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DISCONTINUOUS BOUNDARY-VALUE PROBLEMS:
EXPANSION AND SAMPLING THEOREMS

M.H. ANNABY, G. FREILING AND A.I. ZAYED

ABSTRACT. This paper is devoted to the derivation of ex-
pansion and sampling theorems associated with nth order dis-
continuous eigenvalue problems defined on [−1, 1], illustrated
with detailed examples. The problem consists of nth order
differential expressions and n boundary and n compatibility
conditions at x = 0. The differential expressions are defined,
in general, in two different ways throughout [−1, 1]. We derive
an eigenfunction expansion theorem for the Green’s function
of the problem as well as a theorem of uniform convergence of
the Birkhoff series of a certain class of functions. Then we de-
rive a sampling theorem for integral transforms whose kernels
are the product of the Green’s function and the characteristic
determinant of the problem.

1. Introduction. In [24] a sampling theorem associated with the
discontinuous Sturm-Liouville problem

l(2)y := −y′′ + q(x)y = λy, 0 ≤ x ≤ π,(1.1)
hy(0) − y′(0) = hy(π) + y′(π) = 0,(1.2)

with two symmetric discontinuities at d1 = d, 0 < d < π/2 and
d2 := π−d is studied, where the following jump conditions are satisfied

y(d+
1 ) = ay(d−1 ), y′(d+

1 ) = a−1y′(d−1 ) + by(d−1 ),(1.3)
y(d−2 ) = ay(d−2 ), y′(d−2 ) = a−1y′(d+

2 ) − by(d+
2 ).(1.4)

Here h, a, b are real numbers with a > 0 and q(·) is an L1(0, π)-real
valued function. The eigenfunction expansion theorem associated with
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the above problem is derived by Kobayashi in [13]. In brief, Zayed-
Garćıa’s result is derived as follows. Let φ0(·, λ) be a solution of (1.1)
that satisfies the jump conditions (1.3) (1.4) and the initial condition

(1.5) φ0(0, λ) − φ′0(0, λ) = 0.

Then the eigenvalues of problem (1.1) (1.4) are the zeros of the entire
function

(1.6) ω(λ) = hφ0(π, λ) + φ′0(π, λ).

The eigenvalues constitute a sequence {λk}∞k=0 with ∞ as the only
accumulation point. According to the asymptotic behavior of these
eigenvalues, the product

(1.7) p0(λ) =
{∏∞

k=0 (1 − (λ/λk)) , if zero is not an eigenvalue,
λ

∏∞
k=1 (1 − (λ/λk)) , if λ0 = 0 is an eigenvalue,

is convergent and defines an entire function of order 1/2 with simple
zeros at λk, k = 0, 1, . . . . The main result of [24] states that the
transform

(1.8) F0(λ) =
∫ π

0

f(x)φ0(x, λ) dx, f ∈ L2(0, π),

can be recovered using the sampling expansion

(1.9) F0(λ) =
∞∑

k=0

F0(λk)
p0(λ)

(λ− λk)p′0(λk)
, λ ∈ C

with uniform convergence on compact sets of C.

During the sampling meeting SAMPTA ’97 held in Aveiro, Portugal,
1997, June 16 19, after Zayed introduced the above mentioned result,
Walter asked about the possibility of deriving a sampling theorem
associated with the Green’s function of problem (1.1) (1.4). The aim
of this paper is to derive a sampling theorem for transforms whose
kernels are Green’s functions of problems that are more general than
problem (1.1) (1.4) but still with only one point of discontinuity. In
this class of problems the equation (l(2) − λ)y = 0 is replaced by an
equation of the form (l − λ)y = 0, where l is defined by two nth
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order differential expressions, l = l1 on [−1, 0) and l = l2 on (0, 1].
Another generalization concerning the differential expression is that l
is not necessarily assumed to be self-adjoint. In another direction we
generalize the problem by assuming that the boundary conditions are
not necessarily of separate type as conditions (1.2) above, neither are
they self adjoint. To guarantee that the eigenfunctions are a Riesz basis,
[20], we assume that the boundary conditions are strongly regular. The
definition of strongly regular boundary conditions is given below.

In Section 2 we give a brief account of the role of Green’s functions
in sampling theory. Section 3 is devoted to defining the eigenvalue
problem and some of its properties. The properties of the eigenvalues
and eigenfunctions stated in this section are taken from [15]. In Sec-
tion 4 we introduce the Green’s function and then derive an expansion
theorem associated with the eigenvalue problem and the sampling the-
orem. In the last section we give two examples exhibiting the sampling
theorem.

2. Sampling and Green’s function. The use of Green’s functions
in sampling theory was first considered by Haddad, Yao and Thomas,
[11]. They used Green’s function of first order problems to derive the
celebrated sampling theorem of Whittaker and Shannon [7, 17, 19].
The second appearance of Green’s functions in sampling theorems, as
far as we know, was in [22, 24] followed by [4]. In [4] the authors
derived sampling theorems associated with the nth order eigenvalue
problem consisting of the differential equation

(2.1)
n∑

k=0

pk(x) y(n−k)(x) = λy(x),

and the strongly regular conditions

(2.2) Nµ(y) =
n∑

i=1

αµiy
(i−1)(a) + βµiy

(i−1)(b) = 0, µ = 1, . . . , n,

where x lies in a closed finite interval [a, b]. If we let ϕ1(·, λ), . . . , ϕn(·, λ)
be the fundamental set (FS) of solutions of (2.1) such that

(2.3) ϕ
(j−1)
i (a, λ) = δij for all λ ∈ C, 1 ≤ i, j ≤ n,
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then the Green’s function of (2.1) (2.2) will have the form, see [9, 16]

(2.4) K(x, ξ, λ) =
h(x, ξ, λ)
D0(λ)

, for D0(λ) �= 0,

where

(2.5) D0(λ) =

∣∣∣∣∣∣∣
N1(ϕ1) . . . N1(ϕn)

...
...

Nn(ϕ1) . . . Nn(ϕn)

∣∣∣∣∣∣∣ ;

(2.6) h(x, ξ, λ) =

∣∣∣∣∣∣∣∣
ϕ1(x, λ) . . . ϕn(x, λ) g(x, ξ, λ)
N1(ϕ1) . . . N1(ϕn) N1(g)

...
...

...
...

Nn(ϕ1) . . . Nn(ϕn) Nn(g)

∣∣∣∣∣∣∣∣ ,

(2.7) g(x, ξ, λ) =
±1

2W0(ξ)

∣∣∣∣∣∣∣∣∣
ϕ1(x, λ) . . . ϕn(x, λ)

ϕ
(n−2)
1 (ξ, λ) . . . ϕ

(n−2)
n (ξ, λ)

...
...

...
ϕ1(ξ, λ) . . . ϕn(ξ, λ)

∣∣∣∣∣∣∣∣∣ .

Here the sign is positive if x > ξ and is negative if x < ξ and
W0(ξ) is the Wronskian of ϕ1, . . . , ϕn. In this setting, strong regularity
implies that the eigenfunctions of the problem and its adjoint are Riesz
bases [5, 14]. Moreover, since almost all eigenvalues are simple, it is
assumed, without any loss of generality, that all eigenvalues are simple
(geometrically and algebraically). ThusK(x, ξ, λ) has simple poles only
at the eigenvalues {µk}∞k=0. Let p(λ), λ ∈ C be

(2.8) p(λ) :=
{ ∏∞

k=0 (1 − (λ/µk)) eλ/µk , if n = 1,∏∞
k=0 (1 − (λ/µk)) , if n > 1,

if zero is not an eigenvalue and

(2.9) p(λ) :=
{
λ

∏∞
k=1 (1 − (λ/µk)) eλ/µk , if n = 1,

λ
∏∞

k=1 (1 − (λ/µk)) , if n > 1,
.
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if µ0 = 0 is an eigenvalue. Due to the behavior of the eigenvalues,
[16], p(λ) is an entire function of order 1/n with simple zeros at the
eigenvalues. Fix ξ0 in [a, b], then

(2.10) φ(x, λ) = p(λ)K(x, ξ0, λ)

is an entire function of λ. The main result of [4] states that for
f ∈ L2(a, b),

(2.11) F (λ) =
∫ b

a

f(x)φ(x, λ) dx, λ ∈ C

is an entire function of order 1/n and type η, 0 ≤ η ≤ b− a which may
be recovered via

(2.12) F (λ) =
∞∑

k=0

F (µk)
p(λ)

(λ− µk)p′(µk)
,

where the convergence is uniform on compact subsets of C.

The choice of ξ0 in (2.10) is arbitrary. Thus we do not have a
sampling theorem for just a single transform, but for a family of
transforms. From properties of Green’s function it is known that
φ(x, λ) := φξ0(x, λ) is a solution of (2.1) (2.2) and that (2.12) is a
sampling representation of the solution to the problem

(2.13)
p0(x)y(n)(x) + . . .+ pn(x)y(x) − λy(x) = f(x),

Nν(y) = 0, ν = 1, . . . , n.

at the point ξ0 when λ is not an eigenvalue.

The results of [4] are extended to Kamke problems in [2]. In [1, 8]
sampling theorems associated with nth order eigenvalue problems were
derived under the basic assumption that all the eigenvalues are simple.

3. The boundary-value problem. Let D(L) denote the following
subspace of L2(−1, 1)

(3.1)
D(L) = {y ∈ L2[−1, 1] ∩Dn,0

∣∣Uν(y) = 0, Vν(y) = 0, 1 ≤ ν ≤ n},
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where Dn,0 is the set of all functions that have n continuous derivatives
in [−1, 1] except possibly at zero, but the limits y(k)(0−) and y(k)(0+),
0 ≤ k ≤ n − 1, exist and are finite. The linear forms generating
the boundary and compatibility conditions Uν(y) = 0 and Vν(y) = 0,
1 ≤ ν ≤ n, are defined by

(3.2)

Uν(y) = Uν,−1(y1) + Uν,1(y2),

Uν,−1(y1) = ανy
(kν)
1 (−1) + αν,kν−1y

(kν−1)
1 (−1) + . . . ,

Uν,1(y2) = βνy
(kν)
2 (1) + βν,kν−1y

(kν−1)
2 (1) + . . . ;

(3.3)

Vν(y) = γν,0−(y1) + γν,0+(y2),

Vν,0−(y1) = γνy
(lν)
1 (0−) + γν,lν−1y

(lν−1)
2 (0−) + . . . ,

Vν,0+(y2) = δνy
(lν)(0+) + δν,lν−1y

(lν−1)
2 (0+) + . . . .

We arrange Uν and Vν for which kν and lν , the orders of Uν and Vν ,
satisfy

n− 1 ≥ k1 ≥ k2 ≥ . . . ≥ kn, kν > kν+1,(3.4)
n− 1 ≥ l1 ≥ l2 ≥ . . . ≥ ln, lν > lν+1.(3.5)

Also αν , βν , γν and δν satisfy

(3.6) |αν | + |βν | > 0, |γν | + |δν | > 0, 1 ≤ ν ≤ n.

Since any set of n linearly independent forms can be set in normalized
forms, see e.g. [16], we assume that the forms Uν and Vν , 1 ≤ ν ≤ n

are normalized. For example, this implies for Uν that if Ûν , 1 ≤ ν ≤ n
is any equivalent system with orders k̂1 ≥ k̂2 ≥ . . . ≥ k̂n, then k̂ν ≥ kν ,
1 ≤ ν ≤ n. The differential expressions l(·) are defined by

(3.7)

l(y) :=

{
l1(y) for −1 ≤ x < 0,

l2(y) for 0 < x ≤ 1,

li(y) = y(n) +
n∑

j=1

pij(x)y(n−j)(x), i = 1, 2.
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The coefficients pij(·), 1 ≤ j ≤ n satisfy the following smoothness
conditions,

(3.8) p1j(·) ∈ Cn−j([−1, 0]); p2j(·) ∈ Cn−j([0, 1]).

By the differential operator L we mean the operator

(3.9) L : D(L) → L2[−1, 1], y �−→ l(y).

Now we define the operator adjoint to L, which we denote by L†.
Similar to [9, 16], we first derive the Lagrange identity associated with
the operator L. We complement the boundary and compatibility linear
forms Uν and Vν with linearly independent forms to obtain linearly
independent systems Uν and Vν , ν = 1, . . . , 2n. Using integration by
parts, it is not hard to see that the generalized Lagrange’s identity

(3.10)∫ 1

−1

l(y)(x)z̄(x) dx =
2n∑
i=1

Vi(y)V
†
2n−i+1(z̄) +

2n∑
i=1

Ui(y)U
†
2n−i+1(z̄)

+
∫ 1

−1

y(x)l†(z)(x) dx.

holds for any functions y, z, in Dn,0. The differential expression l† is the
adjoint of l and the conditions U†

ν (y) = 0 and V †
ν (y) = 0, ν = 1, . . . , n,

are the adjoints of (3.2) and (3.3) respectively. The operator L† is
determined by the differential expression

(3.11) l†(y) =

{
l†1(y1), for −1 ≤ x < 0,

l†2(y2), for 0 < x ≤ 1

and the boundary and compatibility conditions

(3.12) U†
ν (y) = 0, V †

ν (y) = 0, ν = 1, 2, . . . , n.

When L = L†, the problem is self adjoint. The nontrivial function
y(·) ∈ D(L) given by

(3.13) y(x) =
{
y1(x) −1 ≤ x < 0,
y2(x) 0 < x ≤ 1,
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is said to be an eigenfunction of the operator L, if there is λ ∈ C
such that l(y) = λy and y(·) satisfies (3.2) (3.3). In this case, λ is an
eigenvalue of L with eigenfunction y(·). The eigenvalues are the zeros
of the 2n× 2n characteristic determinant.

(3.14)

	(λ)=

∣∣∣∣∣∣∣∣
U1,−1(y11) . . . U1,−1(y1n) U1,1(y21) . . . U1,1(y2n)
U2,−1(y11) . . . U2,−1(y1n) U2,1(y21) . . . U2,1(y2n)

...
...

...
...

...
...

Vn,0−(y11) . . . Vn,0−(y1n) Vn,0+(y21) . . . Vn,0+(y2n)

∣∣∣∣∣∣∣∣
= 0.

Here {yjm}n
m=1 is an FS set of solutions of lj(y) − λy = 0, j = 1, 2,

which will be specified below. Next we introduce briefly the definition
of strong regularity. Set λ = −ρn and let Sk, 0 ≤ k ≤ 2n − 1 be the
sectors of the complex ρ-plane determined by

(3.15)
kπ

n
≤ arg ρ ≤ (k + 1)π

n
,

where ω1, . . . , ωn are the nth roots of −1 which are chosen so that

Re (ρω1) ≤ Re (ρω2) ≤ · · · ≤ Re (ρωn), for ρ ∈ S0.

Let y1j(·, λ) and y2j(·, λ) be respectively the FS of l1y = λy, l2y = λy
defined by

(3.16) y
(k−1)
1j (−1, λ) = δkj ; y

(k−1)
2j (0, λ) = δkj , 1 ≤ k, j ≤ n.

From the asymptotics of y1j , y2j derived by Muravei, [15], there are
numbers θ−1, θ0, θ1 such that for sufficiently large ρ ∈ S0, if n = 2µ−1,
then there exists a function 	0(λ) which is nonzero for λ �= 0 such that
for λ �= 0

(3.17)
	(λ)
	0(λ)

= θ−1e
−ρωµ + θ0 + θ1e

ρωµ +O

(
e−ρωµ

ρ

)
;

and if n = 2µ,

(3.18)
	(λ)
	0(λ)

= θ−1e
−2ρωµ + θ0 + θ1e

2ρωµ +O

(
1 + e−2ρωµ

ρ

)
.
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Definition 3.1. The problem Ly = λy is called regular if θ−1 �= 0 �=
θ1, and is called strongly regular if θ2

0 �= 4θ1θ−1 �= 0.

Lemma 3.2 [15]. Let L be strongly regular. Then L has two
sequences of eigenvalues {λ′k}k≥1 and {λ′′k}k≥1 where λ′k = −(ρ′k)n and
λ′′k = −(ρ′′k)n with

(i) for n = 2µ− 1,

(3.19)
ρ′k =

1
ωµ

(
2kπi+ ln ξ′ +

η′

k
+ 0

(
1
k2

))
,

ρ′′k =
1
ωµ

(
2kπi+ ln ξ′′ +

η′′

k
+ 0

(
1
k2

))
,

(ii) for n = 2µ

(3.20)
ρ′k =

1
ωµ

(
kπi+

1
2

ln ξ′ +
η′

k
+ 0

(
1
k2

))
,

ρ′′k =
1
ωµ

(
kπi+

1
2

ln ξ′′ +
η′′

k
+ 0

(
1
k2

))
,

valid for |k| → ∞, where η′, η′′ are constants independent of k and
ξ′, ξ′′ are the zeros of the quadratic equation 0 = θ1, ξ2 + θ0ξ + θ−1 =
θ1(ξ − ξ′)(ξ − ξ′′).

Because of strong regularity the eigenvalues are eventually simple
geometrically and algebraically. For convenience, we assume that all
eigenvalues are simple. We have the following theorem taken from [15].

Theorem 3.3 [15]. The systems {ϕi}∞i=1 and {ψi}∞i=1 of eigenfunc-
tions of a strongly regular operator L of the form (3.9) above and of its
adjoint L†, respectively, are both Riesz-bases of L2[−1, 1]. Moreover,

(3.21)
∫ 1

−1

ϕi(x)ψj(x) dx = δij , 1 ≤ i, j ≤ n.

From now on we assume that the eigenvalues are given by the
sequence {λk}∞k=0. Consequently the eigenvalues of the adjoint problem
will be {λ̄k}∞k=0.
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4. Green’s function and the main results. Let Wj(·, λ) denote
the Wronskians

(4.1) Wj(x) :=Wj(x, λ)=

∣∣∣∣∣∣∣
yj1(x, λ) . . . yjn(x, λ)

...
...

...
y
(n−1)
j1 (x, λ) . . . y

(n−1)
jn (x, λ)

∣∣∣∣∣∣∣ , j=1, 2,

where −1 ≤ x < 0 when j = 1 and 0 < x ≤ 1 when j = 2. Let also
gj(x, ξ, λ), j = 1, 2, denote the functions

(4.2) gj(x, ξ, λ) = ± 1
2Wj(ξ)

∣∣∣∣∣∣∣∣∣
yj1(x, λ) . . . yjn(x, λ)

y
(n−2)
j1 (ξ, λ) . . . y

(n−2)
jn (ξ, λ)

...
...

...
yj1(ξ, λ) . . . yjn(ξ, λ)

∣∣∣∣∣∣∣∣∣ .

g1(x, ξ, λ) is defined for −1 ≤ x, ξ < 0, g2(x, ξ, λ) is defined for
0 < x, ξ ≤ 1. Here the positive sign is taken when x ≥ ξ and the minus
sign is taken when x ≤ ξ. Notice that Wj(ξ) �= 0 for all ξ ∈ [−1, 0)
when j = 1 and for all ξ ∈ (0, 1] when j = 2. The function H(x, ξ, λ),
which plays the same role of h(x, ξ, λ) above will be given as follows.
For −1 ≤ x, ξ < 0,

(4.3) H(x, ξ, λ)

=

∣∣∣∣∣∣∣∣
y11(x, λ) . . . y1n(x, λ) 0 . . . 0 g1(x, ξ, λ)

U1,−1(y11) . . . U1,−1(y1n) U1,1(y21) . . . U1,1(y2n) U1,−1(g1)

..

.
..
.

..

.
..
.

..

.
..
.

..

.

Vn,0−(y11) . . . Vn,0−(y1n) Vn,0+(y21) . . . Vn,0+ (y2n) Vn,0− (g1)

∣∣∣∣∣∣∣∣ ,

when −1 ≤ x < 0 and 0 < ξ ≤ 1, we have

(4.4) H(x, ξ, λ)

=

∣∣∣∣∣∣∣∣
y11(x, λ) . . . y1n(x, λ) 0 . . . 0 0

U1,−1(y11) . . . U1,−1(y1n) U1,1(y21) . . . U1,1(y2n) U1,1(g2)

..

.
..
.

..

.
..
.

..

.
..
.

..

.

Vn,0−(y11) . . . Vn,0− (y1n) Vn,0+ (y21) . . . Vn,0+(y2n) Vn,0+(g2)

∣∣∣∣∣∣∣∣ ,
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and if 0 < x ≤ 1 and −1 ≤ ξ < 0, H(x, ξ, λ) becomes

(4.5) H(x, ξ, λ)

=

∣∣∣∣∣∣∣∣
0 . . . 0 y21(x, λ) . . . y2n(x, λ) 0

U1,−1(y11) . . . U1,−1(y1n) U1,1(y21) . . . U1,1(y2n) U1,−1(g1)

.

..
.
..

.

..
.
..

.

..
.
..

.

..

Vn,0−(y11) . . . Vn,0−(y1n) Vn,0+(y21) . . . Vn,0+ (y2n) Vn,0− (g1)

∣∣∣∣∣∣∣∣ ,

and if 0 < x, ξ ≤ 1, we obtain

(4.6) H(x, ξ, λ)

=

∣∣∣∣∣∣∣∣
0 . . . 0 y21(x, λ) . . . y2n(x, λ) g2(x, ξ, λ)

U1,−1(y11) . . . U1,−1(y1n) U1,1(y21) . . . U1,1(y2n) U1,1(g2)

.

..
.
..

.

..
.
..

.

..
.
..

.

..

Vn,0−(y11) . . . Vn,0−(y1n) Vn,0+(y21) . . . Vn,0+(y2n) Vn,0+(g2)

∣∣∣∣∣∣∣∣.

Green’s function of the operator L − λE, λ is not an eigenvalue, is
given by

(4.7) G(x, ξ, λ) =
H(x, ξ, λ)
	(λ)

, −1 ≤ x, ξ ≤ 1, x �= 0 �= ξ.

Therefore, G(x, ξ, λ) is a meromorphic function with simple poles at
the zeros of 	(λ). We know that if λ is not an eigenvalue, then for any
continuous function f(·), the function

(4.8) y(x, λ) =
∫ 1

−1

G(x, ξ, λ)f(ξ) dξ

uniquely solves the boundary value problem (L−λE)y = f . Analogous
to Naimark [16, Section 3.8] it follows that the residues of G(x, ξ, λ)
have the special form

(4.9) Resλ=λk
G(x, ξ, λ) = −ϕk(x)ψk(ξ), k ∈ N,

where ϕk(·) is an eigenfunction of L corresponding to λk and ψk(·)
is an eigenfunction of L† corresponding to λk. In Section 2 of [15] it
has been shown that in the complex λ-plane there exists a sequence of
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circles Γk = {λ ∈ C : |λ| = Rk}, k ∈ N, with increasing radii Rk → ∞
for k → ∞ and a constant δ > 0 such that all eigenvalues λj of L lie at a
distance greater than or equal to δ form each of these circles. Moreover,
for k ≥ 0 the interior of Γk contains exactly the eigenvalues λ1, . . . , λk

and there is a positive constant M such that for x, ξ ∈ [−1, 1] − {0},

(4.10) |G(x, ξ, λ)| ≤M |λ|−(n−1)/n = M |ρ|−1/n

for all λ ∈ Γk, k ∈ N. Now we are ready to prove the following theorem.

Theorem 4.1. Assume that L is strongly regular and that all the
eigenvalues are simple. Then for all λ ∈ C with 	(λ) �= 0

(4.11) G(x, ξ, λ) =
∞∑

j=0

ϕj(x)ψj(ξ)
λj − λ

,

uniformly for x, ξ ∈ [−1, 1].

Proof. Let λ∗ ∈ C be not an eigenvalue of L. Then we infer, using
(4.9), for k ≥ 0,

Ik :=
1

2πi

∫
Γk

G(x, ξ, λ)
λ− λ∗

dλ = G(x, ξ, λ∗) −
k∑

j=0

ϕj(x)ψk(ξ)
λj − λ∗

.

Inequality (4.10) yields, limk→∞ Ik = 0, uniformly for x, ξ ∈ [−1, 1],
which proves the assertion of Theorem 4.1.

Theorem 4.2. Let f(·) ∈ D(L). That is, f(·) is a Dn,0-function that
satisfies all boundary and compatibility conditions, Uν(f) = Vν(f) = 0,
1 ≤ ν ≤ n. Then

(4.12) f(x) =
∞∑

ν=0

( ∫ 1

−1

f(t)ψν(t) dt
)
ϕν(x)

uniformly on [−1, 1]; this series is called the Birkhoff series of f .
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Proof. It follows from (4.11) that

∞∑
ν=0

( ∫ 1

−1

f(ξ)ψν(ξ) dξ
)
ϕν(x) = lim

k→∞
−1
2πi

∫
Γk

∫ 1

−1

G(x, ξ, λ)f(x) dx dλ.

Since f ∈ D(L) satisfies all boundary and compatibility conditions,
we get, using (4.10) and the properties of the Green’s function, see [15,
p. 29] after n partial integrations

Jk(x) =
−1
2πi

∫
Γk

∫ 1

−1

G(x, ξ, λ)f(ξ) dξ dλ

=
−1
2πi

∫
Γk

∫ 1

−1

1
λ̄
�∗(G(x, ξ, λ))f(ξ) dξ dλ

= f(x) − 1
2πi

∫
Γk

∫ 1

−1

1
λ̄
G(x, ξ, λ))l∗(f)(ξ) dξ dλ

= f(x) +O(|Rk|−(n−1)/n).

Hence limk→∞ Jk = f(x), uniformly on [−1, 1].

Using a more precise estimate than (4.10), which could be derived
after some lengthy calculations, and applying the same method as in
the proof of [10, Theorem 4.2] one can derive the following expansion
theorem.

Theorem 4.3. Let p11(·) = p21(·) = 1, and let f(·) be continuous
and of bounded variation in [−1, 1]. If f(0) = 0 and if f satisfies
all boundary conditions Uν(f) = 0 with kν = 0, i.e., the boundary
conditions of order zero (if any exist), then

(4.13) f(x) =
∞∑

ν=0

( ∫ 1

−1

f(t)ψν(t) dt
)
ϕν(x)

uniformly on [−1, 1].

It is worthwhile to mention that, moreover, it is possible to prove in
the case p11 = p21 = 1 that on each compact set K ⊂ (−1, 0)∪(0, 1) the
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Birkhoff series of f is uniformly equiconvergent and also equisummable
by Riesz typical means to the trigonometric Fourier series of f , for
the proof of these results one has to first derive a detailed estimate of
G(x, ξ, λ) and then apply the method presented in the Stone’s paper
[18]; we omit the technical details.

Let us define for some ξ0 ∈ [−1, 1] the entire function

(4.14) Φ(x, λ) := 	(λ)G(x, ξ0, λ), λ ∈ C.

This function is an entire function of λ since the simple poles of
G(x, ξ0, λ), i.e., the eigenvalues of (3.9), will be canceled by the simple
zeros of 	(λ).

The main sampling result of this article is the following theorem.

Theorem 4.4. Let f ∈ L2[−1, 1] and let F (λ) be the transformation

(4.15) F (λ) =
∫ 1

−1

f(x)Φ(x, λ) dx.

Then F (λ) is an entire function of order 1/n and type not exceeding 2
which admits the sampling representation

(4.16) F (λ) =
∞∑

k=1

F (λk)
	(λ)

(λ− λk)	′(λk)
, λ ∈ C.

The sampling series (4.16) converges uniformly on compact sets of the
complex plane and absolutely on C. In (4.16) F (λk) = 0 if ψk(ξ0) = 0.

Proof. The assertions on the order and the type of F (λ) are immediate
consequences of the asymptotic estimates for G(x, ξ, λ) proved in [15].
From the fact that the normalized eigenfunctions of problem (3.9) and
of its adjoint, {ϕi}∞i=1 and {ψi}∞i=1, respectively, form Riesz bases of
L2[−1, 1] we have for 	(λ) �= 0

Φ(x, λ) =
∞∑

k=0

Φ̂(k, λ)ϕk(x),(4.17)

f(x) =
∞∑

k=0

F̂ (k)ψk(x),(4.18)
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where

Φ̂k(k, λ) :=
∫ 1

−1

Φ(x, λ)ψk(x) dx,(4.19)

F̂ (k) :=
∫ 1

−1

f(x)ϕk(x) dx.(4.20)

These, together with the expansions (4.11) and (4.14), imply on account
of the biorthogonality properties of the eigenfunctions (3.21) that

(4.21) Φ̂k(k, λ) = ψk(ξ0)
	(λ)
λk − λ

, λ �= λk.

We assume for a moment that ψ̄k(ξ0) �= 0 for all k. Using (4.11),
(4.14) (4.15) and (4.17) (4.21) we get,

(4.22) F (λ) =
∞∑

k=0

F̂ (k)ψ̄k(ξ0)
	(λ)
λk − λ

, λ �= λk.

Let k ∈ {0, 1, . . . } be fixed. Since G(x, ξ0, λk) has a simple pole at λk,
then there is a δ > 0 such that

(4.23) G(x, ξ0, λ) =
R(x, ξ0)
λ− λk

+Gk(x, ξ0, λ), for |λ− λk| < δ,

where Gk(x, ξ0, λ) is analytic in |λ− λk| < δ and, according to (4.9),

(4.24) R(x, ξ0) = −ϕk(x)ψk(ξ0).

Therefore

(4.25)

F (λk) = lim
λ→λk

∫ 1

−1

f(x)Φ(x, λ) dx

= lim
λ→λk

∫ 1

−1

f(x)
	(λ)ϕk(x)ψk(ξ0)

λ− λk
dx

= −
∫ 1

−1

	′(λk)f(x)ϕk(x)ψk(ξ0) dx

= −	′(λk)ψk(ξ0)F̂ (k).
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Combining (4.22) and (4.25), we get the sampling series (4.16) with
pointwise convergence on C. As for the proof of uniform convergence,
one may use the same technique as in [2]. When ψk(ξ0) = 0 for some
k, then obviously the same results hold with F (λk) = 0.

5. Examples. In this section we derive two examples illustrating the
sampling results. The first example is a first order self-adjoint problem
that leads to the classical sampling theorem. The second example,
which involves a second order self-adjoint problem, leads to a classical
representation of a class of entire functions.

To simplify the computation, we may choose a different FS of solu-
tions than that described in Section 3. As is known the choice of the FS
depends on the base point, but does not affect the results of Sections
3 and 4. Notice the examples considered below can be transformed by
the replacements λ �→ iλ and λ �→ −λ, respectively, to the form (3.9).

Example 5.1. Let us consider the self-adjoint eigenvalue problem

l1(y) = l2(y) = −i dy
dx
,(5.1)

U1(y) = y(−1) − y(1) = 0, V1(y) = y(0−) − y(0+) = 0.(5.2)

A fundamental set of solutions of (5.1) (5.2) is (in the notation of
Section 3)

(5.3) y11(x, λ) = eiλx, −1 ≤ x < 0, y21(x, λ) = eiλx, 0 < x ≤ 1.

Hence 	(λ) = 2i sinλ. Thus θ1 = 1, θ−1 = −1 and θ0 = 0,
implying strong regularity and the eigenvalues are λk = kπ, k ∈ Z.
The normalized eigenfunctions are ϕk(x) = eikπx/2, k ∈ Z, . . . . The
functions Wj(ξ), gj(x, ξ, λ), j = 1, 2 and H(x, ξ, λ) are given as follows.
Wj(ξ) = eiλξ;

(5.4) gj(x, ξ, λ) =
1
2

{
eiλ(x−ξ) x > ξ,
−eiλ(x−ξ) x < ξ;
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(5.5) H(x, ξ, λ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

− cosλeiλ(x−ξ) + 2i sinλ g1(x, ξ, λ)
−1 ≤ x, ξ ≤ 0,

−eiλeiλ(x−ξ) − 1 ≤ x ≤ 0, ≤ ξ ≤ 1,
−e−iλeiλ(x−ξ) − 1 ≤ ξ ≤ 0, ≤ x ≤ 1,
− cosλeiλ(x−ξ) + 2i sinλ g2(x, ξ, λ)

0 ≤ x, ξ ≤ 1.

The kernel Φ(x, λ) depends on the choice of ξ0 ∈ [−1, 1]. For instance
if ξ0 ∈ (−1, 0), then

(5.6)

Φ(x, λ) =
{−2 cosλeiλ(x−ξ0) + 2i sinλg1(x, ξ0, λ) −1 ≤ x ≤ 0,
−2e−iλeiλ(x−ξ0) 0 ≤ x ≤ 1;

(5.7)

Φ(x, λ) =
{−2e−iλeiλ(x−ξ0) −1 ≤ x ≤ 0,
−2 cosλeiλ(x−ξ0) + 2i sinλg2(x, ξ0, λ), 0 ≤ x ≤ 1,

for ξ0 ∈ (0, 1).

Theorem 4.4 states that the transformation

(5.8) F (λ) =
∫ 1

−1

f(x)Φ(x, λ) dx,

can be recovered via the classical sampling representation

(5.9) F (λ) =
∞∑

k=−∞
F (kπ)

sin(λ− kπ)
λ− kπ

.

Example 5.2. Let us consider the self adjoint problem, [4],

(5.10) l1(y) = l2(y) = −d
2y

dx2
,

(5.11) U1(y) = y(−1) = 0, U2(y) = y(1) = 0.

(5.12) V1(y) = y(0−) + y(0+) = 0, V2(y) = y′(0−) + y′(0+) = 0.
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A fundamental set of solutions of (5.10) is

(5.13) y11(x, λ) = e−iρx, y12(x, λ) = eiρx, −1 ≤ x < 0,
(5.14) y21(x, λ) = e−iρx, y22(x, λ) = eiρx, 0 < x ≤ 1,

where ρ =
√
λ. In this case 	(λ) = 4ρ sin 2ρ. Hence θ−1 = 2 �= 0,

θ1 = −2 �= 0, θ0 = 0, i.e., the problem is strongly regular and the
eigenvalues are λk = k2π2/4, k ∈ N. We can see that zero is not an
eigenvalue. In the above notations, Wj(ξ) = 2iρ,

(5.15) gj(x, ξ, λ) =
1
2ρ

{
sin ρ(ξ − x) x ≥ ξ,
− sin ρ(ξ − x) x ≤ ξ.

Here we use Maple to compute the function H(x, ξ, λ). First for
−1 ≤ x < 0, −1 ≤ ξ < 0, and x ≥ ξ; ξ ≥ x we respectively have

(5.16)

2ρH(x, ξ, λ) = −4 sin(ρ(ξ + 1))ρ sin(ρ(x− 1))
− 4 sin(ρ(x− ξ))ρ sin(2ρ)

− e−iρ (x+2) cos(ρξ) − ie−iρ(x+2) sin(ρξ)ρ
+ e−iρx cos(ρξ) − ie−iρx sin(ρξ)ρ

+ ieiρ(x+2) sin(ρξ)ρ+ eiρ x cos(ρξ)

+ ieiρx sin(ρξ)ρ− eiρ(x+2) cos(ρξ);

(5.17)

2ρH(x, ξ, λ) = −4 sin(ρ(ξ + 1))ρ sin(ρ(x− 1))
+ 4 sin(ρ(x− ξ))ρ sin(2ρ)

− e−iρ(x+2) cos(ρξ) − ie−iρ(x+2) sin(ρξ)ρ
+ e−iρx cos(ρξ)

− ie−iρx sin(ρξ)ρ+ ieiρ(x+2) sin(ρξ)ρ
+ eiρx cos(ρξ)

+ ieiρx sin(ρξ)ρ− eiρ(x+2) cos(ρξ),
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for −1 ≤ x < 0, 0 < ξ ≤ 1, we have

(5.18)

H(x, ξ, λ) = 2 sin(ρ(ξ − 1)) sin(ρ(x+ 1))

+
1
2
e−iρ(x+2) cos(ρξ)

+
1
2
ie−iρ(x+2) sin(ρξ) − 1

2
ieiρx sin(ρξ)

− 1
2
e−iρx cos(ρξ) − 1

2
ie−iρx sin(ρξ)

+
1
2
eiρx cos(ρξ) +

1
2
eiρ(x+2) cos(ρξ)

− 1
2
ieiρ(x+2) sin(ρξ),

now for 0 < x ≤ 1, −1 ≤ ξ < 0, we have

(5.19)

H(x, ξ, λ) = 2 sin(ρ(ξ + 1)) sin(ρ(x− 1))

+
1
2
e−iρ(x−2) cos(ρξ) − 1

2
eiρ x cos(ρξ)

+
1
2
i sin(ρξ)e−iρ(x−2) + −1

2
ieiρx sin(ρξ)

− 1
2
e−iρx cos(ρξ) +

1
2
eiρ(x−2) cos(ρξ)

+
1
2
ie−iρx sin(ρξ) − 1

2
ieiρ(x−2) sin(ρξ),

finally when 0 < x ≤ 1, 0 < ξ ≤ 1 and x > ξ; ξ > x we respectively
have

(5.20)

H(x, ξ, λ) = −2 sin(ρ(ξ − 1)) sin(ρ(x+ 1))

− 2 sin(ρ(x− ξ)) sin(2ρ) − 1
2
e−iρ(x−2) cos(ρξ)

+
1
2
eiρx cos(ρξ) +

1
2
e−iρx cos(ρξ)

− 1
2
eiρ(x−2) cos(ρξ) − 1

2
ie−iρ(x−2) sin(ρξ)

+
1
2
ieiρx sin(ρξ) +

1
2
ieiρ(x−2) sin(ρξ)

− 1
2
ie−iρx sin(ρξ);
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and

(5.21)

H(x, ξ, λ) = −2 sin(ρ(ξ − 1)) sin(ρ(x+ 1))

+ 2 sin(ρ(x− ξ)) sin(2ρ) − 1
2
e−iρ(x−2) cos(ρξ)

+
1
2
eiρx cos(ρξ) +

1
2
e−iρx cos(ρξ)

− 1
2
eiρ(x−2) cos(ρξ) − 1

2
ie−iρ(x−2) sin(ρξ)

+
1
2
ieiρx sin(ρξ) +

1
2
ieiρ(x−2) sin(ρξ)

− 1
2
ie−iρx sin(ρξ).

Green’s function associated with the eigenvalue problem (5.10) (5.12)
will be

(5.22) G(x, ξ, λ) =
H(x, ξ, λ)
4ρ sin 2ρ

.

For ξ0 ∈ [−1, 1], Φ(x, λ) = H(x, ξ0, λ) and according to Theorem 4.4,
the integral transform

(5.23) F (λ) =
∫ 1

−1

ḡ(x) Φ(x, λ) dx, g(·) ∈ L2(−1, 1)

can be reconstructed from its values at the eigenvalues via

(5.24) F (λ) =
∞∑

k=1

F

(
k2π2

4

)
ρ sin(2ρ− kπ)
ρ2 − (k2π2/4)

.

Example 5.3. Consider the problem that consists of the differential
expressions

(5.25) l1(y) = −i dy
dx
, l2(y) =

dy

dx

and the boundary conditions (5.2). The eigenvalues will be the zeros
of the entire function 	(λ) = eλ − e−iλ. That is, λk = kπ(1 + i),
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k ∈ Z, i.e., an equidistant set of points on the line y = x. Hence,
W1(ξ) = eiλξ, W2(ξ) = eλξ,

(5.26)

g1(x, ξ, λ) =
1
2

{
eiλ(x−ξ) x > ξ,

−eiλ(x−ξ) x < ξ,

g2(x, ξ, λ) =
1
2

{
eλ(x−ξ), x > ξ,

−eλ(x−ξ), x < ξ.

The function H(x, ξ, λ) will have the form

(5.27)

H(x, ξ, λ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−1/2
(
eλ + eiλ

)
eiλ(x−ξ) + 	(λ) g1(x, ξ, λ)

−1 ≤ x, ξ ≤ 0,
−eλeiλ(x+iξ), −1 ≤ x ≤ 0 ≤ ξ ≤ 1,
−e−iλeλ(x−iξ), −1 ≤ ξ ≤ 0 ≤ x ≤ 1,
−1/2

(
eλ + eiλ

)
eλ(x−ξ) + 	(λ) g2(x, ξ, λ),

0 ≤ x, ξ ≤ 1.

Choosing ξ0 ∈ [−1, 1], the transform

(5.28) F (λ) =
∫ 1

−1

f(x)H(x, ξ0, λ) dx

has the sampling representation

(5.29) F (λ) =
∞∑

k=−∞
F (λk)

eλ − e−iλ

(λ− λk)(eλk + iλke−iλk)
.

It should be mentioned that although the eigenvalue problem of the
last example does not belong to the class investigated in [15], it can be
shown that the expansion and sampling results are still valid.
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