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NONSTATIONARY WAVEFORM RELAXATION
METHODS FOR ABEL INTEGRAL EQUATIONS

GIOVANNI CAPOBIANCO, MARIA ROSARIA CRISCI AND ELVIRA RUSSO

ABSTRACT. In this paper the nonstationary waveform re-
laxation methods for Abel equations are introduced and their
convergence analysis is performed. Then the fully parallel
waveform relaxation methods are especially considered. Non-
stationary Richardson methods are constructed in such a way
to optimize the convergence rate, and a significant error esti-
mate is proved.

1. Introduction. Large systems of Volterra integral equations with
weakly singular kernels (of Abel type)

(1.1)
y(t) = f(t) +

∫ t

0

k(t, s, y(s))
(t − s)α

ds

t ∈ [0, T ], 0 < α < 1,

y, f, k ∈ Rd, d � 1,

arise in many branches of applications such as, for example, reaction-
diffusion problems in small cells [14] as well as by the semi-discretization
in space of Abel partial integral or integro-differential equations.

In order to get accurate solutions of these systems in a reasonable
time frame, high performance numerical methods are required.

Methods of this kind are the waveform relaxation methods that have
been recently developed by some of the authors for systems of Volterra
equations both with regular kernels [6, 8, 10 12, 13] and with weakly
singular kernel [4].

The waveform relaxation methods (WR methods) for the system (1.1)
are introduced using a suitable function G = G(t, s, u, v) such that

(1.2) G(t, s, u, u) = k(t, s, u).
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The waveforms {y(ν)(t)}ν∈N are then obtained from

(1.3)
y(ν+1)(t) = f(t) +

∫ t

0

G(t, s, y(ν)(s), y(ν+1)(s)) ds

(t − s)α
ds

t ∈ [0, T ], ν = 0, 1, . . .

y(0)(t) = f(t).

Obviously, if the sequence {y(ν)(t)}ν∈N is convergent, its limit is the
solution of (1.1).

The convergence properties as well as the computational cost of each
waveform depend heavily on the choice of the function G. In particular,
if the function G is such that the system (1.3) is decoupled into inde-
pendent subsystems that can be solved in parallel, the corresponding
WR method is a parallel method.

A fully parallel WR method is the Richardson method, which corre-
sponds to

(1.4) G(t, s, u, v) = µIu − µIv + k(t, s, v)

where µ is a suitable chosen parameter and I is the identity matrix of
order d.

If µ = 0, then the Picard method is obtained. The Richardson
method is then

(1.5)
y(ν+1)(t) = f(t) +

∫ t

0

µIy(ν+1)(s) ds

(t − s)α
ds

+
∫ t

0

[k(t, s, y(ν)(s)) − µIy(ν)(s)] ds

(t − s)α
ds

and so the system of d equations is decoupled into d independent
equations.

However, fully parallel methods are usually slowly convergent. More-
over, for the Abel equation, the presence of the singularity slows down
the convergence rate [4]. Therefore, a crucial question is to develop
fast convergent fully parallel methods.

With this aim, in this paper we introduce the nonstationary WR
methods (NSWR methods), where the function G depends on the
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iterate. Then we consider a sequence of functions {Gν(t, s, u, v)}ν∈N

such that

(1.6) Gν(t, s, u, u) = k(t, s, u) for all ν.

The corresponding NSWR method is

(1.7) y(ν+1)(t) = f(t) +
∫ t

0

Gν(t, s, y(ν)(s), y(ν+1)(s)) ds

(t − s)α
ds.

We perform the convergence analysis of the NSWR methods. Firstly,
we prove a local convergence result for a general nonlinear kernel under
the hypothesis that Gν satisfies a Lipschitz type condition. Then we
prove that, if the kernel is linear with respect to y and Gν is linear with
respect to u and v, the convergence of the NSWR methods takes place
in every finite integration interval, and it is superlinear.

The proved results generalize those obtained in [4] for the station-
ary methods. Then the fully parallel nonstationary WR Richardson
methods are especially considered. The convergence analysis of these
methods enable us to construct “fast” Richardson methods, in the sense
that they optimize the convergence rate.

Finally, a significant error bound for these fast Richardson methods
is proved. This allows us to predict the number of iterations required
to obtain the desired precision and to determine the class of problems
for which the method is more suitable.

2. Convergence analysis of nonstationary WR methods. In
this section we perform the convergence analysis of the NSWR methods.
In particular, we prove first a local convergence result, true under very
general hypotheses. Then we consider the linear case and prove a
superlinear convergence in every finite integration range.

To be more precise, let us consider the Banach space of the continuous
vector-valued functions, defined in [0, T ], equipped with the maximum
norm

‖y‖T := max
0≤t≤T

‖y(t)‖

where ‖·‖ denotes any of the usual vector norms in Rd. Let us consider
the NSWR method (1.7) with the function Gν(t, s, u, v) satisfying the
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Lipschitz condition:

(2.1)

‖Gν(t, s, u1, v1) − Gν(t, s, u2, v2)‖ ≤ l
(ν)
1 ‖u1 − u2‖ + l

(ν)
2 ‖v1 − v2‖

∀u1, u2, v1, v2 ∈ Rd; (t, s) ∈ S := {(t, s) : 0 ≤ s ≤ t ≤ T}
Then the following local convergence theorem holds:

Theorem 2.1. If the functions Gν satisfy (2.1) with l
(ν)
1 and l

(ν)
2

uniformly bounded with respect to ν, there exists T1 > 0 such that the
NSWR method converges in [0, T1].

Proof. Subtracting (1.7) from the Abel system (1.1), remembering
that

Gν(t, s, y, y) = k(t, s, y)

and, using (2.1), it follows:

‖y(t) − y(ν+1)(t)‖T1 ≤ l
(ν)
1 T 1−α

1

1 − α − l
(ν)
2 T 1−α

1

‖y(t) − y(ν)(t)‖T1 .

Then, putting l1 = supν l
(ν)
1 , l2 = supν l

(ν)
2 , the method converges in

[0, T1] with

0 < T1 <

(
1 − α

l1 + l2

)1/(1−α)

.

Now let us consider a linear Volterra system

(2.2) y(t) = f(t) +
∫ t

0

k(t, s)
(t − s)α

· y(s) ds, t ∈ [0, T ],

and let us choose the functions Gν preserving the linearity, i.e.,

(2.3) Gν(t, s, u, v) = Mν(t, s)v + Nν(t, s)u.

Obviously, the condition (1.6) becomes

Mν(t, s) + Nν(t, s) = k(t, s)
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and Mν(t, s), Nν(t, s) are said to be a splitting of the kernel k(t, s).

The corresponding NSWR method is

(2.4)
y(ν+1)(t) = f(t) +

∫ t

0

Mν(t, s)
(t − s)α

· y(ν+1)(s) ds

+
∫ t

0

Nν(t, s)
(t − s)α

· y(ν)(s) ds, t ∈ [0, T ].

Let (t− s)−αQν(t, s) be the resolvent of the kernel (t− s)−αMν(t, s)
and let us put

Qν := max
(t,s)∈S

|Qν(t, s)|

Nν := max
(t,s)∈S

|Nν(t, s)|.

Then the following convergence result holds.

Theorem 2.2. If Qν and Nν are uniformly bounded with respect to
ν, then the method (2.4) converges superlinearly in [0, T ].

Proof. Let us define the νth iterate error

e(ν)(t) := y(t) − y(ν)(t).

Obviously e(ν+1)(t) and e(ν)(t) are related by the following expression

e(ν+1)(t) =
∫ t

0

Nν(t, s)
(t − s)α

· e(ν)(s) ds

+
∫ t

0

Qν(t, s)
(t − s)α

∫ s

0

Nν(s, τ)
(s − τ )α

· e(ν)(τ ) dτ ds.

By applying the Dirichlet formula and putting

Hν(t, s) = Nν(t, s) + (t − s)1−α

·
∫ 1

0

Qν(t, (t − s)u + s)Nν((t − s)u + s, s)
uα(1 − u)α

du

it follows

(2.5) e(ν+1)(t) =
∫ t

0

Hν(t, s)
(t − s)α

· e(ν)(s) ds.
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On the other hand,

max
(t,s)∈S

|Hν(t, s)| ≤ Nν + T 1−α Γ(1 − α)2QνNν

Γ|2(1 − α)| .

From the hypothesis of uniform boundedness of Qν and Nν , it follows
that there exists B such that

max
(t,s)∈S

|Hν(t, s)| ≤ B

uniformly with respect to ν. So

‖e(ν+1)‖T ≤ Bν+1T (ν+1)(1−α)Γ(1 − α)ν+1

Γ[(ν + 1)(1 − α) + 1]
‖ e(0)‖T .

By using the asymptotic formulas of the gamma function [1],

Γ(ν(1 − α) + 1) ∼
√

2π e−ν(1−α)(ν(1 − α))ν(1−α)+(1/2)

it results

lim
ν→∞

‖e(ν+1)‖T

‖e(ν)‖T
= 0

and so the thesis follows.

Remark 2.1. In the stationary case the theorems (2.1) and (2.2)
reduce to the analogous theorems proved in [4].

3. Fully parallel NSWR methods. Fully parallel NSWR methods
are obtained choosing Mν(t, s) as a diagonal matrix. In this case the
system (1.7) of order d is decoupled into d independent equations that
can be solved in parallel. In particular, let us consider the NSWR
Richardson methods which corresponds to

(3.1) Mν(t, s) = µνI.

In order to construct the fast NSWR Richardson methods, let us
apply the method to the Abel equation with constant kernel

(3.2) y(t) = f(t) +
∫ t

0

A · y(s)
(t − s)α

ds, t ∈ [0, T ], A ∈ Rd×d
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where A has eigenvalues λ1 < λ2 < · · · < λd < 0, so that the stability
of the equation is ensured [5]. Then the NSWR Richardson method is

(3.3)
y(ν+1)(t) = f(t) +

∫ t

0

µνI

(t − s)α
· y(ν+1)(s) ds

+
∫ t

0

[A − µνI]
(t − s)α

· y(ν)(s) ds.

In order to ensure the stability of the equation (3.3), we assume
µν < 0, ν = 0, 1, . . . . Let us define the following polynomial matrix

(3.4) Pν(A) =
ν∏

k=1

(A − µkI)

and prove the following

Theorem 3.1. The NSWR Richardson method (3.3) converges to
the solution of the problem (3.2) and the following error bound holds

(3.5) ‖ε(ν)‖T ≤ ‖Pν(A)‖ · T ν(1−α)Γ(1 − α)ν

Γ[ν(1 − α) + 1]
‖ε(0)‖T .

Proof. In this case the function Hν(t, s) in (2.5) becomes

Hν(t, s) = (A−µνI)
[
1 + (t−s)1−α

·
∫ 1

0

µνΓ(1−α)E1−α,1−α[(t−s)1−α(1−u)1−αµνΓ(1−α)]
uα · (1 − u)α

du

]

where E1−α,1−α is the generalized Mittag-Leffler function [16].

By substituting u → 1 − u, β → 1 − α and putting M :=

(t − s)1−αµνΓ(1 − α), we can rewrite

Hν(t, s) = (A − µνI)
[
1 + M

∫ 1

0

uβ · (1 − u)βEβ,β[Muβ ] du

]
.
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Then, by using a known equality for this integral [20], we obtain

Hν(t, s) = 1 + M· Γ(β) · Eβ,2β [M],

and, by Eα,β(z) = 1/(Γ(β)) + zEα,α+β(z) [15], we have

Hν(t, s) = 1 + M · Γ(β) ·
[
Eβ,β [M] − (1/Γ(β))

M
]

and from here,
Hν(t, s) = Γ(β) · Eββ[M].

So we obtain

ε(ν+1)(t) = [A−µνI]

·
∫ t

0

Γ(1−α)
(t−s)α

E1−α,1−α [µνΓ(1−α)(t−s)1−α] ε(ν)(s) ds.

Now, because µν < 0, E1−α,1−α(0) = 1/(Γ[1−α]) and E1−α,1−α(−t)
is completely monotone for t > 0 [17], we iterate on ν and for any
vector norm, we have

(3.6) ‖ε(ν)(t)‖ ≤ ‖Pν(A)‖ · tν·(1−α)Γ(1 − α)ν

Γ[ν(1 − α) + 1]
‖ε(0)(t)‖.

Then, if we take the infinity norm on [0, T ], it follows the thesis.

4. Fast convergent nonstationary Richardson methods. On
the basis of the results proved in the previous section, we can construct
the fast NSWR Richardson methods in the sense that they optimize the
convergence rate. These methods are derived choosing the parameters
µν which minimize ‖Pν(A)‖ in (3.6).

Firstly, for the sake of completeness, we prove the following result on
the stationary Richardson method (1.5).

Theorem 4.1. The best stationary Richardson method is obtained
choosing µ as the mean value between the minimum and maximum
eigenvalue of A.
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Proof. In this case Pν(A) = (A−µI)ν and the thesis follows trivially
observing that the eigenvalues of Pν(A) are (λi − µ)ν .

The spectral radius of Pν(A) holds the bound

ρ(Pν(A)) ≤
[
λd − λ1

2

]ν

.

Remembering that, for every ε > 0, there exists a norm such that

(4.1) ‖Pν(A)‖ ≤ ρ[Pν(A)] + ε

and, moreover, that the norms of matrices are equivalent, we can
conclude that there exists a constant γ > 0 such that

(4.2) ‖Pν(A)‖ ≤ γ

[(
λd − λ1

2

)ν

+ ε

]
.

Therefore, the error bound proved in Theorem 3.1 becomes

(4.3) ‖e(ν)‖ ≤ γ

[(
λd − λ1

2

)ν

+ ε

]
Γν(1−α)Γ(1 − α)ν

Γ[ν(1 − α) + 1]
‖e(0)‖.

Now, let us dedicate to the NSWR methods. Firstly, we prove the
following

Theorem 4.2. If µi are the eigenvalues of A, the corresponding
NSWR Richardson method gives the exact solution in a number of
iterates equal to the dimension d of the system (3.2).

Proof. From the Caley-Hamilton theorem, A is the solution of its
characteristic polynomial. Therefore, if λi = µi, then Pd(A) = 0 and
‖e(d)‖ = 0.

We observe that, if the dimension d of the system of integral equations
is large, to perform d iterates can be too expensive, whereas an
acceptable precision could be achieved by performing a number n of
iterates substantially lower than d.
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Then, let us fix the number of iterates n and look for a polynomial
Pn(x) which minimizes ‖Pn(A)‖.

In order to perform the effective construction of this polynomial, let
us proceed as follows. Firstly, on the basis of (4.1), we can minimize

ρ[Pν(A)] = max
1≤i≤d

|Pn(λi)|.

Then, let us define the virtual spectral radius [18] as

(4.4) ρ̄[Pν(A)] := max
λ1≤λ≤λd

|Pn(λ)|

and look for the polynomial which minimizes it.

The following theorem holds

Theorem 4.3. For every fixed n, the fast NSWR Richardson method
is obtained choosing µi as the zeros of the Chebyshev polynomial shifted
in the range [λ1, λd].

Proof. The result follows by observing that, for the known minimax
properties, the Chebyshev polynomial minimizes the virtual spectral
radius (4.4).

Denoting by Tn(x) the Chebyshev polynomial defined in [−1, 1], we
obtain the results

(4.5) Pn(x) = (−1)nTn

(
2x − λd − λ1

λd − λ1

)
[λd − λ1]n

22n−1
.

Therefore,

(4.6) ρ[Pν(A)] ≤ ρ̄[Pν(A)] ≤ [λd − λ1]n

22n−1

and the error bound proved in Theorem 3.1 becomes

(4.7) ‖e(ν)‖T ≤ γ′
[
(λd−λ1)ν · 1

22ν−1
+ ε

]
T ν(1−α)Γ(1−α)ν

Γ[ν(1−α) + 1]
‖e(0)‖T .
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On these methods the following remarks can be made:

Remark 4.1. The construction of the fast NSWR Richardson methods
doesn’t require the knowledge of the whole spectrum of A, but only of
the maximum and minimum eigenvalues.

Remark 4.2. The error estimate (4.7) is especially useful since it can
be used both to bound the error for a fixed n, and to determine the
number n of iterates necessary to achieve a desired precision.

Remark 4.3. The construction of these methods can be performed
also when A has complex eigenvalues. In this case if the eigenvalues of
A are known to lie in the ellipse

[
x − r

a

]2

+
[
y

b

]2

= 1,

the µi are the zeros of the polynomial

Tn

(
z − r

a2 − b2

)
.

Remark 4.4. The fast NSWR Richardson methods have been derived
for the system (3.2) with constant kernel. For the general linear system
(2.2) “quite fast” NSWR methods of Richardson type can be obtained
by approximating the kernel k(t, s) with the first term of its Taylor
development, i.e., k(0, 0) and then by choosing the parameters µi as
the zeros of the Chebyshev polynomial shifted in [λ̄1, λ̄d], where λ̄1, λ̄d

are the minimum and maximum eigenvalue of k(0, 0). The methods
derived in this way have good performances if the integration range
is small enough. Otherwise, it is possible to subdivide the integration
range into subintervals, the said windows, and construct the methods
in each of the windows.

5. Concluding remarks. We have introduced the nonstationary
WR methods and proved that they can reach convergence rates bigger
than the classical methods. We have derived the fully parallel Richard-
son methods with fast convergence properties and proved a useful error
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estimate, that can be used also to determine a priori the number of
iterates necessary to obtain the desired accuracy.

In a forthcoming paper, the nonstationary discrete time WR methods
will be analyzed and strategies in order to develop an efficient parallel
algorithm will be discussed [9].

A parallel code based on these methods on a distributed memory
architecture is under construction.
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