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REGULARIZATION OF INTEGRAL EQUATIONS
IN SPACES OF DISTRIBUTIONS

RICARDO ESTRADA

ABSTRACT. In this article the notion of multiplicative reg-
ularizator, a smooth function that by multiplication allows the
extension of operators in spaces of distributions, is introduced,
and several of the properties are obtained. Applications to
Hilbert transforms, Carleman operators, fractional integration
operators and generalized Abel operators are given.

1. Introduction. If T is a linear integral operator that sends
functions defined in R to functions defined in R, then one can define a
“finite” transform associated to T by starting with a function defined
on an interval (a, b), extending it to R by requiring it to vanish in
the complement of (a, b), applying T , and then restricting it to (a, b).
This finite transform thus sends functions defined on (a, b) to functions
defined on (a, b). In other words, the finite transform T(a,b) is defined
as

(1.1) T(a,b) = π Ti,

where i is the inclusion of a space of functions defined in (a, b) to a
space of functions defined on the whole line, and π is the projection
from that space of functions defined on the whole line to the space of
functions defined in (a, b). The finite Hilbert transform is a typical
example.

Suppose now that we need to consider the finite transform in spaces of
distributions. Then one may try to use (1.1). However, the inclusion i is
naturally defined as an operator from the space E ′[a, b] of distributions
whose support is contained in the closed interval [a, b] to D′(R), while
the projection π is naturally defined as an operator from D′(R) to the
space of extendable distributions S ′(a, b), defined in Section 2. But i
cannot be defined as an operator from S ′(a, b) to D′(R), while π can
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never be defined as an operator from D′(R) to E ′[a, b] [2]. Therefore,
T(a,b) becomes an operator from E ′[a, b] to S ′(a, b).

As it is clear, having an operator from E ′[a, b] to S ′(a, b) is not exactly
the ideal situation since one would like to have an operator that acts
from some space to itself. However, while T(a,b) is not a well-behaved
distributional operator, it may happen that a simple variation of this
operator, namely, the operator ψT(a,b), where ψ is a suitable smooth
function, may have an extension that sends the space E ′[a, b] to itself.
Indeed, the distributional finite Hilbert transform H(a,b) was defined
by Orton [11] as an operator from E ′[a, b] to S ′(a, b), while it was later
shown in [3] that by multiplying with (x− a)n+1/2(b− x)m−1/2, where
n,m ∈ Z, one obtains an operator from E ′[a, b] to itself; moreover, this
regularized operator is of the Fredholm type.

The purpose of this article is the study of these functions ψ, that
produce by multiplication an operator of E ′[a, b] to itself. We call them
multiplicative regularizators. Our aim is to show that the multiplicative
regularizators (x− a)n+1/2(b− x)m−1/2 of the finite Hilbert transform
show most of the properties of multiplicative regularizators in general,
and that, in particular, such regularizators are unique except for the
integral parameters n and m.

The plan of the article is as follows. In Section 2 we introduce
the spaces of distributions needed in the study of integral equations
[4]. In Section 3 we have collected some known but useful results
concerning multiplication operators and some of their generalizations.
Section 4 is the main section, where the principal properties of the
multiplicative regularizators are stated and proved. The last section
considers several illustrations, namely, Hilbert transforms, fractional
integration operators, and generalized Abel operators.

2. Notation and preliminaries. Several spaces of generalized
functions are needed in this study. Here we explain the notation for
some of these spaces, which appear frequently in the sequel. Let us
consider an interval of the form (a, b), where −∞ ≤ a < b ≤ +∞. The
first space we consider is the space D(a, b) of smooth functions that
vanish outside some compact subset of (a, b) [7, 8, 14]. The elements
of D(a, b) are the standard test functions on (a, b). We give D(a, b) its
usual Schwartz topology, namely, a net {φσ} of D(a, b) converges to 0
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if there exists a fixed compact K ⊂ (a, b) and an index σ0 such that

1. suppφσ ⊆ K if σ ≥ σ0 and

2. φ(j)
σ → 0 uniformly on (a, b) for each j = 0, 1, 2, . . . .

The space of Schwarz distributions over (a, b) is D′(a, b), the dual
space of D(a, b), that is, the set of continuous linear functionals in
D(a, b). When (a, b) = R, we shall write D and D′. If f ∈ D′(a, b)
and φ ∈ D(a, b), we shall denote the evaluation of f on φ as 〈f, φ〉
and sometimes as 〈f(x), φ(x)〉 or 〈f(t), φ(t)〉; the latter notation is
particularly useful when f or φ depend on several variables and the
evaluation is with respect to one of them [6, 7, 8, 14].

The space E(a, b) is the space of smooth functions on (a, b), without
any restrictions about their support. The topology of E(a, b) is that
of uniform convergence of all derivatives over compact subsets of
(a, b). The dual space, E ′(a, b), is called the space of distributions
with compact support over (a, b). The reason for this nomenclature
is as follows. It is clear that D(a, b) ⊂ E(a, b) and it is easy to show
that the inclusion is continuous. Moreover, D(a, b) is dense in E(a, b).
Accordingly, the restriction of an element of E ′(a, b) to D(a, b) produces
an identification of E ′(a, b) with a certain subset of D′(a, b); it turns
out that this subset is precisely the set of generalized functions with
compact support.

Let us remark that the support of an element f ∈ D′(a, b) is the
complement of the largest open subset of (a, b) in which f vanishes; f
vanishes in an open set U ⊆ (a, b) if 〈f, φ〉 = 0 for each φ ∈ D(a, b)
with suppφ ⊆ U .

The space E [a, b] is the set of smooth functions in [a, b], where
being smooth at the endpoints means that the lateral limits φ(j)

(a + 0) = limx→a+ φ(j)(x) and φ(j)(b − 0) = limx−b− φ(j)(x) exist for
j = 0, 1, 2, . . . . In this space we introduce the family of semi-norms

(2.1) ‖φ‖j = max
{|φ(j)(x) |: a ≤ x ≤ b

}
,

for φ ∈ E [a, b]. These semi-norms make E [a, b] a Fréchet space. Its dual
E ′[a, b] is the set of distributions over [a, b].

Closely related to E [a, b] is the space S(a, b), introduced by Orton
[11] with a different notation. The space S(a, b) is the subset of E [a, b]
formed by those functions for which φ(j)(a + 0) = φ(j)(b − 0) = 0 for
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each j ∈ N. Clearly, S(a, b) is a closed subset of E [a, b], and we give
S(a, b) the subspace topology. An alternative description of S(a, b) is
possible. Its elements are the smooth functions φ defined in (a, b) of
rapid decay at the endpoints, that is, which satisfy

lim
x→a+

(x− a)−kφ(j)(x) = 0,(2.2)

lim
x→b−

(x− b)−kφ(j)(x) = 0,(2.3)

for each k, j ∈ N. This definition also applies if a = −∞ by replacing
(2.2) by

(2.4) lim
x→−∞ x−kφ(j)(x) = 0,

of if b = +∞ by replacing (2.3) by

(2.5) lim
x→+∞ x−kφ(j)(x) = 0.

The topology of S(a, b) can then be described by the family of semi-
norms

(2.6) ‖φ‖k,j = sup
{
ρk(x, a)ρk(x, b)|φ(j)(x)| : a < x < b

}
,

where ρk(x, a) = |x − a|−k if |a| < ∞ and ρk(x,±∞) = |x|−k. When
(a, b) = R we use the simpler notation S for S(R), the space of test
functions of rapid decay at infinity.

Let us consider the dual space S ′(a, b). The elements of S ′(a, b) can
be considered as generalized functions over [a, b] which are “unspecified
at the endpoints.” Indeed, since S(a, b) is a closed subspace of E [a, b],
we readily see that by restricting each element f ∈ E ′[a, b] to S(a, b) we
obtain an element πf ∈ S ′(a, b). We may consider π : E ′[a, b]→ S ′(a, b)
as a projection operator. If g ∈ S ′(a, b) we may construct an element
f0 ∈ E ′[a, b] that satisfies πf0 = g by using the Hahn-Banach theorem;
the general solution of the equation πf = g is then

(2.7) f(x) = f0(x) +
n∑
j=0

(
αjδ

(j)(x− a) + βjδ
(j)(x− b)

)
,

where n ∈ N and αj , βj , 0 ≤ j ≤ n, are arbitrary constants.
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Observe that S ′(a, b) can be considered as a subset of D′(a, b).
However, there is no relation of inclusion between D′(a, b) and E ′[a, b],
nor can we define projection operators between these spaces. On the
other hand, the space E ′(a, b) can be considered a subset of the three
spaces E ′[a, b], D′(a, b) and S ′(a, b).

Observe that we have used the notations S ′(a, b), E ′(a, b), D′(a, b)
and E ′[a, b]. The closed interval [a, b] is only used for the last space,
the open interval being used for the other spaces. The reason for this
notation is that the support of the elements of E ′[a, b] is naturally a
subset of [a, b] while the support of an element of D′(a, b), or of any of
its subspaces E ′(a, b) or S ′(a, b) is naturally a subset of (a, b). This can
be seen from the discussion that follows.

Let [a, b] be a closed interval and let (c, d) be an open interval of
the real line with [a, b] ⊂ (c, d). Any distribution f ∈ D′(c, d) can be
restricted to (a, b) by the formula

(2.8) 〈f |(a,b), φ〉 = 〈f, φ̃〉,

where φ ∈ D(a, b) and φ̃ ∈ D(c, d) is its extension that vanishes on
(c, a] ∪ [b, d) and f |(a,b) ∈ D′(a, b) is the restriction. Notice that the
restriction f |(a,b) of a distribution f ∈ D′(c, d) vanishes if and only if
supp f ⊆ (c, a] ∪ [b, d). On the other hand, a distribution g ∈ D′(a, b)
is the restriction of some f ∈ D′(c, d) if and only if g ∈ S ′(a, b). In
other words, S ′(a, b) is the set of extendable distributions, the set of
distributions of D′(a, b) that admit extensions to D′(c, d).

On the other hand, the space E ′[a, b] is naturally isomorphic to the
set of distributions of D′(c, d) whose support is contained in [a, b].

We shall also employ spaces of mixed type which satisfy some con-
dition at one endpoint but a different condition at the other. Their
construction is as follows. We denote by Djk(a, b) the space of smooth
functions on (a, b) that satisfy condition j at x = a and condition k at
x = b, where we use the following equivalence:

1 D(a, b)
2 E(a, b)
3 S(a, b)
4 E [a, b]
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When j = 4, k < 4, the support of the elements ofD′
4k(a, b) is a subset

of [a, b) and, consequently, we use the notation D′
4k[a, b). Similarly, we

use the notation D′
j4(a, b] when j < 4. The notations E ′[a, b) and

E ′(a, b] can be used safely for D′
42[a, b) and D′

24(a, b], respectively.

It is very important to observe that, away from the endpoints, the
elements of any of these spaces are locally indistinguishable. Indeed,
suppose g is a distribution from the space D′(V ) where V is an open
interval with V ⊂ (a, b). Suppose also that g = f |V , the restriction of
an element f ∈ D′

jk(a, b). Then a knowledge of g does not allow us to
know anything about the indices j or k.

3. Multiplicative operators. Our aim is to construct regularized
operators by multiplying with suitable functions. It is thus worthwhile
to present some basic results about multiplication operators and some
of their generalizations.

An operator M : D′
ij(a, b) → D′

ij(a, b) is a multiplication operator if
there exists a function ψ such that M(f) = ψf . If that is the case we
write M =Mψ.

The functions ψ such thatMψ is a multiplication operator of D′
ij(a, b)

have to be smooth in the open interval (a, b) and, depending on
the values of i and j, have to satisfy appropriate conditions at the
endpoints. For fixed i and j, they form an algebra, with the ordinary
multiplication, known in quantum mechanics as a Moyal algebra [10].

The Moyal algebras of the spaces D′
ii(a, b) are as follows. The Moyal

algebras for D′
ij(a, b) follow by combining the corresponding results for

D′
ii(a, b) and D′

jj(a, b).

(1) The Moyal algebra of D′
11(a, b) = D′(a, b) is D22(a, b) = E(a, b).

(2) The Moyal algebra of D′
22(a, b) = E ′(a, b) is also D22(a, b) =

E(a, b).
(3) The Moyal algebra of D′

33(a, b) = S ′(a, b) consists of those smooth
functions in (a, b) that satisfy that

ψ(n)(x) = O((x− a)−κn), x → a+,

ψ(n)(x) = O((b− x)−χn), x → b−,

for some constants κn, χn ∈ R. By analogy with the case when
a = −∞, b =∞ [7], one could use the notation OM (a, b).
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(4) The Moyal algebra of D′
44[a, b] = E ′[a, b] is D44[a, b] = E [a, b].

Let now ψ ∈ E [a, b] be such that Mψ is a multiplication operator of
E ′[a, b]. Let k+ be the number of zeros of ψ, counted according to their
multiplicity, if finite, and let k+ = ∞ if not. Then Mψ is a Fredholm
operator if and only if k+ < ∞; in this case, k+ = dim (KerMψ),
while ImMψ = E ′[a, b] so that k+ is precisely the index of Mψ. When
k+ =∞, then not only KerMψ has infinite dimension, but also ImMψ

has infinite codimension, since in this case ψ has a zero of infinite order,
say x0, and δ(j)(x−x0) /∈ ImMψ for any j ∈ N. The image of Mψ can
be dense in E ′[a, b] even if k+ =∞, namely when ψ does not vanish in
any subinterval of [a, b]; in fact,

(3.1) ImMψ = E ′[K],

if K = suppψ.

Multiplication operators can be characterized in the following way.
The notation ord (f) is used for the order of a generalized function [5].

Proposition 1. Let T : E ′[a, b] → E ′[a, b] be a continuous operator.
Then T is a multiplication operator, T = Mψ for some ψ ∈ E [a, b] if
and only if

(i) suppTf ⊂ suppf and

(ii) ordTf ≤ ord f

for each f ∈ E ′[a, b].

Proof. If T = Mψ, then (i) and (ii) clearly hold. Therefore, let us
assume that T satisfies (i) and (ii). It follows that if c ∈ [a, b] then
T (δ(x − c)) is a distribution of order 0 with support contained in the
set {c} and, consequently,
(3.2) T (δ(x− c)) = ψ(c)δ(x− c),

for some number ψ(c), that depends on c. The formula

ψ(c) =
〈
T (δ(x− c)), 1

〉
,

where 1 is the function identically equal to 1 in [a, b], implies that ψ is
smooth in [a, b].



248 R. ESTRADA

We shall now show that T = Mψ. To do so, it suffices to prove that
Tf = ψf whenever f belongs to a dense subset of E ′[a, b]. Suppose for
instance that f ∈ C[a, b], then

Tf(x) = lim
n→∞T

(
1
n

n∑
k=1

f

(
a+

k(b− a)
n

))
δ

(
x− a− k(b− a)

n

)

= lim
n→∞

1
n

n∑
k=1

f

(
a+

k(b−a)
n

)
ψ

(
a+

k(b−a)
n

)
δ

(
x−a− k(b−a)

n

)

= ψ(x)f(x),

as required.

Observe that if T satisfies (i) and instead of (ii) it satisfies ordTf ≤
N + ord f for some N ∈ N, then T is a differential operator of order
N .

Let us now consider some generalized kind of multiplication operators.
Let S be a closed, nowhere dense subset of [a, b], and let ψ be a
function defined and smooth in [a, b] \ S. Then a continuous operator
M̃ : E ′[a, b] → E ′[a, b] is called a generalized multiplication operator,
associated to ψ and S, if

(3.3) M̃(f)(x) = ψ(x)f(x) in [a, b] \ S.
The notations M̃ψ,S or M̃ψ can be used to denote a generic generalized
multiplication operator associated to ψ and S, but one should bear in
mind that if S �= ∅ then M̃ is not determined uniquely by ψ.

If S is a finite set, then the generalized multiplication operators M̃ψ,S

arise as solutions of division problems. Indeed, let c ∈ [a, b] and let
k ∈ N. Then there are multiplication operators associated to (x− c)−k

and {c}, particularly operators M̃ that solve the equation

(3.4) (x− c)k(M̃f)(x) = f(x) ∀ f ∈ E ′[a, b].

If M̃0 is a generalized multiplication operator associated to (x − c)−k

and {c}, then all other such operators are of the form

(3.5) M̃(f)(x) = M̃0(f)(x) +
N∑
j=0

〈f, αj〉δ(j)(x− c),
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for some N , independent of f and some functions α0, . . . , αN ∈ E [a, b].
If M̃0 solves the division problem (3.4), then the general solution of the
division problem is (3.5), with N = k − 1. A particular solution M̃0 of
(3.4) can be constructed as

(3.6) M̃0(f) =
[
(z − c)−kF{f(x); z}],

where [F ] = F+ − F− is the jump of an analytic function in C \ [a, b]
that has distributional boundary values F±(x) = F (x ± i0) in D(R),
and where F{f(x); z} is the Cauchy or analytic representation of a
distribution f ∈ E ′[a, b], that is, the sectionally analytic function [4]

(3.7) F{f(x), z} = 1
2πi

〈
f(x),

1
x− z

〉
, z ∈ C \ [a, b].

Interestingly, M̃0(f) given by (3.6) is the only solution of the division
problem (3.4) whose first k moments vanish

(3.8)
〈
M̃0(f), xj

〉
= 0, 0 ≤ j ≤ k − 1.

It will follow from the results of Section 4 that when S is finite then
the behavior of the generalized multiplication operators M̃ψ,S is not
very different from that of the operators M̃(x−c)−k,{c}. Actually, use of
Theorem 2 yields the following result.

Theorem 1. Let S ⊂ [a, b] be finite, and let ψ be smooth in [a, b]\S.
Then there are generalized multiplication operators associated to ψ and
S if and only if there are exponents κs ∈ Z, for s ∈ S, and a smooth
function ψ0 ∈ E [a, b] such that

(3.9) ψ(x) = ψ0(x)
∏
s∈S
(x− s)−κs .

If ψ has the decomposition (3.9) with ψ0(s) �= 0, s ∈ S, we set
k− =

∑
s∈S κs. Let k+ be the number of zeros of ψ0, counted

according to their multiplicity, if k+ < ∞ and k+ = ∞, otherwise.
If k+ < ∞, then any generalized multiplication operator M̃ associated
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to ψ and S is of the Fredholm type in E ′[a, b] and its index ind
(
M̃

)
=

dim
(
Ker M̃

)−codim (
Im M̃

)
is equal to k+−k−, although dim

(
Ker M̃

)
will not be equal to k+, nor codim

(
Im M̃

)
be equal to k−, in general.

In fact, some of the κs might be negative and thus k− might also be
negative! In case k+ = ∞ then both dim

(
Ker M̃

)
and codim

(
Im M̃

)
are infinite.

Let now S be a general, closed, nowhere dense subset of [a, b]. Let
ψ be smooth in [a, b] \ S such that there are generalized multiplication
operators of the type M̃ψ,S . If c is an isolated point of S, then
consideration of the generalized multiplication operator in the space
E [a′, b′] where [a′, b′]∩S = {c} yields that there exists k ∈ Z such that
(x − c)kψ(x) is smooth at x = c. That this does not hold for cluster
points of S, not even if they are the endpoints of an interval contained
in [a, b] \ S, can be seen from the following example.

Example. Consider the distribution

(3.10) g(x) =
∞∑
n=1

1
n2

δ

(
x− 1

n

)
,

where we observe that the series converges in E ′(R). The support of g
is the set {0, 1, 1/2, 1/3, . . . }. Let

(3.11) G(z) = F{g(x); z} = 1
2πi

∞∑
n=1

1
n(1− nz)

, z ∈ C \ supp g,

and consider the operator

(3.12) M̃(f) = [G(z)F{f(x); z}],
where f ∈ E ′[a, b] and where F{f(x); z} is the analytic representation
(3.7). Let [a, b] be any closed interval that contains the interval [0, 1] in
its interior. Then M̃ is a generalized multiplication operator associated
to G(x) and the set S = supp g. Actually, if f is continuous at all the
points of S, then

(3.13) (M̃f)(x) = G(x)f(x) +
∞∑
n=1

1
n2

f

(
1
n

)
δ

(
x− 1

n

)
.
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The points 1/n, n = 1, 2, 3, . . . , are isolated points of S and, sure
enough, (x − 1/n)G(x) is smooth for each n. However, xkG(x) is
not smooth for any k ∈ Z, not even smooth from the left. Indeed,
the behavior of G(−ω) as ω → 0+ is obtained from (3.11) by using
Ramanujan formula [1, 12]

(3.14)

∞∑
n=1

φ(nω)
n

∼ −a0 lnω

+ F.p.
∫ ∞

0

φ(x) dx+ γa0+
∞∑
j=1

ζ(1− j)ajωj ,

as ω → 0+ where φ belongs to K(0,∞), the finite part exists at 0 and
at ∞, and

(3.15) φ(x) ∼
∞∑
j=0

ajx
j as x → 0+.

Here γ is Euler’s constant and ζ(s) is the Riemann zeta function. It
follows that

(3.16) 2πiG(−ω) ∼ − lnω + γ +
ω

2
+

∞∑
j=1

B2j

2j
ω2j ,

as ω → 0+, where Bn = nζ(1−n) are the Bernoulli numbers [5]. Then
the results of Theorem 1 do not hold at x = 0.

4. Multiplicative regularizators. As we mentioned in the intro-
duction, the finite Hilbert transform H = H(a,b) defines an operator
from E ′[a, b] to S ′(a, b), but cannot be extended as a continuous oper-
ator from E ′[a, b] to itself. However, if we multiply H by the function
(x−a)n+1/2(b−x)m+1/2 for some n,m ∈ Z, then the resulting operator
admits continuous extensions from E ′[a, b] to itself and those extensions
are of the Fredholm type. Our aim is to study this situation in general.

Definition 1. Let X be a topological vector space, and let T : X →
D′

3i(a, b) be a continuous operator. A function ψ defined in (a, b) is
called a multiplicative regularizator T at x = a if ψ(x) > 0, x ∈ (a, b)
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and if there exists a continuous operator T̃ = T̃ψ : X → D′
4i[a, b) such

that

(4.1) π(T̃ f) = ψTf, f ∈ X ,

where π : D′
4i[a, b) → D′

3i(a, b) is the canonical projection. We
say that ψ is a proper multiplicative regularizator if there exists c,
a < c < b such that Im

(
πcT̃

)
has finite codimension in D′

43[a, c) where
πc : D′

4i[a, b)→ D′
43[a, c) is the canonical projection.

The definition of a multiplicative regularizator at the right endpoint
x = b is similar. For instance, the function (x−a)n+1/2(b−x)m+1/2, for
n,m ∈ Z, is a multiplicative regularizator of the finite Hilbert trans-
form at both endpoints of [a, b]. The notion of proper multiplicative
regularization will be important if we want the regularized operator T̃
to be of the Fredholm type.

Our first result deals with the regularization of the most basic oper-
ator, the projection of E ′[a, b] to D′

34(a, b].

Theorem 2. Let ψ be a multiplicative regularizator of the projection
π : E ′[a, b] → D′

34(a, b]. Then there exists n ∈ N such that ψ0(x) =
(x − a)nψ(x) is smooth at x = a. If ψ is a proper multiplicative
regularization, then there exists k ∈ Z such that ψ1(x) = (x− a)kψ(x)
is smooth at x = a and ψ1(a) �= 0.

Proof. The function ψ is smooth for x �= a and satisfies

(4.2) π T̃ f = ψ πf, f ∈ E ′[a, b],

where T̃ : E ′[a, b]→ E ′[a, b] is the regularized operator.

Let X be the space of continuous functions defined in (a, b] that satisfy

(4.3) lim
x→a+

f(x)ψ(x) = 0.

We equip X with the norm

(4.4) ‖f‖ψ = sup{|f(x)|ψ(x) : a < x ≤ b},
so that X becomes a Banach space. If f ∈ X , then fψ is continuous at
x = a and thus it can be considered as a well-defined element of E ′[a, b].
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Using (4.2) we conclude that, if f ∈ X , then there exist constants
a0(f), . . . , aN (f) such that

(4.5)
(
T̃ f

)
(x) = ψ(x)f(x) +

N∑
j=0

aj(f)δ(j)(x− a),

since Pf = T̃ f − ψf has support contained in the one point set {a}.
Observe now that we can find N ∈ N such that (4.5) holds for all

the elements of X . Indeed, [2] if P is any continuous operator from a
Banach space X into Aa = {f ∈ D′ : supp f ⊆ {a}}, then there exists
N ∈ N such that ord (Pf) ≤ N for all f ∈ X .
Notice now that X ∩ E ′(a, b] is dense in E ′(a, b]. It follows that (4.5)

continues to hold if f ∈ E ′(a, b]. In particular, if f = δ(x−c), c ∈ (a, b],
we obtain

(4.6) T̃{δ(t− c);x} = ψ(c)δ(x− c) +
N∑
j=0

Aj(c)δ(j)(x− a),

where Aj(c) = aj(δ(x− c)). Suppose first that N < 0; then, evaluating
at the test function φ = 1, we obtain that

(4.7) ψ(c) =
〈
T̃{δ(t− c);x}, 1〉

and this shows that ψ is smooth since, in fact,
〈
T̃{δ(t − c);x}, φ(x)〉

is a smooth function of c for any φ ∈ E [a, b]. The case of a general N
follows by observing that

(4.8) T̃1{δ(t− c);x} = ψ0(c)δ(x− c),

where T̃1(f)(x) = (x − c)N+1
(
T̃ f

)
(x) and ψ0(x) = (x − a)N+1ψ(x).

The first part of the theorem follows with n = N + 1.

Suppose now that ψ is a proper multiplicative regularizator. Thus
T̃ is a Fredholm type operator and so is T̃1. But T̃1 = Mψ0 , the
multiplication operator corresponding to ψ0 and, from the results of
Section 3, it follows that ψ0 does not have zeros of infinite order in [a, b],
in particular, at x = a. Then there exists j ∈ N and ψ1 smooth in [a, b]
with ψ1(a) �= 0 such that ψ0(x) = (x − a)jψ1(x) and, consequently,
ψ1(x) = (x− a)kψ(x) with k = n− j.
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Clearly, the same result holds for multiplicative regularizators of
the projection π : D′

4j [a, b) → D′
3j(a, b) for any j. Similarly, the

multiplicative regularizators of the projection at the other endpoint
admit a corresponding characterization.

We can interpret Theorem 2 as a sort of uniqueness theorem for the
multiplicative regularization of the projection π. Interestingly, this kind
of uniqueness also holds for more general operators.

Theorem 3. Let T : E ′[a, b] → D′
34(a, b] be a continuous operator.

Suppose ψ1 and ψ2 are two proper multiplicative regularizators of the
operator T , with associated operators T̃1, T̃2 : E ′[a, b] → E ′[a, b]. If T̃1

and T̃2 are both Fredholm operators, then the limit

(4.9) lim
x→a

ln(ψ1(x)/ψ2(x))
ln(x− a)

= k,

exists and k ∈ Z.

Proof. We have

π
(
T̃1f

)
= ψ1 Tf,(4.10)

π
(
T̃2f

)
= ψ2 Tf,(4.11)

for any f ∈ E ′[a, b] where π : E ′[a, b]→ D′
34(a, b] is the projection.

We may assume that ψ1 = 1. If not, we substitute T by T ′ = ψ2T ,
since then

π
(
T̃1f

)
= T ′f,

π
(
T̃2f

)
= ψ̃2 T

′f,

where ψ̃1 = ψ2/ψ1.

If V : X → X is a continuous Fredholm type operator acting on a
Fréchet space or on the dual of a Fréchet space, then there exists a
continuous operator W : X → X such that

(4.12) VW = Id+ P,
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where Id is the identity operator and where P is an operator with finite
dimensional image that satisfies ImV ⊆ KerP . We may apply this to
the operator T̃1 to find an operator S1 : E ′[a, b]→ E ′[a, b] such that

(4.13) T̃1S1 = Id + P1,

where Im T̃1 ⊆ KerP1.

Then

π
(
T̃2S1f

)
= ψ2TS1f = ψ2π

(
T̃1S1f

)
= ψ2π(f + P1f),

or

(4.14) π((T2S − P1)f) = ψ2πf.

Therefore, ψ2 is a proper multiplicative regularizator of the projection
π and hence, according to Theorem 2, there exists k ∈ Z such that
φ(x) = (x− a)kψ2(x) is smooth at x = a and φ(a) �= 0. It follows that

lim
x→a

ln(ψ1(x)/ψ2(x))
ln(x− a)

= k,

as required.

Looking at the proof of Theorem 3, we can see that we only used the
fact that one of the operators T̃i was of Fredholm type. Indeed, if T̃1 is
of the Fredholm type and ψ2 is a multiplicative regulator, then k given
by (4.9) is finite if and only if ψ2 is a proper multiplicative regulator,
and this holds if and only if T̃2 is of the Fredholm type; when ψ2

is a multiplicative regularizator but it is not proper, then k = −∞.
However, if T̃1 is of Fredholm type, then it is not possible that k be
equal to +∞. Those results do not hold if T̃1 is not of Fredholm type,
not even if Im T̃1 is dense in E ′[a, b] as the next example shows.

Example. Let ρ ∈ E [a, b] be such that ρ(x) > 0, x > a, while
ρ(j)(a) = 0, j = 0, 1, 2, . . . . Then ρ1 = ρ, ρ2 = ρ2 and ρ3 = ρ1/2 are
multiplicative regulators of the projection π : E ′[a, b] → D′

34(a, b] with
associated operator T̃i =Mρi

: E ′[a, b]→ E ′[a, b]. However,

lim
x→a

ln(ρ1(x)/ρ2(x))
ln(x− a)

= −∞,

lim
x→a

ln(ρ1(x)/ρ3(x))
ln(x− a)

= +∞.
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Naturally, the operators T̃i are not of the Fredholm type.

Theorem 3 basically says that once one proper multiplicative regu-
larizator of an operator is known, then all other multiplicative regular-
izators are also known, particularly those that are also proper.

Corollary 1. Let T : E ′[a, b] → E ′[a, b] be a Fredholm operator. If
ψ is a proper multiplicative regularizator of π T where π : E ′[a, b] →
D′

34(a, b] is the projection, then there exists k ∈ Z such that φ(x) =
(x− a)kψ(x) is smooth at x = a and φ(a) �= 0. If ψ is a multiplicative
regularizator but it is not proper then it is smooth at x = a and
ψ(j)(a) = 0, j = 0, 1, 2, . . . .

The results of Theorem 3 need the existence of a proper multiplicative
regularizator. Interestingly, there are operators that admit multiplica-
tive regularizators, but no proper ones.

Example. Let i : C[a, b] → D′(a, b] be the canonical injection. A
function ψ, smooth and positive in [a, b], is a multiplicative regular-
izator of i if it is integrable, ψ ∈ L1[a, b]. Such a multiplicative reg-
ularizator is never proper. If ψ1, ψ2 ∈ L1[a, b] are two multiplicative
regularizators of this kind, then the limit (4.9) may not exist, and even
if it exists, the result could be nonintegral.

5. Particular cases. In this section we consider several particular
cases of our results.

1. LetH be the Hilbert transform. The operatorH can be considered
as an operator from E ′(R) to S ′(R), given by convolution

(5.1) H(f)(x) =
1
2π

f ∗ p.v.
(
1
x

)
,

that is,

(5.2) H{f(t);x} = 1
π
p.v.

∫ ∞

−∞

f(t) dt
t− x

, −∞ < x < ∞,

if the principal value integral exists. See [4].
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If [a, b] is a compact interval and f is a function defined in [a, b], then
its finite Hilbert transform is H[a,b] where H[a,b]{f(t);x} is still given
by (5.2), but where x is restricted to belong to the interval [a, b].

The definition of the finite Hilbert transform of a distribution is
not trivial. Orton [11] defined a finite Hilbert transform operator
H(a,b) : E ′[a, b]→ S ′(a, b) as

(5.3) H(a,b) = πHi,

where i : E ′[a, b] → E ′(R) is the canonical injection, H is the Hilbert
transform given by (5.1), and where π : E ′(R) → S ′(a, b) is the
projection. Distributional integral equations involving the operator
H(a,b), either of the Cauchy or of the Carleman type, are not very well-
behaved, since the solutions contain an infinite number of arbitrary
constants. The operator H(a,b) is not of the Fredholm type and the
reason for this is that it applies E ′[a, b] not to itself but to S ′(a, b).
One suspects that if the operator could be considered as an operator
from E ′[a, b] to itself, then it would be better behaved. However, as it
follows from Theorem 3, the operator H(a,b) cannot be considered as
an operator from E ′[a, b] to itself.

Actually, it was first proven in [3] that the operator H1/2+n,1/2+m,
where n,m ∈ Z, defined for ordinary functions f(t), a < t < b, by

(5.4) H1/2+n,1/2+m{f(t);x}

=
(x− a)1/2+n(b− x)−1/2+m

π
p.v.

∫ b

a

f(t) dt
t− x

,

can be extended as an operator of E ′[a, b] to itself. The distributional
operator is actually of the Fredholm type for any n,m ∈ Z, with index
κ = n + m. Our results then say that (x − a)1/2+n(b − a)−1/2+m,
n,m ∈ Z, is a proper multiplicative regularizator of the operator H(a,b)

at both endpoints. A smooth and positive function ψ(x) defined in
(a, b) is a multiplicative regularizator of H(a,b) at both endpoints if and
only if for some n,m ∈ Z,

(5.5) ψ(x) = (x− a)n+1/2(b− x)m−1/2ψ0(x),

where ψ0 is smooth in [a, b]; it is a proper multiplicative regularizator
at both endpoints if and only if we can choose n,m and ψ0 such that
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ψ0(a) �= 0, ψ0(b) �= 0. If ψ0 has a zero of infinite order at x = a, for
any n, then ψ is a multiplicative regulator but it is not proper, and
similarly at x = b.

If ψ is smooth in [a, b], even if x = a and x = b are zeros of infinite
order of ψ, then the operator

(5.6) ψ(x)H(a,b){f(t);x} = ψ(x) p.v.
∫ b

a

f(t) dt
t− x

,

can never be extended to a continuous operator from E ′[a, b] to itself.
This is true, in particular, if ψ = 1, and so of H(a,b).

2. Let us now consider the multiplicative regularization of the
operator

(5.7) T = αI + βH(a,b),

where H(a,b) is the finite Hilbert transform, and where α, β are con-
stants. Suppose that κ2 = α2 + β2 �= 0.
Then we write T as

(5.8) T = κ

(
α

κ
I +

β

κ
H(a,b)

)
= κ

(
cosπ νI + sin π νH(a,b)

)
,

where the number ν, 0 < �e ν ≤ 1, is chosen so that

cos ν π =
α

κ
, sin ν π =

β

κ
.

Consider the function Qn,m,ν(x) for n,m ∈ Z, 0 < �e ν < 1 which is
the branch

(5.9) Qn,m,ν(z) = (z − a)n−ν(n− b)m+ν ,

defined in C \ [a, b] that satisfies

(5.10) lim
z→∞

Qn,m,ν(z)
zn+m

= 1.
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The boundary values of Qn,m,ν(z) are given as

(5.11) Q±
n,m,ν(x) = (−1)me±πiν(x− a)n−ν(b− x)m+ν , a < x < b,

and thus, if f(x) is an ordinary function with support in [a, b],

(5.12)

[Qn,m,ν(z)F{f(t); z}]
= (−1)m(x−a)n−ν(b−x)m+ν

(
cosπνf(x) + sin πνH{f(t);x})

for a < x < b.

Therefore we can introduce the operator T νn,m : E ′[a, b]→ E ′[a, b] as

(5.13) T νn,m{f(t);x} = [
(−1)mQn,m,ν(z)F{f(t); z}],

so that T νn,m{f(t);x} is the distributional version of the operator

(5.14) (x− a)n−ν(b− x)m+ν
(
cosπνf(x) + sinπνH{f(t);x}).

Notice that

(5.15) T 1/2
n,m = Hn−1/2,m+1/2.

Therefore, ψ(x) is a multiplicative regularizator of T given by (5.7)
at both endpoints if and only if there exists n,m ∈ Z and ψ0 smooth
in [a, b] such that

ψ(x) = (x− a)n−ν(b− x)m+ν ψ0(x).

If ψ is proper we can choose n,m such that ψ0(a) �= 0, ψ0(b) �= 0.

3. Let us consider the operators of fractional integration. If β ∈
C \ {−1,−2,−3, . . . }, we consider the convolution operator

(5.16) Ψβ(f)(x) =
1

Γ(β)
(
xβ+1

+ ∗ f(x)),
that is, when the integral is defined,

(5.17) Ψβ{f(t);x} = 1
Γ(β)

∫ x

−∞
f(t)(x− t)β−1 dt,



260 R. ESTRADA

which is called the operator of fractional integration of order β. Notice
that Ψ1(f) is the integral of f that vanishes at −∞ and, in general,
Ψn = Ψ1 · · ·Ψ1 is the nth iterated integral of f . The operator Ψβ
defines an operator from D′

41[a,∞) to itself. However, it will not define
an operator of E ′[a, b] to itself. Indeed, it is shown in [4] that one can
define a distributional version of the following operator for all β ∈ C,

(5.18) (b− x)−β
∫ x

a

(x− t)β−1f(t) dt,

in such a way that it is an operator from E ′[a, b] to itself. Therefore,
the multiplicative regularizators of the operator Ψβ at x = b are of the
form

(5.19) ψ(x) = (b− x)−β+n ψ0(x),

where n ∈ Z and ψ0 is smooth in [a, b]. The proper regularizators are
those for which there exists n ∈ Z with ψ0(b) �= 0. Naturally, Ψβ is
well-behaved at x = a so that a multiplicative regularizator at x = a
is just a function of the form (x− a)mψ0(x) where ψ0 is smooth up to
x = a and where m ∈ Z.

4. Let us now consider the multiplicative regularizators of the
fractional integral operator

(5.20) Tµ(f) =
∫ x

a

f(t) dt
(x− t)µ

,

and its adjoint,

(5.21) T ∗
µ(f) =

∫ b

x

f(t) dt
(t− x)µ

,

where we suppose 0 < �e µ < 1.

Following Sakalyuk [13], let us introduce the sectionally analytic
function

(5.22) Φ(z) =
1

{(z − a)(b− z)}(1−µ)/2

∫ b

a

f(t) dt
(t− z)µ

, z ∈ C \ [a, b],
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or, more generally, if f ∈ E ′[a, b],

(5.23) Φ(z) =
1

{(z−a)(b−z)}(1−µ)/2

〈
f(t), (t−z)−µ〉, z ∈ C \ [a, b],

where the branches of (t− z)−µ and

(5.24) R(z) = {(z − a)(b− z)}(1−µ)/2,

are chosen appropriately. Then [9, 15]

Φ+ =
1
R

{
eµπi

∫ x

a

f(t) dt
(x− t)µ

+
∫ b

x

f(t) dt
(t− x)µ

}
,(5.25)

Φ− = − 1
R

{∫ x

a

f(t) dt
(x− t)µ

+ eµπi
∫ b

x

f(t) dt
(t− x)µ

}
.(5.26)

Therefore the operator f � φ = Φ+−Φ− defines a continuous operator
of E ′[a, b] to itself.

Hence the operator

(5.27)
∫ b

a

f(t) dt
|t− x|µ = (T + T ∗)

admits multiplicative regularizators at both endpoints; the general form
of those multiplicative regularizators is

(5.28) ψ(x) = (x− a)µ/2−1+n(b− x)µ/2−1+m ψ0(x),

where n,m ∈ Z and ψ0 ∈ E [a, b]. If there exists n,m such that
ψ0(a) �= 0, ψ0(b) �= 0, then ψ is a proper multiplicative regularizator.
Similarly, the operator

(5.29)
∫ b

a

f(t)sgn (t− x)
|t− x|µ dt = (T − T ∗),

admits multiplicative regularizators at both endpoints; the general form
of those multiplicative regularizators being

(5.30) ψ(x) = (x− a)µ/2−1/2+n(b− x)µ/2−1/2+m ψ0(x).
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The multiplicative regulator of the operator αT+βT ∗ can be obtained
by considering the operator f � [Qn,m,νΦ], where Qn,m,ν is defined by
(5.9).
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