖u‖H1,2 .

Now let
ψ := (I +K)−1g.

Then ψ satisfies equation (5.8) and has the estimate

(5.11) ‖Dyψ‖ ≤ c‖Dyg‖.

Combining (5.10) and (5.11) yields (5.9).

Now we study the hierarchical surplus, the difference between Boolean
Galerkin and Galerkin approximations. First we prove two conse-
quences of Sections 2 and 3.

Proposition 5.4. If w ∈ H1( ), then

‖δ(0,1)Phx,hy
w‖ ≤ chy‖Dyw‖,(5.12)

and

‖δ(0,1)Phx,hy
w‖−1 ≤ ch2

y‖Dyw‖.(5.13)
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If w ∈ H1,2( ), then

(5.14) ‖δ(0,1) ◦ δ(1,0)Phx,hy
w‖−1 ≤ chxhy min{hx, hy}‖w‖H1,2 .

Proof. Estimate (5.12) follows directly from the definition of δ(0,1).
We now prove estimate (5.13). For φ ∈ H1( ), since

((Phx,hy
− Phx,2hy

)w,P0,2hy
Phx,0φ) = 0,

and there exists a positive constant c such that

‖(I − P0,2hy
)Phy,0φ‖ ≤ chy‖DyPhx,0φ‖ ≤ chy‖Phx,0Dyφ‖ ≤ chy‖φ‖1

we conclude that there exists a positive constant c such that

(δ(0,1)Phx,hy
w, φ) = (δ(0,1)Phx,hy

w,Phx,0φ)

= (δ(0,1)Phx,hy
w, (I − P0,2hy

)φ)

≤ chy‖δ(0,1)Phx,hy
w‖‖φ‖1.

This ensures that there exists a positive constant c such that

‖δ(0,1)Phx,hy
w‖−1 ≤ chy‖δ(0,1)Phx,hy

w‖.

Combining this estimate with (5.12) gives estimate (5.13). Similarly,
we obtain that there exists a positive constant c such that

‖δ(0,1)δ(1,0)Phx,hy
w‖−1 ≤ cmin{hx, hy}‖δ(1,0)δ(0,1)Phx,hy

w‖.

Moreover, there exists a positive constant c such that

‖δ(1,0)δ(0,1)Phx,hy
w‖ ≤ chxhy‖w‖H1,2 .

Combining the last two estimates yields estimate (5.14).

Proposition 5.5. If w ∈ H1( ) ∩ Cp( ), then there exists a positive
constant c such that

‖δ(0,1)Rhx,hy
w‖ ≤ chy‖Dyw‖,(5.15)



104 Y. XU AND A. ZHOU

and

‖δ(0,1)Rhx,hy
w‖−1 ≤ ch2

y‖Dyw‖.(5.16)

Proof. Estimate (5.15) is a special case of Corollary 3.2(ii) when
d = 2. It remains to prove estimate (5.16). To this end, for any
φ ∈ H1( ), we let ψ := Rhx,0(I +K)−1φ. Then there exists a positive
constant c such that ‖Dyψ‖ ≤ c‖φ‖1 and P0,hy

ψ ∈ S(hx,hy)( ). It
follows that

((Rhx,hy
−Rhx,0)w, φ) = ((Rhx,hy

−Rhx,0)w, (I +K)ψ)
= ((I +K)(Rhx,hy

−Rhx,0)w,ψ)
= ((I +K)(Rhx,hy

−Rhx,0)w, (I − P0,hy
)ψ).

Using estimate (5.15) and the approximation order of the space
S(0,hy)( ), we conclude that there exists a positive constant c such that

((Rhx,hy
−Rhx,0)w, φ) ≤ ch2

y‖Dyw‖‖Dyψ‖ ≤ ch2
y‖Dyw‖‖φ‖1,

which leads to estimate (5.16).

Proposition 5.6. If u ∈ H1,2( ), then there exists a positive
constant c such that

‖δ(0,1)Rhx,hy
(I − Phx,0)u‖ ≤ chxhy‖u‖H1,2 ,(5.17)

and

‖δ(0,1)Rhx,hy
(I − Phx,0)u‖−1 ≤ ch2

xh
2
y‖u‖H1,2 .(5.18)

Proof. Let ψ ∈ L2( ) satisfy equation (5.8). By Propositions 5.3 and
5.5, we have that there exists a positive constant c such that

‖δ(0,1)Rhx,hy
(I − Phx,0)u‖ = ‖δ(0,1)Rhx,hy

ψ‖
≤ chy‖Dyψ‖ ≤ chxhy‖u‖H1,2 ,
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and

‖δ(0,1)Rhx,hy
(I − Phx,0)u‖−1 = ‖δ(0,1)Rhx,hy

ψ‖−1

≤ ch2
y‖Dyψ‖ ≤ ch2

xh
2
y‖u‖H1,2 .

Proposition 5.7. If u ∈ H1,2( ), then there exists a positive
constant c such that

(5.19) ‖Rhx,hy
(I − Phx,0)(I − P0,hy

)u‖ ≤ chxhy min{hx, hy}‖u‖H1,2 .

Proof. For any v ∈ Sh( ) with h := (hx, hy), we let φ := (I +K)−1v.
We now estimate the quantity

γ := (Rhx,hy
(I − Phx,0)(I − P0,hy

)u, v).

Since the operator I +K is self-adjoint, we have that

γ = ((I +K)Rhx,hy
(I − Phx,0)(I − P0,hy

)u, φ).

We write the righthand side of the equation above as

γ = ((I +K)Rhx,hy
(I − Phx,0)(I − P0,hy

)u, (I −Rhx,hy
)φ)

+ ((I +K)Rhx,hy
(I − Phx,0)(I − P0,hy

)u,Rhx,hy
φ).

By the definition of Rhx,hy
, we find that

((I +K)Rhx,hy
(I − Phx,0)(I − P0,hy

)u, (I −Rhx,hy
)φ) = 0.

It follows from these equations that

γ = ((I +K)Rhx,hy
(I − Phx,0)(I − P0,hy

)u,Rhx,hy
φ)

= ((I − Phx,0)(I − P0,hy
)u, (I +K)Rhx,hy

φ)
= ((I − Phx,0)(I − P0,hy

)u, (I − Phx,0)(I − P0,hy
)KRhx,hy

φ).

This ensures that there exists a positive constant c such that

|γ| ≤ chxhy min{hx, hy}‖u‖H1,2‖KRhx,hy
φ‖1.
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Noticing that there exists a positive constant c such that

‖KRhx,hy
φ‖1 ≤ c‖Rhx,hy

φ‖ ≤ c‖φ‖ ≤ c‖v‖,

we conclude that

|γ| ≤ chxhy min{hx, hy}‖u‖H1,2‖φ‖ ≤ chxhy min{hx, hy}‖u‖H1,2‖v‖,

which proves (5.19) by choosing v := Rhx,hy
(I − Phx,0)(I − P0,hy

)u.

Next we estimate the error of the Boolean Galerkin approximation.
For this purpose we define

Bhx,hy
u := uhx,2hy

+ u2hx,hy
− u2hx,2hy

.

Theorem 5.8. If u ∈ H1,2( ), then there exists a positive constant
c such that

‖Bhx,hy
u−Rhx,hy

u‖ ≤ chxhy‖u‖H1,2

and
‖Bhx,hy

u− Rhx,hy
u‖−1 ≤ chxhy min{hx, hy}‖u‖H1,2 .

Proof. Since

I − Phx,hy
= (I − Phx,0) + (I − P0,hy

) − (I − Phx,0)(I − P0,hy
),

and
Rhx,hy

Phx,hy
= Phx,hy

,

we have that

Rhx,hy
= Rhx,hy

(I − Phx,hy
) + Phx,hy

= Rhx,hy
(I − Phx,0) +Rhx,hy

(I − P0,hy
)

+Rhx,hy
(I − Phx,0)(I − P0,hy

) + Phx,hy
.
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Therefore, we obtain that

Bhx,hy
u−Rhx,hy

u = δ(1,0) ◦ δ(0,1)Rhx,hy
u

= δ(1,0) ◦ δ(0,1)Rhx,hy
(I − Phx,0)u

+ δ(1,0) ◦ δ(0,1)Rhx,hy
(I − P0,hy

)u

+ δ(1,0) ◦ δ(0,1)Rhx,hy
(I − Phx,0)(I − P0,hy

)u

+ δ(1,0) ◦ δ(0,1)Phx,hy
u.

Note that

‖δ(1,0) ◦ δ(0,1)Rhx,hy
(I − Phx,0)u‖

≤ ‖δ(0,1)Rhx,hy
(I − Phx,0)u‖ + ‖δ(0,1)R2hx,hy

(I − P2hx,0)u‖
≤ 2 max

h̃∈{hx,2hx}
‖δ(0,1)Rh̃,hy

(I − Ph̃,0)u‖.

Likewise, we have that

‖δ(1,0) ◦δ(0,1)Rhx,hy
(I−P0,hy

)u‖ ≤ 2 max
h̃∈{hy,2hy}

‖δ(0,1)Rhx,h̃(I−P0,h̃)u‖

and

‖δ(1,0) ◦ δ(0,1)Rhx,hy
(I − Phx,0)(I − P0,hy

)u‖
≤ 2 max

h̃x∈{hx,2hx}
h̃y∈{hy ,2hy}

‖δ(0,1)Rh̃x,h̃y
(I − Ph̃x,0)(I − P0,h̃y

)u‖.

It follows that there exists a positive constant c such that

‖Bhx,hy
u−Rhx,hy

u‖ ≤ c max
h̃∈{hx,2hx}

‖δ(0,1)Rh̃,hy
(I − Ph̃,0)u‖

+ c max
h̃∈{hy ,2hy}

‖δ(1,0)Rhx,h̃(I − P0,h̃)u‖

+ c max
h̃x∈{hx,2hx}
h̃y∈{hy ,2hy}

‖Rh̃x,h̃y
(I − Ph̃x,0)(I − P0,h̃y

)u‖

+ c‖δ(1,0) ◦ δ(0,1)Phx,hy
u‖.

This estimate with Propositions 5.4, 5.6 and 5.7 proves the first esti-
mate of this theorem. The second estimate is proved similarly.
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As we explained in the introduction, the combination solution uc
h can

be viewed as a multi-level Boolean-Galerkin approximation. By the
last theorem, we now obtain the following result. We define

ũc
h = f −Kuc

h.

Theorem 5.9. If u ∈ H1,2( ), then there exists a positive constant
c such that

‖u− ũc
h‖ + ‖u− uc

h‖−1 ≤ ch3/2‖u‖H1,2

and
#(uc

h) + #(ũc
h) = O(2nn).

Proof. Using the identity

u− ũc
h = K(u− uc

h),

we have that there exists a positive constant c such that

‖u− ũc
h‖−1 ≤ c‖u− uc

h‖−1.

It suffices to prove that there exists a positive constant c such that

‖u− uc
h‖−1 ≤ ch3/2‖u‖H1/2 .

To this end, we note from a direct computation that

Rh,hu− uc
h =

n∑
i=2

n∑
j=n−i+2

(B2−i,2−ju−R2−i,2−ju).

Using Theorem 5.5, we conclude that there exists a positive constant c
such that∥∥∥∥

n∑
i=2

n∑
j=n−i+2

(B2−i,2−j u−R2−i,2−ju)
∥∥∥∥
−1

≤ c
n∑

i=2

n∑
j=n−i+2

2−(i+j)2−max{i,j}

≤ c2−n−n/2 = ch3/2.
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4. H. Bungartz, M. Griebel and U. Rüde, Extrapolation, combination, and sparse
grid techniques for elliptic boundary value problems, Comput. Meth. Appl. Mech.
Engrg. 116 (1994), 243 252.

5. P.G. Ciarlet, The finite element method for elliptic problems, North-Holland,
Amsterdam, 1978.

6. F. Cuker and S. Smale, On the mathematical foundations of learning, Bull.
Amer. Math. Soc. 39 (2002), 1 49.

7. F.-J. Delvos, d-Variate Boolean interpolation, J. Approx. Theory 34 (1982),
99 114.

8. M. Griebel, P. Oswald and T. Schiekofer, Sparse grids for boundary integral
equations, Numer. Math. 83 (1999), 279 312.

9. M. Griebel, M. Schneider and C. Zenger, A combination technique for the
solution of sparse grid problems, in Proc. of IMACS Internat. Sympos. on Iter-
ative Methods in Linear Algebra (P. de Groen and R. Beauwens, eds.), Elsevier,
Amsterdam, 1992.

10. P. Hemker and C. Pflaum, Approximation on partially ordered sets of regular
grids, Appl. Numer. Math. 25 (1997), 41 54.

11. H. Kaneko and Y. Xu, Degenerate kernel method for Hemmerstein equations,
Math. Comp. 56 (1991), 141 148.

12. R. Kress, Linear integral equations, Springer-Verlag, Berlin, 1989.

13. M. Krizek, Superconvergence phenomena in the finite element method, Com-
put. Method Appl. Mech. Engrg. 116 (1994), 157 163.

14. M. Krizek and P. Neittaanmaki, On superconvergence techniques, Acta Appl.
Math. 9 (1987), 175 198.

15. C. Pflaum, Discretization of second order elliptic differential equations
on sparse grids, in Progress in partial differential equations, Vol. 2, Calculus of
variations, applications and computations (C. Bandle, J. Bemelmans, M. Chipot,
J. Saint Jean Paulin and I. Shafrir, eds.), Longman, Harlow, 1994.

16. , Diskretisierung Elliptischer Differentialgleichungen mit dünnen Git-
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