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THE RADIOSITY EQUATION ON CERTAIN
SPACES OF CONTINUOUS FUNCTIONS

AND ITS NUMERICAL SOLUTION

OLAF HANSEN

ABSTRACT. In this article we study the radiosity equation
on a polyhedral surface S in R3. We construct a special space
of continuous functions on S where we can prove the existence
of a unique solution of the radiosity equation. These results
enable us to construct grids for the numerical approximation
of the solution which guarantee convergence in the maximum
norm for the collocation method. In a last section we present
numerical results which confirm our theoretical prediction and
these results also show that graded meshes will increase the
order of convergence.

1. Introduction. The exchange of energy by radiation is an
important physical mechanism for heat transfer, see [19, 22 24], and
for the calculation of 3D pictures in computer science, see [7, 20, 25].
For the heat transfer the exchange of energy by radiation is only one
transport mechanism, besides diffusion and convection. The relative
importance of these mechanisms depends on material properties and
the surface temperature.

In contrast to this the radiation is the only process to consider in
the calculation of 3D scenes in computer graphics. Here the sources of
radiation are prescribed by lamps, which are distributed on the surface.
In general the emitted radiation at every point depends on the direction.
But in this article we will consider only surfaces where the radiance,
see [19] for a definition, fulfills the Lambertian cosine law, which means
that the radiance is constant in all directions. So this emitted radiation
at every point can be characterized by a scalar, which determines the
density of the emitted energy, and this quantity is called radiosity.
To be consistent, we also must assume that all radiation sources are
diffusive emitters. The resulting model does not contain any specular
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effects. This model results in the following integral equation of the
second kind for the radiosity u : S → R+

0 :

(1.1)

u(x) = E(x) +
ρ(x)
π

∫
S

V (x, y)
[
n(x) · (y−x)][
n(y) · (x−y)]

‖x−y‖4
u(y) dsy,

x ∈ S.

Here S is the surface, where we want to calculate the radiosity. The
surface S needn’t be closed. The above equation implies that the
radiation at every point is given by the source term E(x) and the
reflected fraction ρ(x) ∈ [0, 1) of the incoming radiation. So 1/π times
the integral on the righthand side of (1.1) gives the incoming radiation,
see [19]. The function V : S×S → {0, 1} is the visibility function which
is equal to one if two points can exchange energy and otherwise zero.
If S is the interior of a convex room, the function V is equal to one,
but in situations where there are shadows the function V attains both
values. In this article we will assume that the surface is the union of
a finite number of triangles. Therefore a normal vector 
n(x) is defined
for almost all points x ∈ S, which ensures that the integral in (1.1) is
well defined.

Although there is a huge literature on the radiosity equation in
computer graphics, see the references in [7, 20 25], there are not
so many mathematical investigations on the structure, for example
regularity, of the solution ū of (1.1). Existence theory in the Lp(S)
spaces, p ∈ [1,∞], or in spaces of continuous functions, under certain
assumptions on S and E, can be found in [1, 3, 4, 10, 16, 17]. In
[17] the properties of ū along an edge were studied, if the function
E is differentiable and in [3] one finds results for the regularity of ū
near corners in the two-dimensional cases. In [11] an L2 theory for the
regularity of ū along an edge was developed.

The content of our paper is the following. In Section 2 we study (1.1)
in the space of continuous functions. We show that neither the space of
continuous functions on S, with respect to the Euclidean topology, nor
the space of piecewise (with respect to the underlying triangulation)
continuous functions is well suited for (1.1). We introduce a space of
continuous functions CR(S), where the continuity near the vertices is
defined with respect to polar coordinates. If the emission function E
belongs to CR(S), there is a unique solution of (1.1) in the same space,
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see Theorem 2.14. Examples show that there is no existence theorem in
the usual space of piecewise continuous functions. The main ingredient
for the proof of Theorem 2.14 is Theorem 2.13, where we prove that
the reflection operator is a continuous operator in the space CR(S).
This existence theorem is the foundation for the use of the collocation
method for the approximate solution of (1.1). The only thing one has
to keep in mind is that no collocation points in the corners are allowed.

Another consequence is that we must use special meshes for the
numerical scheme in order to guarantee pointwise convergence towards
the solution of (1.1). For this purpose we must use meshes, which
resolve the angular variable near the vertices. The construction of these
meshes is given in Section 3, and a collocation method is described in
detail. Our trial functions are dense in the space CR(S) and therefore
our collocation method converges in the maximum norm. To prove this
we also need the stability, but this was already investigated in an earlier
article [12]. The same kind of meshes must be used for the Galerkin
method if one is interested in pointwise convergence. This result is
independent of the particular trial functions, i.e., piecewise constant
functions, linear or higher order polynomials.

In the last section we present numerical calculations for a simple test
surface. The results show that we have to use meshes which resolve
the angular variable in order to guarantee convergence in L∞(S). The
singular behavior of the derivative of the solution ū of (1.1) near edges
or corners is also exhibited in the numerical results. This behavior was
studied in [17, 10, 11] and it indicates that the use of graded meshes
will result in better convergence results.

2. The radiosity equation on the space of continuous func-
tions. In the following we will assume that the surface S is given in
the following form

(2.1) S =
n⋃
j=1

∆j , ∆j ⊂ R3, plane bounded triangles.

By nj we denote one of the normals of ∆j ; this determines the side
of ∆j which is part of our surface S. The triangles are closed and, by
∆̇j we denote the relative interior. If we think of S as the boundary
of a polyhedral domain in R3, it is clear that the intersection of two



156 O. HANSEN

triangles is either empty, an edge, a vertex or the whole triangle (in the
case that there is a slit in the polyhedral domain). Also in the general
case (2.1) we would like to consider only these four cases. So we assume
that the intersection of two triangles is never a line in the interior of a
triangle. If ∆̇j ∩ ∆̇k 
= ∅, j 
= k, then nj = −nk. We further denote by
KS the integral operator on the righthand side of equation (1.1),

(2.2)

(KSu)(x) :=
ρ(x)
π

∫
S

V (x, y)
[
n(x) · (y−x)][
n(y) · (x−y)]

‖x−y‖4
u(y) dsy,

x ∈ S.

and this operator will be called reflection operator. Furthermore, we
assume that the reflectivity is piecewise constant

(2.3) ρ|∆j
≡ ρj ∈ [0, 1), j = 1(1)n.

Because the surface S is the union of plane triangles we can equip S
with the two-dimensional Lebesgue measure dsy, as we have already
done in the definition of the radiosity equation, and define the spaces
Lp(S), ∈ [1,∞]. In [1, 16] it was shown that

(2.4) ‖KS‖Lp(S)→Lp(S) ≤ ρKS
:=

n
max
j=1

ρj < 1

holds. This implies the unique solvability of the radiosity equation

(2.5) (I −KS)u = E, E ∈ Lp(S).

The solution ū ∈ Lp(S) is given by the Neumann series

(2.6) ū =
∞∑
j=0

(KS)jE.

The calculation of a finite part of the Neumann series in order to get an
approximate solution is one of the methods which are used in practical
calculations, see [13].

The above results are not enough to justify the use of the collocation
method for the approximate solution of (2.5) because we need point
evaluations (but compare [4] for the case of a smooth surface). Since
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the reflection operator looks similar to the double layer operator, see
[14], one might think that a solution theory in the space of continuous
or piecewise continuous functions is possible. One of the results of this
section is that this is not the case. We must use a larger space which
we describe in the next definition.

Definition 2.1. By CP (S) (here P means piecewise) we denote the
set of functions on S given in the following way

u ∈ CP (S) =⇒ u = (u1, . . . , un),

uj : ∆j → R, uj ∈ C(∆̇j),

such that each uj has a continuous extension to ∆j . The norm on the
Banach space CP (S) is given by

(2.7) ‖u‖CP (S) := ‖u‖L∞(S).

The Banach space C(S) ⊂ CP (S) is defined by

u ∈ C(S) =⇒ u ∈ CP (S),
if ∆j and ∆k have a common point x which belongs to an edge, then
uj(x) = uk(x).

The next Banach space CR(S), CP (S) ⊂ CR(S) is defined by local polar
coordinates around each corner.

u ∈ CR(S) =⇒ u = (u1, . . . , un),

uj : ∆j → R, uj ∈ C(∆̇j),

and if we assume that ∆j has the vertices v
(j)
1 , v

(j)
2 and v

(j)
3 , then

the following conditions must be satisfied. Let r and φ be the po-
lar coordinates around vertex v

(j)
i , i ∈ {1, 2, 3}, r ∈ [0, ri], ri :=

mink �=i{‖v(j)
k − v

(j)
i ‖}, φ ∈ [φ1, φ2]. Then uj = uj(r, φ) should be

continuous on Bi := ([0, ri/2]× [φ1, φ2]) ∩∆j . Furthermore, uj should
be continuous on the closure of ∆j \(B1∪B2∪B3). The norm ‖·‖CR(S)

is also given by
‖u‖CR(S) := ‖u‖L∞(S).
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All three spaces carry the same norm, and we get

C(S) ⊂ CP (S) ⊂ CR(S).

Remark 2.2. a. The definition of C(S) is made in such a way, that in
the case ∆j = ∆k, nj = −nk, the functions uj and uk have no relation
in the interior of their domain of definition, but along the common
edges these two functions should coincide.

b. In this section we will see that the space CR(S) is better suited for
the study of the reflection operator KS than the spaces CP (S) or C(S).
But the functions in CR(S) are in general not piecewise continuous with
respect to the Euclidean geometry on S.

c. In Definition 2.1 it is assumed that all triangles ∆j , j = 1(1)n,
are bounded. But we will use the above defined spaces also in the case
that some ∆k are infinite plane sections in R3

∆k = {x+ r(cos(α)e1 + sin(α)e2) | r ≥ 0, α ∈ [α1, α2]},
e1, e2 ∈ R3, ‖e1‖ = ‖e2‖ = 1, e1 · e2 = 0,

x ∈ R3, α1 < α2.

This does not cause any problems.

One of the major tools for the study of the double layer operator is
the geometrical interpretation of WS1(x), x /∈ S. Here 1 denotes the
function which is constant to 1 on S and WS denotes the double layer
operator on S. If S is for example one triangle, then WS1(x) is just
the normalized solid angle of S seen from x. This fact is one of the
arguments used by Král to prove that WS maps continuous functions
on continuous functions, see [14].

A similar interpretation holds for KS1(x), which is called differential
form factor. We present this in result Lemma 2.4. But first we define
some geometric objects for the formulation of Lemma 2.4.

Definition 2.3. Given a point x ∈ R3 and a vector n ∈ R3, ‖n‖ = 1,
let S2

n,ε(x) be the half sphere

(2.8) S2
n,ε(x) := {y ∈ R3 | ‖x− y‖ = ε, n · (y − x) ≥ 0}
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with bottom surface

(2.9) B2
n,ε(x) := {y ∈ R3 | ‖x− y‖ ≤ ε, n · (y − x) = 0}.

For a set A ⊂ R3, dist (x,A) > ε, we define the projection

(2.10) P (A) := {y ∈ S2
n,ε(x) | ∃λ ≥ 1, x+ λ(y − x) ∈ A}

on S2
n,ε(x) and the projection of P⊥(A) on the bottom surface

(2.11) P⊥(A) := {y − [n · (y − x)]n | y ∈ P (A)},

see the following figure.

n

A

P(A)

P|_(A)

x

FIGURE 2.1. Definition of P (A) and P⊥(A).
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In both cases we have not indicated the dependence on x, n and ε,
but one has to keep this in mind.

The choice of ε guarantees that the volume V (A)

(2.12) V (A) :=
{
x+ r

y − x

‖y − x‖
∣∣∣ ε ≤ r ≤ ‖y − x‖, y ∈ A

}
is enclosed on two sides by A and P (A). If we denote by µ the
Lebesgue surface measure on S2

n,ε(x), respectively B2
n,ε(x), and assume

that the set A is not too irregular (it will always be a polygon in our
applications), then it is clear that the real number

(2.13)
µ(P⊥(A))
µ(B2

n,ε(x))
=

µ(P⊥(A))
πε2

=: σx,n(A)

exists and is independent of ε ∈ (0, dist (A, x)). It describes the relative
area which is occupied by the normal projection of P (A) onto B2

n,ε(x).

Given an orthonormal base e1, e2 and n of R3 we will denote by
Ee1,e2,n the plane

(2.14) Ee1,e2,n := {λe1 + µe2 | λ, µ ∈ R}.
For any point x ∈ Ee1,e2,n we can speak of a normal n(x) = n. The
infinite sector Se1,e2(α1, α2) ⊂ Ee1,e2,n, 0 ≤ α1 < α2 ≤ 2π, is defined
by

(2.15) Se1,e2(α1, α2) := {r(cos(α)e1+ sin(α)e2) | r ≥ 0, α ∈ [α1, α2]}.

This means that, for x ∈ Se1,e2(α1, α2), there is always a well-defined
normal n(x) = n.

For a set S, either a finite union of triangles or infinite sectors with
given normal, we define a special reflection operator with reflectivity
function ρ ≡ 1 and no visibility function V ,

(2.16) (KSu(x)) :=
1
π

∫
S

[n(x) · (y−x)][n(y) · (x−y)]
‖x− y‖4

u(y) dsy.

The next lemma presents a geometrical interpretation for the differ-
ential form factor which can be found for example in the book of Moon
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[15]. Moon calls this the solid-angle method. We are not interested in
the explicit calculations of form factors here, but the result is useful to
study continuity properties of KSu, u continuous. Therefore we present
it here for the special case of two sectors.

Lemma 2.4. Given two sets {e(1)
1 , e

(1)
2 , n(1)} and {e(2)

1 , e
(2)
2 , n(2)} of

orthonormal bases of R3 we consider the two sectors

S(1) := S
e
(1)
1 ,e

(1)
2
(α1, α2) ⊂ E

e
(1)
1 ,e

(1)
2 ,n(1) , α1 < α2,

S(2) := S
e
(2)
1 ,e

(2)
2
(β1, β2) ⊂ E

e
(2)
1 ,e

(2)
2 ,n(2) , β1 < β2,

such that S(1) ∩ S(2) is either {0} or an edge. Further we assume that
all points of S(1) and S(2) can ‘see’ each other. If we parametrize the
points x ∈ S(2) by

(2.17) x = x(r, β) := r(cos(β)e(2)
1 + sin(β)e(2)

2 ), β ∈ [β1, β2],

we get

(KS1)(x(r, β)) = (KS(1)1)(x(1, β)) = σx(1,β),n(2)(S(1)).

Proof. We introduce a similar parametrization to (2.17) for S(1).

y = y(r′, a) := r′(cos(α)e(1)
1 + sin(α)e(1)

2 ), r′ ≥ 0, α ∈ [α1, α2].

First we show that
(KS(1)1)(x(r, β))

is independent of r. This follows by the homogeneity of the kernel, but
we give a formal proof.

(KS(1)1)(x(r, β)) =
1
π

∫
S(1)

[n(2) · (y − x(r, β))][n(1) · (x(r, β)− y)]
‖y − x(r, β)‖4

dsy

=
1
π

∫
S(1)

[n(2) · y(r′, α)][n(1) · x(r, β)]
‖y(r′, α)− x(r, β)‖4

r′ dr′ dα

=
1
π

∫
S(1)

r(r′)2a(α)b(β)
(r2 − 2rr′c(α, β) + (r′)2)2 dr′ dα.
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Here we have defined

(2.18) a(α) := cos(α)n(2) · e(1)
1 + sin(α)n(2) · e(1)

2 ≥ 0,
(2.19) b(β) := cos(β)n(1) · e(2)

1 + sin(β)n(1) · e(2)
2 ≥ 0,

c(α, β) := (cos(α)e(1)
1 + sin(α)e(1)

2 )(cos(β)e(2)
1 + sin(β)e(2)

2 )∈ [−1, 1],
(2.20)

and this notation will be used frequently in the following. Now we get

(KS(1)1)(x(r, β)) =
1
π

∫ α2

α1

1
r

∫ ∞

0

(r′/r)2a(α)b(β)
((r′/r)2 − 2(r′/r)c(α, β) + 1)2 dr′ dα

=
1
π

∫ α2

α1

∫ ∞

0

ν2a(α)b(β)
(ν2 − 2νc(α, β) + 1)2 dν dα

which is independent of r. So we only have to calculate (KS(1)1)(x(1, β)),
β∈ [β1, β2]. Let β∈(β1, β2) and choose ε>0 small enough to guarantee

S2
n(2),ε(x(1, β)) ∩ S(1) = ∅.

By an easy calculation we get

divy

(
[n(2) · (y − x(1, β))](x(1, β)− y)

‖x(1, β)− y‖4

)
= 0,

y ∈ R3 \ {x(1, β)}. The divergence theorem of Gauß applied to the
volume V (S(1)) between S(1) and P (S(1)), see Definition 2.3, shows

(KS(1)1)(x(1, β)) =
1
π

∫
P (S(1))

[n(2) · (y − x(1, β))]‖x(1, β)− y‖
‖x(1, β)− y‖4

dsy

=
1

πε3

∫
P (S(1))

n(2) · (y − x(1, β)) dsy

=
1

πε2

∫
P⊥(S(1))

1 dsy

= σx(1,β),n(2)(S(1)).

This follows again by an easy calculation.
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FIGURE 2.2. The function σx(1,β),n(2)(S(1)), β ∈ [0, π].

Remark 2.5. a. To get an impression of this function we draw
σx(1,β),n(2)(S(1)), β ∈ [0, π] in Figure 2.2, if the following data are given

e
(1)
1 =

 10
0

 , e
(1)
2 =

 01
0

 ,

n(1) =

 00
1

 , α1 = π/3, α2 = 3π/4,

e
(2)
1 =

 10
0

 , e
(2)
2 =

 00
1

 ,

n(2) =

 01
0

 , β1 = 0, β2 = π.

b. Let x ∈ R3, ‖n‖ = 1 and E ⊂ R3 be a hyperplane such that

E 
⊂ F := {y ∈ R3 | (y − x) · n = 0}.

Further assume that x /∈ E and denote by nE the normal of E such
that nE · (x− y) > 0, y ∈ E. If

E+ := {y ∈ E | (y − x) · n ≥ 0}
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is the part of E which can be ‘seen’ from x, we get

(2.21)
σx,n(E+) =

1
π

∫
E+

[n · (y − x)][nE · (x− y)]
‖x− y‖4

dsy

=
1
2
(1 + cos(γ))

where γ is the angle between E and F on the side where the point x is
located. This follows by a simple calculation from Lemma 2.4 and can
be found for example in [15] or in Appendix A2 of [19].

c. If the two sectors S(1) and S(2) have a common edge, for example
for α1 = β1 = 0, the above comment shows

lim
β↘0

(KS(1)1)(x(r, β)) =
1
2
(1 + cos(γ))

=
1
2
(1 + e

(1)
2 · e(2)

2 ),

where now γ is the angle between the planes generated by S(1) and
S(2).

d. If α1 = 0, α2 = π, then S(1) is a half plane and all points of S(2)

can see the whole of S(1). In this case we get

(KS(1)1)(x(1, β)) =
1
2
(1 + cos(γ)), β ∈ [β1, β2],

where γ is again the angle between S(1) and S(2). So (KS(1)1)(x(r, β))
is a constant function.

e. If α1 > 0 or α2 < π, then S(1) is not a half plane and

(KS(1)1)(x(1, β))

is not a constant function, β∈ [β1, β2]. This implies that (KS(1)1)(x(r, β))
is not continuous on S(2), but

(KS(1)1)x(1, β) ∈ CR(S(2)).

f. Lemma 2.4 is also true for more general objects than S(1). For
example, for a triangle ∆ we get

(K∆1)(x) = σx,n(2)(∆),
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if ∆ can be seen from x.

A result of the above remark is

Corollary 2.6. Given two sectors S(1) and S(2) according to
Lemma 2.4, we have in general

KS(1) : C(S(1)) 
�−→ C(S(2)).

Proof. Here it is enough to recall the example in Remark 2.5e,

(KS(1)1)(r, φ) = σx(1,φ),n(2)(S(1))

which is not a constant function with respect to φ.

Now we know that KS(1) does not map continuous functions onto
continuous functions on S(2). But we know KS1 ∈ CR(S(2)). So we
hope that

(2.22) KS(1) : CR(S(1)) �−→ CR(S(2))

is true. This will be shown in two steps. Lemma 2.7 proves KS(1)u ∈
CR(S(2)) for a function u which does not depend on the radial variable.
Lemma 2.9 uses this result to prove (2.22).

Lemma 2.7. Let two sectors S(1) = S
e
(1)
1 ,e

(1)
2
(α1, α2) and S(2) =

S
e
(2)
1 ,e

(2)
2
(β1, β2) be given with the same assumptions as in Lemma 2.4.

If we consider a function u ∈ C([α1, α2]) as an element of CR(S(1)) we
get

v(r, φ) := (KS(1)u)(r, φ) ∈ CR(S(2)),

this mapping is continuous between C([α1, α2]) and CR(S(2)) and
v(r, φ) = v(1, φ).

Proof. We keep the notations (2.18), (2.19) and (2.20) from the proof
of Lemma 2.4 and get

(KS(1)u)(r, φ) =
1
π

∫ α2

α1

∫ ∞

0

ν2a(φ′)b(φ)
(ν2 − 2νc(φ′, φ) + 1)2

u(φ′) dν dφ′.
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Using the partial fraction decomposition of

ν2

(ν2 − 2νc(φ′, φ) + 1)2

we get∫ ∞

0

ν2

(ν2−2νc(φ′, φ)+1)2
dν

=
1
4

(
2c(φ′, φ)
1−c(φ′, φ)2

+
1

(1−c(φ′, φ)2)
3
2

(
π+2arctan

( c(φ′, φ)√
1−c(φ′, φ)2

)))
where we use the following branch of the arctan function

arctan : (−∞,∞) −→ (−π/2, π/2).

So we get

(KS(1)u)(r, φ) = (KS(1)u)(1, φ)

=
1
4π

∫ α2

α1

a(φ′)b(φ)
(

2c(φ′, φ)
1−c(φ′, φ)2

+
1

(1−c(φ′, φ)2)3/2

(
π+2arctan

( c(φ′, φ)√
1−c(φ′, φ)2

)))
u(φ′) dφ′.

If c(φ′, φ) ∈ [−1, 1), for all (φ′, φ) ∈ [α1, α2] × [β1, β2], we get
(KS(1)u)(1, φ) ∈ C∞([β1, β2]). This is the case if S(1) and S(2) have
no common edge. So we have proved everything in the case that
S(1) ∩ S(2) = {0} holds. If S(1) and S(2) have a common edge we
will assume that

S(1) ∩ S(2) = {λe(1)
1 | λ ≥ 0} = {λe(2)

1 | λ ≥ 0}.
This also implies α1 = β1 = 0. We get

a(φ′) = cos(φ′)e(1)
1 · n(2)+sin(φ′)e(1)

2 · n(2)

= sin(φ′)e(1)
2 · n(2)

b(φ) = cos(φ)e(2)
1 · n(1)+sin(φ)e(2)

2 · n(1)

= sin(φ)e(2)
2 · n(1)

c(φ′, φ) = (cos(φ)e(2)
1 +sin(φ)e(2)

2 )(cos(φ′)e(1)
1 +sin(φ′)e(1)

2 )

= cos(φ) cos(φ′)+sin(φ) sin(φ′)e(1)
2 · e(2)

2 .
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By a Taylor series expansion and using the notation γ := e
(1)
2 · e(2)

2 ∈
(−1, 1), otherwise S(1) and S(2) would not ‘see’ each other, we get

1− c(φ, φ′)2 = (φ, φ′)
(
1 γ
γ 1

)(
φ
φ′

)
+O

(∥∥∥(
φ
φ′

)∥∥∥3
)

≥ (1− |γ|)
2

(φ2 + (φ′)2),

if ‖(φ, φ′)T ‖ ≤ δ, δ > 0 sufficiently small, but we can assume that
α2, β2 < δ because, for greater values, the kernel is infinitely smooth.
Now we get

(2.23)

|(KS(1)u)(r, φ)| ≤ c1
4π

∫ α2

0

φφ′

(φ2 + (φ′)2)3/2
[u(φ′)] dφ′

≤ ‖u‖L∞(S(1)
c1
4π

∫ ∞

0

φ/φ′

(1 + (φ/φ′)2)3/2
dφ′

φ′

= ‖u‖L∞(S(1))

c1
4π

∫ ∞

0

1
(1 + ν2)3/2

dν

≤ c2‖u‖L∞(S(1)),

with constants c1, c2 > 0 which depend only on α2 and β2. This shows
the boundedness as a mapping into L∞([β1, β2]). The continuity in the
interior (β1, β2) is clear because of the smoothness of the kernel. The
property

lim
φ→0

(KS(1)u)(1, φ) = (KS(1)u(0))(1, 0)

follows similar to the proof of the corresponding property of Mellin
convolution operators.

Remark 2.8. Formula (2.23) and the theory developed by Elschner
in [8] show that much more is true than KS(1)u ∈ CR(S(2)). It follows
that the mapping KS(1) is continuous for a scale of weighted L2 spaces.
But we will not need this result here.

A more geometric proof of Lemma 2.7 can be given with the help of
Lemma 2.4. The above proof has the advantage that the connection to
Mellin convolution operators becomes clear.

This lemma is used to prove:
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Lemma 2.9. Let again the two sectors S(1) = S
e
(1)
1 ,e

(1)
2
(α1, α2) and

S(2) = S
e
(2)
1 ,e

(2)
2
(β1, β2) be given as in Lemma 2.4. Then the mapping

KS(1) : CR(S(1)) −→ CR(S(2))

is continuous.

Proof. Let u ∈ CR(S(1)). Define

u0(φ) := u(0, φ) ∈ C([α1, α2]).

Then u1(r, φ) := u(r, φ) − u0(φ) ∈ CR(S(1)), and we get for all ε > 0,
δ = δ(ε) > 0 such that

|u1(r, φ)| ≤ ε, (r, φ) ∈ [0, δ]× [α1, α2].

Because of Lemma 2.7, we know that

(KS(1)u0)(r, φ) ∈ CR(S(2))

and
‖KS(1)u0‖L∞(S(2)) ≤ c1‖u0‖L∞(S(1))

≤ c1‖u‖L∞(S(1)), c1 > 0.

So we only have to prove

(KS(1)u1) ∈ CR(S(2))

and
‖KS(1)u1‖L∞(S(2)) ≤ c2‖u‖L∞(S(1)).

First we repeat

(KS(1)u1)(r, φ)

=
1
π

∫ α2

α1

∫ ∞

0

r(r′)2a(φ′)b(φ)
(r2− 2rr′c(φ′, φ) + (r′)2)2

u1(r′, φ) dr′ dφ′,

where a, b and c are defined in (2.18), (2.19) and (2.20). Because of

1
π

∫ α2

α1

∫ ∞

0

r(r′)2|a(φ′)||b(φ)|
(r2− 2rr′c(φ′, φ) + (r′)2)2

dr′ dφ′ =: c2 < ∞,
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see Lemma 2.7, we can conclude that KS(1)u1 is well defined and

‖KS(1)u1‖L∞(S(2)) ≤ c3‖u1‖L∞(S(1)).

We prove
lim
r↘0

(KS(1)u1)(r, φ) = 0,

uniformly in φ ∈ [β1, β2], which proves the continuity for r = 0. But,
given an ε > 0, we find δ > 0 such that

|u1(r, φ)| < ε, r < δ.

Now we can estimate

|(KS(1)u1)(r, φ)|

≤ 1
π

∫ α2

α1

∫ δ

0

r(r′)2|a(φ′)| |b(φ)|
(r2−2rr′c(φ′, φ) + (r′)2)2

|u1(r′, φ′)| dr′ dφ′

+
1
π

∫ α2

α1

∫ ∞

δ

r(r′)2|a(φ′)| |b(φ)|
(r2−2rr′c(φ′, φ) + (r′)2)2

|u1(r′, φ′)| dr′ dφ′

≤ ε

π

∫ α2

α1

∫ δ

0

r(r′)2|a(φ′)| |b(φ)|
(r2−2rr′c(φ′, φ) + (r′)2)2

dr′ dφ′

+
‖u1‖L∞(S(1))

π

∫ α2

α1

∫ ∞

δ

r(r′)2|a(φ′)| |b(φ)|
(r2−2rr′c(φ′, φ) + r′)2)2

dr′ dφ′

≤ c2ε+
‖u1‖L∞(S(1))

π

∫ α2

α1

∫ ∞

δ

r(r′)2|a(φ′)| |b(φ)|
(r2−2rr′c(φ′, φ) + (r′)2)2

dr′ dφ′.

But∫ α2

α1

∫ ∞

δ

r(r′)2|a(φ′)| |b(φ)|
(r2−2rr′c(φ′, φ) + (r′)2)2

dr′ dφ′

=
∫ α2

α1

|a(φ′)| |b(φ)| 1
r

∫ ∞

δ

(r′/r)2

(1−2r′/rc(φ′, φ) + (r′/r)2)2
dr′ dφ′

=
∫ α2

α1

|a(φ′)| |b(φ)|
∫ ∞

δ/r

ν2

(1−2νc(φ′, φ) + ν2)2
dν dφ′

≤
∫ α2

α1

∫ ∞

δ/r

ν2

(1−2ν + ν2)2
dν dφ′, if r < δ,

≤ (α2 − α1)
∫ ∞

δ/r

ν2

(1−2ν + ν2)2
dν,

r↘0−→ 0,
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uniformly in φ. So we have proved

lim
r↘0

(KS(1)u1)(r, φ) = 0

uniformly in φ ∈ [β1, β2]. This shows the continuity for all points
(0, φ)T , φ ∈ [β1, β2].

It remains to prove the continuity along the common edges of two
triangles. Let the edge be given by L = {(0, 0, t) | t ≥ 0} and
denote by α the angle enclosed by S(1) and S(2). We further introduce
the half plane E(1) which is the extension of the triangle S(1); this
means that if S(1) is contained in {(x, 0, z) | x ≥ 0, z ∈ R}, then
E(1) = {(x, 0, z) | x ≥ 0, z ∈ R}. For x̄ ∈ L and xn ∈ S(2),
limn→∞ xn = x̄, we get

lim
n→∞(KS(1)u)(xn) =

u(x̄)
2
(1 + cos(α)),

because of (2.21) we get∣∣∣(KS(1)u)(xn)− u(x̄)
2
(1 + cos(α))

∣∣∣
= |(KS(1)u)(xn)− (KE(1)u(x̄))(xn)|
= |(KS(1) [u(·)− u(x̄)])(xn)− (KE(1)\S(1)u(x̄))(xn)|.

For δ > 0 define S̃
(1)
δ := Bδ(x̄) ∩ S(1), and we get∣∣∣(KS(1)u)(xn)− u(x̄)
2
(1 + cos(α))

∣∣∣
≤ sup

x∈S̃(1)
δ

|u(x)− u(x̄)|σxn,n(2)(S(1)) + 2‖u‖L∞(S(1))σxn,n(2)(S(1) \ S̃
(1)
δ )

+ |u(x̄)|σxn,n(2)(E(1) \ S(1))

The first term can be made arbitrarily small by choosing δ sufficiently
small. The two other terms go to zero with n → ∞ because the pro-
jected areas are getting smaller and smaller as the point xn approaches
the plane E(1), see the definition of σxn,n(2) in formula (2.14). So we
proved the continuity of KS(1)u on the edge, the proof of the continuity
in the neighborhood follows by similar arguments.
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Now we know that KS : CR(S(1) ∪ S(2)) �→ CR(S(1) ∪ S(2)) is well
defined and continuous by (2.4). Before we start to apply this result to
the general situation CR(S), given by (2.1), we might ask the question
if the special case of only two sectors was responsible for the fact that
KS does not map continuous functions on continuous functions. So the
mapping properties of KS might be better if S is the boundary of a
closed bounded domain in R3. The following definition is necessary to
describe the neighborhood of a vertex of S.

Definition 2.10. A closed spherical polygon γ ⊂ S2 := {(x, y, z)T ∈
R3 | x2 + y2 + z2 = 1} is defined by m vertices γi ∈ S2, i = 0(1)m− 1,
γm := γ0 and

(2.24) γ :=
m−1⋃
j=0

̂γj , γj+1,

where ̂γj , γj+1 is the shorter of the two great circles connecting γj and
γj+1. We further assume that none of the ̂γj , γj+1 intersect each other
in their relative interior and that the γj are given in such a way that
there is always a short and a long connecting great circle. Connected
to γ is the infinite polyhedral cone Γ

Γ := {rx | r ≥ 0, x ∈ γ},(2.25)

Γ =
m−1⋃
j=0

Γj

Γj := {rx | r ≥ 0, x ∈ ̂γj , γj+1}.(2.26)

The next lemma states the fact that, even for the boundary S of a
closed domain, the operator KS does not map the space C(S) or CP (S)
into itself.

Lemma 2.11. Consider a spherical polygon γ = ∪m−1
j=0 γj according

to Definition 2.10 and the corresponding cone Γ = ∪m−1
j=0 Γj. For every

sector Γj a normal nj is chosen and we consider S = Γ as our surface
where the reflection operator KS is defined. For simplicity, we will also
assume that the reflectivity function is equal to 1. In general we have

KS : C(S) 
�−→ CP (S).
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FIGURE 2.3. The function (KS1)((cos(φ), 0, sin(φ))T ).

Proof. Again it is sufficient to consider an example. The example
relies on the visibility function which essentially brings us to the
situation of Corollary 2.6. We choose m = 4, γ0 = (0, 1, 0)T , γ1 =
(1, 0, 0)T , γ2 = (0, 0, 1)T , γ3 = 1/

√
2(0,−1,−1)T and the normals

n0 = (0, 0, 1)T , n1 = (0, 1, 0)T , n2 = n3 = (−1, 0, 0)T . Then the
surface Γ1 can only see Γ0, and for x ∈ Γ1 we get

(KSu)(x) = (KΓ0u)(x),

u ∈ C(S). Now we choose u ≡ 1 and get the picture in Figure 2.3
for (KS1)(r(cos(φ), 0, sin(φ))T ) = (KS1)((cos(φ), 0, sin(φ))T ). Because
this function is independent of r, we see again that the function is not
continuous near the origin.

The example in Lemma 2.11 can be modified to prove the same
result for a closed bounded domain. The cone in the above lemma
was the boundary of a nonconvex set. The last possibility to improve
the mapping properties of the operator KS would be to restrict our
consideration to the boundaries S of convex sets. Here the mapping
properties of KS change. We will give this result, which can be proved
by geometrical considerations, in the following remark.
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Remark 2.12. If we examine the proof of Lemma 2.4 and Lemma 2.9
we notice that it is enough to show that the image KΓ1 of the constant
function 1 is continuous near the peak of the cone Γ. So we must show

KΓ1 ∈ CP (Γ).

We already know that (KΓ1)|Γj
is independent of the radial variable.

So we must get the result (KΓ1)|Γj
≡ const.

If the cone Γ = ∪m−1
j=0 Γj is the boundary of a convex set Ω and, if all

normals nj point into the interior of Ω, we get for x ∈ Γ0 (we choose
Γ0 without any restriction)

σx,n0

(m−1⋃
j=2

Γj
)
= σx,n0

(m−1⋃
j=2

Ej

)
,

where the plane Ej is generated by Γj and has the same normal nj .
Here we have used the convexity because the cone is the intersection
of the bounding half spaces and the visibility function is equal to 1, so
the above σ is equal to the operator KΓ applied to the 1 function. If
we assume that Ej has the two basis vectors g

(j)
1 and g

(j)
2 , we get (see

Definition 2.3)

P (Ej) = {y ∈ S2
n,ε(x) | ∃λ ≥ 0 : x+ λ(y − x) ∈ 〈g(j)

1 , g
(j)
2 〉}

= x+ {y ∈ S2
n,ε(0) | y · nj ≤ 0},

which is independent of x ∈ Γ0. So we get

σx,n0

(m−1⋃
j=2

Γj
)
=

µ(∪m−1
j=2 P⊥(Ej))

πε2

which is independent of x.

So we get in the case of a convex cone Γ

KΓ : C(Γ) −→ CP (Γ).

Again simple examples show that

KΓ : C(Γ) −→ C(Γ)
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is not true in general.

After we have excluded the space CP (S) as a candidate for an
existence theory, we consider only the space CR(S) in the following.
To show

(2.27) KS : CR(S) �−→ CR(S)

we will localize the operator by a partition of the unity around each
corner. Then we use Lemma 2.9, but we must take care of the influence
of local shadows. This will be done in the following discussion.

Let the surface S be given according to (2.1), with normal vectors
nj , j = 1(1)n. We denote by {xk | k = 1(1)m} the vertices of S, and
we assume that we have given a partition of unity on S of the following
form. There are m functions ϕk : S → R+

0 , such that

(2.28)

ϕk | ∆j ∈ C∞(∆j), j = 1(1)n,
m∑
k=1

ϕk(x) = 1, x ∈ S.


We can construct the function ϕk in such a way that

ϕk | ∆j = 0 if xk /∈ ∆j ,

and if xk ∈ ∆j and y ∈ ∆j is one of the other vertices of ∆j , then there
exists a neighborhood U of y in ∆j such that

ϕk|U ≡ 0 and
ϕk|W ≡ 1,

for a neighborhood W of xk in ∆j . We remark here that it is sufficient
to construct such functions ϕk on every triangle ∆j .

To prove (2.27) we can restrict our considerations to a neighborhood
of a vertex. This follows with the help of the partition of unity from
above. Let u ∈ CR(S)

(KSu) = (KSϕku) +KS

( m∑
j=1
j �=k

ϕju

)
.
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There is an ε > 0 such that Uε(xk)∩ supp (ϕj) = ∅, j = 1(1)m, j 
= k.
So we know that

KS

( m∑
j=1
j �=k

ϕju

)∣∣∣
Uε(xk)∩S

is Lipschitz continuous with respect to the usual Euclidean norm on
S, see [10]. From now on we assume xk = 0 and, by ∆i1 , . . . ,∆i1 , we
denote all triangles such that 0 ∈ ∆ij . Let

∆̃j := {rx | r ≥ 0, x ∈ ∆ij},

S̃ :=
l⋃

j=1

∆̃j .

This implies

(KSϕku)(x) = (KS̃ϕku)(x), x ∈ Uε(0) ∩ S.

So it is enough to study the image KS̃u on S̃, u ∈ CR(S̃). Now we pick
two arbitrary faces, ∆̃1 and ∆̃2 for example and it is clear that it is
enough to prove

(2.29)
∫

∆̃2

V (x, y)
[ni1 · (y−x)][ni2 · (x−y)]

‖x− y‖4
u(y) dsy ∈ CR(∆̃1).

Here V is the visibility function of S̃, but for x ∈ Uε(0) ∩ S and
y ∈ supp (ϕk) this is equal to the visibility function on S. The proof of
(2.29) is sufficient because of

(KS̃u)(x) =
ρ1

π

l∑
j=1

∫
∆̃j

V (x, y)
[ni1 · (y−x)][nij · (x−y)]

‖x− y‖4
u(y) dsy.

Next we assume that ∆̃1 = S(2) and ∆̃2 = S(1) are given by sectors
S(1) = S

e
(1)
1 ,e

(1)
2
(α1, α2) and S(2) = S

e
(2)
1 ,e

(2)
2
(β1, β2), according to

Lemma 2.4. This allows us to write the integral in (2.29) for x = x(r, φ),
r ≥ 0, φ ∈ [β1, β2], in the following form

o(x)∑
j=1

∫ α
(2)
j

(φ)

α
(1)
j

(φ)

∫ ∞

0

rr′a(φ′)b(φ)
(r2−2rr′c(φ′, φ) + (r′)2)2

u(r′, φ′) dr′ dφ′,
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where the functions a, b and c were defined in (2.18) (2.20). We further
have

α1 ≤ α
(1)
1 (x) ≤ α

(2)
1 (x) ≤ α

(1)
2 · · · ≤ α

(2)
o(x) ≤ α2,

and remark that these functions are not unique, but we can assume
this local representation of the visible part of S(2), because the edges
of all other faces ∆̃j , j = 3(1)l, are rays emanating from 0. If there are
no other faces between S(1) and S(2), this means no shadows, we get
o(x) = 1 and α

(1)
1 (x) ≡ α1, α

(2)
1 ≡ α2 and Lemma 2.9 proves (2.29).

In the general case we divide the function u into two parts

u(r′, φ′) = u0(φ′) + u1(r′, φ′),
u0(φ′) := u(0, φ′),

u1(r′, φ′) := u(r′, φ′)− u0(φ′),

as we have done it in the proof of Lemma 2.9. Every summand in the
above formula can now be split in the following way, j ∈ {1, . . . , o(x)},

∫ α
(2)
j

(φ)

α
(1)
j

(φ)

rr′a(φ′)b(φ)
(r2−2rr′c(φ′, φ) + (r′)2)2

u(r′, φ′) dr′ dφ′

=
∫ α

(2)
1 (φ)

α
(1)
j

(φ)

rr′a(φ′)b(φ)
(r2−2rr′c(φ′, φ) + (r′)2)2

u1(r′, φ′) dr′ dφ′

+
∫ α

(2)
j

(φ)

α
(1)
j

(φ)

rr′a(φ′)b(φ)
(r2−2rr′c(φ′, φ) + (r′)2)2

u0(φ′) dr′ dφ′

=: f1(r, φ) + f0(φ).

The continuity of f1(r, φ) follows analogously to the proof of Lemma 2.9;
here it is only important that we can find for any given δ > 0 a positive
r0 > 0 such that

|u1(r, φ)| ≤ δ if φ ∈ [α1, α2], r ≤ r0.

The dependence of the integral boundaries on φ, which has not ap-
peared in the proof of Lemma 2.9, can be treated by a splitting which
we introduce in formula (2.30). The only property which remains to
prove is the continuity of f0(φ).



THE RADIOSITY EQUATION 177

Using again the functions a, b and c introduced in (2.18) (2.20), we
define

κ(φ, φ′) := a(φ′)b(φ)
(

2c(φ′, φ)
1− c(φ′, φ)2

+
1

(1− c(φ′, φ)2)3/2
(
π + 2arctan

( c(φ′, φ)√
1− c(φ′, φ)

)))
and get (see Lemma 2.7)

f0(φ) =
∫ α

(2)
j (φ)

α
(1)
j

(φ)

κ(φ, φ′)u0(φ′) dφ′.

First we assume that S(1) and S(2) have no common edge. Then κ(φ, φ′)
is a C∞ function in both variables and bounded from above. So the
smoothness of α(1)

j and α
(2)
j determines the smoothness of f0. This

shows that f0 is a Lipschitz continuous function.

If S(1) and S(2) have a common edge, we assume that this edge is given
by φ = 0 = φ′. But there are only finitely many faces ∆̃j , j = 2(1)l,
which create the shadows. So we can assume that for φ and φ′ small
enough there is no shadow. This means V (x(r, φ), y(r′, φ′)) ≡ 1, if
φ, φ′ ≤ φ0, where φ0 > 0. Without any restriction we are now in the
following situation

(2.30)

α
(1)
1 (φ) = 0,

α
(2)
1 (φ) ≥ φ0,

α
(1)
k (φ), α(2)

k (φ) ≥ φ0, k ≥ 2.


For the integrals of the form∫ α

(2)
k

(φ)

α
(1)
k

(φ)

κ(φ, φ′)u0(φ′) dφ′, k ≥ 2,

we can argue as in the proof of the two faces with no common edge.
The integral for k = 1 can be written in the following way∫ α

(2)
1 (φ)

α
(1)
1 (φ)

κ(φ, φ′)u0(φ′) dφ′ =
∫ φ0

0

κ(φ, φ′)u0(φ′) dφ′

+
∫ α

(2)
1 (φ)

φ0

κ(φ, φ′)u0(φ′) dφ′.
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The continuity of the first summand follows from Lemma 2.9 and the
continuity of the second summand follows again by the boundedness of
κ(φ′, φ), φ′ ≥ φ0. So we have proved the following theorem.

Theorem 2.13. Let S be a surface according to (2.1) with normals
nj, j = 1(1)n, and a reflectivity function ρ which fulfills (2.3). Then
the reflection operator KS, see (2.2), is a continuous operator in CR(S).

Using again (2.4) and the fixed point theorem of Banach one gets the
final result of this section.

Theorem 2.14. Let the surface S and the reflectivity function ρ be
given according to (2.1) and (2.3). Then the radiosity equation (1.1)

(I −KS)u = E, E ∈ CR(S),

has a uniquely determined solution ū ∈ CR(S).

We now have a function space where we know that the solutions
of the radiosity equation exist and point evaluations are possible if
one does not evaluate the functions in the corners. Therefore we can
formulate a collocation method for the approximate solution of the
radiosity equation. Numerical examples in Section 4 will demonstrate
the results of Theorems 2.13 and 2.14.

3. The collocation method for the solution of the radiosity
equation. In order to formulate the collocation method for the
approximate solution of the radiosity equation (1.1) on S, S given by
(2.1), we first define a partition of S. It is clear that we can map every
triangle ∆j , j ∈ {1, . . . , n}, by an affine linear bijective mapping Ψj

on a fixed reference triangle ∆∗ ⊂ R2,

(3.1) Ψj : ∆j
1:1−→ ∆∗.

We choose the reference triangle shown in Figure 3.1.

The analysis of Section 2 shows that the solution of the radiosity
equation will be continuous only with respect to polar coordinates near
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FIGURE 3.1. The reference triangle ∆∗.

the vertices of the triangle ∆j . We further must be able to introduce
a grading of the meshes towards the edges, respectively vertices, of the
triangle, see [10, 17]. For this purpose we introduce first a coarse
triangulation of ∆∗ of the form shown in Figure 3.2.

For each of the triangles ∆∗,l, l = 1(1)6, there is an affine linear
transformation κl, which maps ∆∗,l on a further reference triangle
∆∗ = ∆∗,1. Each κl, l = 1(1)6, has the form

(3.2) κl

(
x
y

)
:= Ul

((
x
y

)
− ul

)
,

where ul is one of the vertices of ∆∗ and Ul is an orthonormal matrix.
We can further assume that the edge of ∆∗,l, which is also an edge of
∆∗, is mapped on the lower edge {(x, 0) | 0 ≤ x ≤ 0.5} of ∆∗. The
reference triangle

(3.3) ∆• := {(x, y) | 0 ≤ x ≤ 1/2, 0 ≤ y ≤ x tan(π/6)}
can be mapped by a nonlinear transformation χ on a reference square

(3.4) := {(x, y) | 0 ≤ x, y ≤ 1}.
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1

y

x

∆*,1

∆*,3

∆*,4∆*,5

∆*,6

∆
*,2

FIGURE 3.2. The coarse triangulation of ∆∗.

(3.5)

(
φ
r

)
:= χ

(
x
y

)
:=

(
6
π arctan

y
x

2x

)
, x > 0,

and we will never need the evaluation for x = 0, see Figure 3.3. We
would like to mention that the function arctan in formula (3.5) was

x

y

1/2 1

1

χ

φ

r

FIGURE 3.3 The mapping χ.
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motivated by the fact that the author tried to interpret the second
coordinate as a (scaled) angular coordinate. But it is clear that the
function arctan and its inverse are differentiable for the interval, which
we consider. So the omission of this function is possible and may lead
to a simpler implementation of the collocation method.1 If we omit the
arctan function in formula (3.5) we get the Duffy transform, which is
often used for the regularization of weakly singular integrals, see [18].
This is not our motivation here. The only reason at this point is the use
of local polar coordinates in order to get the regularity of the solution.
Now it is clear that the whole construction process for the graded mesh
and the refinement can be done on . Here we will define meshes which
are graded toward the vertices in both directions r and φ.

Given a grading exponent p and a natural number N we construct a
partition of into rectangles, where the quotient of the length of the
sides of the rectangles stays bounded, independent of N . First define
a grid

(3.6)
{( i

N

)p

| i = 0(1)N
}
⊂ [0, 1]

on the interval [0, 1]. Then we partition the L shaped region

(3.7)

LN,p,i :=
{
(x, y) ∈ | min{x, y} ∈

[( i

N

)p
,
( i+1

N

)p]}
, i=0(1)N−1,

by first introducing the square[(
i

N

)p

,

(
i+ 1
N

)p]2

and then the rectangles[( i+ 1
N

)p
, 1

]
×

[( i

N

)p
,
( i+ 1

N

)p]
and [( i

N

)p
,

(
i+ 1
N

)p]
×

[( i+ 1
N

)p
, 1

]
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FIGURE 3.4. The partition ℘3,2 of .

are divided into small rectangles, where the quotient between the side
lengths is kept close to 1, see Figure 3.4. Therefore we choose

(3.8)
νN,p,i := 1 +

⌈
1− (i+ 1/N)p

(i+ 1/N)p − (i/N)p
⌉
, i = 0(1)N − 1,

≤ C
Np

(i+ 1)p−1

rectangles in LN,p,i. This results in

(3.9) νN,p :=
N∑
i=1

νN,p,i

rectangles N,p
j , j = 1(1)νN,p, which cover . We assume that the

rectangles are numbered according to Figure 3.4.
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x

y

FIGURE 3.5. The partition of ∆∗ if ℘3,2 is used for all sub triangles.

Each N,p
j , j = 1(1)νN,p, is itself the image of under a linear affine

mapping τN,pj ,

(3.10) τN,pj : −→ N,p
j .

The partition ℘N,p := { N,p
j | j = 1(1)νN,p} can now be mapped on

one ∆∗,l. If we choose the above partition of for all ∆∗,l, l = 1(1)6,
we get the partition of ∆∗ shown in Figure 3.5.

Formulas (3.8) and (3.9) show that

(3.11) νN,p ≤ C


N2 p ∈ [1, 2),
ln(N)N2 p = 2,
Np p > 2,

C > 0, a constant independent of N .

Now it is clear that we can construct a partition of S, given three
grading exponents (p(j)

1 , p
(j)
2 , p

(j)
3 ) for every triangle ∆j , where p

(j)
i

determines the grading towards edge i of ∆j . Further we need a number
N . In principle, we can choose six grading exponents for every triangle
and also N can depend on every sub triangle of ∆j (this may be useful
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x y

z

FIGURE 3.6. The partition of S(1), using ℘2,2 for every sub triangle.

in practice). But for simplicity we will only use one number N in our
examples. The number νN of all elements of our partition is then given
by

(3.12) νN :=
n∑
j=1

2
3∑
i=1

ν
N,p

(j)
i

= ON→∞(νN,p∗),

where p∗ is the maximal grading exponent.

As an example we consider the following very simple surface S(1)

(3.13) S(1) := ∆(1)
1 ∪∆(1)

2 ∪∆(1)
3

where the triangles are defined by

vertices normal
∆(1)

1 (0,0,0) (1,0,0) (0,1,0) (0,0,1)
∆(1)

2 (0,0,0) (0,1,0) (0,0,1) (1,0,0)
∆(1)

3 (0,0,0) (0,0,1) (1,0,0) (0,1,0)

We further choose p = 2 for all edges, N = 2 and get the partition
shown in Figure 3.6 for S(1).
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In the last step the trial functions on S are defined. We start again
the construction on , given N, p and a further parameter i∗ ∈ N0. For
simplicity we choose only the two following interpolation formulas for
functions f ∈ C( ):

(3.14)

(P0f)(φ, r) := f(ξ(0))p[0](φ, r)

(P1f)(φ, r) :=
4∑
l=1

f(ξ(1)
l )p[1]

l (φ, r)


where

(3.15)

ξ(0) = (1/2, 1/2)

ξ
(1)
1 = (c0, c0), ξ

(1)
2 = (c1, c0),

ξ
(1)
3 = (c0, c1), ξ

(1)
4 = (c1, c1),


with the two Gauss points c0 ≈ 0.211324865405187 and
c ≈ 0.788675134594813 on [0, 1]. The function p[0] is the constant
function equal to 1 and the functions p

[1]
l , l = 1(1)4, are the bilinear

functions

(3.16)

p
[1]
1 (φ, r) =

(c1 − φ)(c1 − r)
(c1 − c0)2

p
[1]
2 (φ, r) =

(φ− c0)(c1 − r)
(c1 − c0)2

p
[1]
3 (φ, r) =

(c1 − φ)(r − c0)
(c1 − c0)2

p
[1]
4 (φ, r) =

(φ− c0)(r − c0)
(c1 − c0)2


For i∗ ∈ N0 the set of indices {1, . . . , νN,p} are divided into two

subsets

(3.17)
IN,p,i∗ :=


{j ∈ {1, . . . , νN,p} | N,p

j ∈ LN,p,i,

i < (i∗)1/(1+p)N1/(1+1/p)}, i∗ ≥ 1,
∅ otherwise,

IN,p,i∗ := {1, . . . , νN,p} \ IN,p,i∗ .


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where (φj , rj) is the lower left corner of
N,p
j and we define a/0 := +∞,

if a > 0. We use the constant interpolation projector P0 on
N,p
j , j ∈

IN,p,i∗ , and the linear interpolation projector P1 on
N,p
j , j ∈ IN,p,i∗ .

This defines the interpolation projector Pn,p,i∗ in C( ):

(3.18)

(PN,p,i∗f)(φ, r) :=
∑

j∈IN,p,i∗

f(τ−1(ξ(0)))p ,0
N,p,j(φ, r)

+
∑

j∈IN,p,i∗

4∑
l=1

f(τ−1(ξ(1)
l ))p ,1

N,p,j,l(φ, r)


where the functions p ,0 and p ,1 are local copies of p[0] and p[1]:

(3.19)
p ,0
N,p,j(r, φ) := 1 N,p

j
(φ, r)

p ,1
N,p,j,l(r, φ) := 1 N,p

j
(φ, r)p[1]

l (τN,p,j(r, φ)).


The parameter i∗ controls the neighborhood of φ = 0, respectively
r = 0, where we use constant interpolation. i∗ = 0 implies that we
use only linear interpolation and a growing i∗ increases the number of
elements where the constant interpolation is applied. The reason to
introduce i∗ is the fact that even in two dimensions there is no proof
for the stability of the collocation method for the radiosity equation
without such a modification. The number ν̃N,p,i∗ of trial functions
introduced on is given by

ν̃N,p,i∗ = |IN,p,i∗ |+ 4|IN,p,i∗ |(3.20)
= ON→∞(νN,p).(3.21)

If we assume that we have for all triangles ∆j of S three grading
exponents p

(j)
l , l = 1, 2, 3, along the edges and, if we choose N and

i∗ independent of j, we get

(3.22) νN,i∗(S) :=
N∑
j=1

2
3∑
l=1

ν̃
N,p

(j)
l
,i∗

trial functions on S and the same number of interpolation respectively
collocation points. The trial functions, respectively the collocation
points on S, are defined by

(3.23) pS,N,i∗,j respectively ξS,N,i∗,j , j = 1(1)νN,i∗(S).
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We have not indicated the dependence on all grading exponents in the
above notation and if possible we will also neglect the indices S and i∗.
The typical function pN,k defined on Sj is given by

(3.24) pN,k(x) := p
,0/1

N,p
(j)
i
,l,m
(χ(κh(Ψj(x)))),

where j ∈ {1, . . . , n}, h ∈ {1, . . . , 6}, i ∈ {1, 2, 3} and m is only
necessary in the case of linear trial functions. A typical interpolation
point ξN,k ∈ Sj is given by

(3.25) ξN,k = Ψ−1
j (κ−1

h (χ−1(τ
N,p

(j)
i
,l
(ξ(0)/(1)
m )))),

h ∈ {1, . . . , 6}, i ∈ {1, 2, 3}, l ∈ {1, . . . , ν̃N,p,i∗} andm is only necessary
in a rectangle with linear trial functions. The interpolation operator
PN,i∗ for a function f ∈ CR(S) is given by

(3.26) (PN,i∗f)(x) :=
νN,i∗ (S)∑
j=1

f(ξN,i∗,j)pN,i∗,j(x).

The linear space of trial functions, given all of the above parameters,
will be denoted by

(3.27) ΠN,i∗(S).

Because of the transformation χ the functions pN,i∗,j are nonlinear
functions and their support has a curved boundary. The advantage
of the transformation χ is that we use polar coordinates for the
interpolation of the function f ∈ CR(S). So we get

(3.28) lim
N→∞

‖f − PN,i∗f‖L∞(S) = 0.

We again look at our example S(1), with N = 2, p = 2 and i∗ = 0 for
every edge (Figure 3.7). The second picture shows S(1) with N = 2,
p = 2 and i∗ = 1 for every sub triangle (Figure 3.8).

After the introduction of this notation it is now easy to formulate
the collocation method for the approximate solution of (1.1). Given
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z
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FIGURE 3.7. The collocation points for S(1), with i∗ = 0 and ℘2,2 is used for
all sub triangles.

z

yx

FIGURE 3.8. The collocation points for S(1), with i∗ chosen such that one
row is used for constant interpolation, and ℘s,2 is used for all sub triangles.
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N ∈ N, i∗ ∈ N0, p
(j)
i ∈ [1,∞), j = 1(1)n, i = 1, 2, 3, the approximate

solution ūN,i∗ ∈ ΠN,i∗

(3.29) ūN,i∗ =
νN,i∗ (S)∑
k=1

ākpN,i∗,k, āk ∈ R,

is given by the solution of the linear equations system of

(3.30)

āj −
νN,i∗ (S)∑
k=1

āk(KSpN,i∗,k)(ξN,i∗,j) = E(ξN,i∗,j), j = 1(1)νN,i∗(S).

The question of the solvability of (3.30) and the convergence of ūN,i∗ →
ū, ū ∈ CR(S) the solution of (1.1), will be addressed in the following
remark.

Remark 3.1. a. In 3.14 it is possible to choose any fixed interpolation
formula instead of P1. See [2] or [21] for interpolation formulas with
higher degree.

b. The curved boundary of the support of our trial functions PN,i∗,j
does not introduce a problem for the computation of the matrix entries
in (3.30), because all numerical integrations are done on the reference
square . We also need only the mappings χ−1 and Dχ−1 for the
computations, and these mappings are C∞ smooth. One disadvantage
is the fact that Dχ−1 depends on the variables (φ, r) on . In the
numerical computations we cannot put any term involving Dχ−1 in
front of the integral sign. This would be possible if we would use only
linear transformations.

c. The interpolation projectors PN,i∗ and PN,p,i∗ are in principle
only defined for continuous functions, but we will always consider their
extension to L∞(S), described in [5].

d. The stability of the above constructed collocation method follows
from the results in [12]. Here it was proved that the collocation method
is stable. So if i∗ and N are sufficiently large the linear system (3.30)
is uniquely solvable and the norm of the inverse of the corresponding
matrices is bounded if N goes to infinity. In the article [12] the mesh
was slightly different, but this has no influence on the i∗ modification
and the stability.
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In the next remark we discuss one of the problems which was encoun-
tered during the implementation of the collocation method.

Remark 3.2. Here we give a short description of the algorithm which
is used to calculate the entries of the collocation matrix. If we neglect
for a moment the nonlinear transformation χ, see (3.5), we see that we
must calculate integrals of the form

(3.31)
∫ 1

0

∫ 1

0

cε

((φ− φ0)2 + (r − r0)2 + ε2)2
p
[0]/[1]
l (φ, r) dφ dr.

Here we have transformed one of the elements N,p
k on the reference

square . The constant c is not necessarily small and depends on
the normals of the triangle where the collocation point is located and
the normal of the triangle ∆̃, which corresponds to N,p

k . (φ, r, ε) are
determined by the relative position of the collocation point to the
element ˜N,pk in R3, which corresponds to N,p

k . The trial functions
p
[0]/[1]
l are always polynomials and are of degree zero or one in our
context. The value ε is determined by the orthogonal distance of the
collocation point to the plane E which contains ˜N,p. The values φ0

and r0 are the coordinates of the projection of the collocation point
onto the plane E relative to ˜N,pk .

If we useN = 8 and p = 2 for our example domain S(1), see (3.13), the
smallest values of ε are about 10−6. So the function under the integral
sign in (3.31) has a maximal value of about 1018 and the smallest
values are about 10−6. It is clear that the above integral is not easy to
compute. In an example we found that a trapezoidal rule with about 4
million points calculated only the first digit of the integral exactly and
a Gaussian quadrature with 30 points had no exact digit. This is easy
to understand if one tries to plot the graph of the above function.

As a model for the above integral we use the modified Runge function

(3.32) Iε,a :=
∫ 1

0

ε

((x− a)2 + ε2)2
dx, ε > 0.

Then we use the transformation x = ta,ε(y), ta,ε : [0, 1]→ [0, 1], defined
by

(3.33) ta,ε(y) :=


yq a < 0,
(α1y − α2)q + a a ∈ [0, 1],
1− yq a > 1,
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(3.34) q = q(a, ε) :=



odd
( ln(√ε2 + a2)

ln(0.3)

)
a < 0,

odd
( ln(|e|)
ln(0.3)

)
a ∈ [0, 1],

odd
( ln(√ε2 + (1− a)2)

ln(0.3)

)
a > 1,

and

(3.35)
α1 := (1− a)1/q + a1/q,

α2 := a1/q.

}

Here the function odd (z) determines the smallest odd natural number
larger or equal to z. The transformation was motivated by the even
simpler integral ∫ 1

−1

1
(x2 + ε2)2

dx, ε > 0.

If we choose the transformation x = yq, q an odd natural number, the
poles at ±iε of the function 1/(x2 + ε2) are transformed into the 2q
poles of the function 1/(y2q+ ε2). The distance of these poles from the
origin is given by ε1/q. So if we choose

q ≈ ln(ε)
ln(0.3)

then the absolute value is always approximately 0.3, independent of ε.
But we remark that the angle of the unit root in the complex domain
is neglected here. This transformation will be the subject of a further
study. The value 0.3 is chosen because in some experiments 0.3 worked
a little bit better than 0.2 or 0.4. Now we denote by Tε,a,K the value
of the trapezoidal rule with 2K points applied directly to the integral
(3.32) and by T̃ε,a,K the value of the trapezoidal rule applied to the
integral after the variable substitution (3.33) has been applied. Then
we look for the smallest natural number K0 such that

(3.36) K0 := min{K ∈ N | |Iε,a − Tε,a,K | < 10−8|Iε,a|}
respectively

(3.37) K̃0 := min{K ∈ N | |Iε,a − T̃ε,a,K | < 10−8|Iε,a|}.
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The definition implies that 2K0 , respectively 2K̃0 , denote the number of
points which are necessary in the trapezoidal rule to get an accuracy of
eight digits. The following table shows the effect of the transformation.

TABLE 3.1. The K0 and K̃0 values, see (3.36)

and (3.37), for different values of ε and a.

ε = 10−2 ε = 10−4 ε = 10−6

a K̃0 K0 a K̃0 K0 a K̃0 K0

-0.5 14 17 -0.5 14 17 -0.5 14 17
-0.4 14 17 -0.4 14 17 -0.4 14 17
-0.3 13 17 -0.3 13 17 -0.3 13 17
-0.2 13 18 -0.2 13 18 -0.2 13 18
-0.1 12 19 -0.1 12 19 -0.1 12 19
0.0 7 11 0.0 10 18 0.0 12 >20
0.1 13 13 0.1 9 18 0.1 10 >20
0.2 11 11 0.2 9 18 0.2 10 >20
0.3 10 11 0.3 9 18 0.3 10 >20
0.4 10 11 0.4 9 18 0.4 10 >20
0.5 10 11 0.5 9 18 0.5 10 >20
0.6 10 11 0.6 9 18 0.6 10 >20
0.7 10 11 0.7 9 18 0.8 10 >20
0.8 11 11 0.8 9 18 0.8 10 >20
0.9 13 13 0.9 9 18 0.9 10 >20
1.0 7 11 1.0 10 18 1.0 12 >20
1.1 12 19 1.1 12 19 1.1 12 19
1.2 13 18 1.2 13 18 1.2 13 18
1.3 13 17 1.3 13 17 1.3 13 17
1.4 14 17 1.4 14 17 1.4 14 17
1.5 14 17 1.5 14 17 1.5 14 17

The result is that at least in the range of ε values, which we encounter in
the numerical computations, the transformation can reduce the number
of necessary quadrature points by a factor of 1000 in one dimension and
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so by about 106 in two dimension. In the actual computations we use
Gaussian formulas, where experiments show that about 130 points (in
each dimension if ε = 10−6) are necessary to get an accuracy of six
digits.

In practice we determine for every square, where we calculate the
entry of the collocation matrix, an approximation for r0 and φ0 and
then use the above transformation in both directions. Remember here
also that the real integration area has a curved boundary in the R3

domain, so an exact value of r0 and φ0 is difficult to get. But even
then the above transformation results in an enormous speed up of the
convergence for the trapezoidal rule and the Gaussian rules. Without
this transformation a calculation of the above integrals with ε = 10−6

seems to be totally impossible.

But we would like to mention that the number of integrals is small,
where such extreme functions have to be integrated, but their influence
on the computation time of the collocation matrix is not negligible.

4. Numerical examples. In this section we present the results
of several numerical calculations which show the applicability of the
collocation method, presented in Section 3. The aim of this section is
to verify the theoretical results, which were given in Section 2 and in
the articles [17, 10, 11]. So we use only very simple surfaces S with no
occlusion and try to calculate the solution with a high precision in order
to estimate the order of convergence. We do not want to prescribe the
solution because it is one of our goals to work without any assumption
on the asymptotics of our solution. But we choose only very simple
righthand sides because our previous analysis shows that this should
be sufficient to produce nonsmooth solutions. Because of this we do
not have a reference solution and we will always take the calculated
solution with the highest number of degrees of freedom as the reference
solution.

In all our examples the emissivity function and the reflectivity func-
tion ρ is constant on each of the triangles ∆i of the surface S. Further-
more the modification parameter i∗, see (3.17), is always set to zero
because, in our numerical experiments, we never detected any prob-
lems with the stability of our method. The construction in Section 3
allows us to choose different values for N and the grading exponent p
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on every one of the six sub triangles ∆∗,l, l = 1(1)6, for every triangle
∆j of S. But we will always take the same N and p for all sub trian-
gles. Together with the piecewise linear trial functions introduced in
(3.15) (3.16), the collocation method is therefore well defined if N and
p are given.

For the first example we use the surface S(1) from Section 3 and the
emissivity and reflectivity are given according to the following table.

TABLE 4.1. The surface S(1) with the reflectivity function ρ

and the emissivity E.

S(1)

triangle vertices normal ρ E

∆(1)
1 (0, 0, 0)T (1, 0, 0)T (0, 1, 0)T (0, 0, 1)T 0.5 0.5

∆(1)
2 (0, 0, 0)T (0, 1, 0)T (0, 0, 1)T (1, 0, 0)T 0.5 1.0

∆(1)
3 (0, 0, 0)T (0, 0, 1)T (1, 0, 0)T (0, 1, 0)T 0.5 0.3

To get an impression of the solution Figure 4.1 shows the radiosity
viewed from (5, 5, 5)T with a viewing direction towards the origin.

The solution looks smooth and even for our coarsest triangulation the
results are so accurate (see the following table) that this is enough for
a graphical representation. But the behavior of the solution near the
edges is not smooth as the following discussion shows.

First we will use no grading, so p = 1, see (3.6) (3.8). We calculate
approximations ūN,0, forN = 2i, i = 0(1)5. To estimate the error in the
L∞(S(1)) norm we calculate the approximate solutions at 10000 points
within every sub triangle ∆∗,l, l = 1(1)6, and this for every triangle
∆(1)
j , j = 1, 2, 3. So we approximate ‖ · ‖L∞(S(1)) by a maximum over

180000 points ωi ∈ S(1) on S(1). We denote this semi-norm by

(4.1) ‖u‖L∞(S(1)),disc := max
ωi

{|u(ωi)|}.

The following table shows the results.
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FIGURE 4.1. The radiosity distribution on S(1).

TABLE 4.2. The convergence results for the first example with no grading.

Surface S(1), i∗ = 0, p = 1.

N degrees of ‖ūN,0 − ū32,0‖L∞(S(1)),disc
relative EOC

freedom improvement
1 72 2.83248× 10−2

2 288 1.37551× 10−2 2.06 0.99
4 1152 6.80114× 10−3 2.02 0.90
8 4608 3.21527× 10−3 2.11 0.81
16 18432 1.20771× 10−3 2.66 0.73
32 73728

The estimated order of convergence is calculated under the assump-
tion that

(4.2) ūN,p(xmax, ymax) = ū(xmax, ymax) +
c1
Nα
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holds. Here (xmax, ymax) is the position where the maximal error occurs
and this position should not vary withN . We would like to remark that
this is not fulfilled in practice. But, if we assume this, the column EOC
in the above table gives the estimated value for α. Especially we take
into account that we do not compare our approximate solutions with a
known solution, but with a more accurate approximation according to
formula (4.2). The numbers in the above table show clearly that the
solution ū is not a smooth function, because all EOC values are smaller
than 2. From the analysis in [17, 10, 11], we expect an exponent

(4.3) β1 ≈ 0.763
which describes the φ dependence of the solution orthogonal to the
edge. This value cannot be found in our table, but it is included in
the range of the EOC values, which we calculate. Here we have also
neglected the fact that the dependence on the r variable is not clear in
the moment. If we assume that u has an asymptotic expansion of the
form

ū(φ, r) ≈ u(0, φ) + Urr
β2 ,(4.4)

ū(φ, 0) ≈ u(0, 0) + Uφφ
β1 ,(4.5)

we can estimate β1 and β2 from our numerical results. If we do this for
ū32,1 restricted to the surface ∆

(1)
1 , we get the result

(4.6) β1 ≈ 0.84, β2 ≈ 0.8.

Here the values 0.84 and 0.8 depend on the points which we use for
the estimate, but we remark that these values vary only in a range of
about 0.02 in our experiments. So the numerical results clearly indicate
that the solution is not smooth orthogonal to the edge and near the
vertices, but an accurate estimate of the kind of singularity seems to
be impossible with the above results.

Our main result from Section 2 was that the solution is not necessarily
continuous with respect to the Euclidean norm near the vertices. To
illustrate this we define the curve

(4.7) αr(t) := r

 cos
(
π
2

)
t

sin
(
π
2

)
t

0

 , t ∈ [0, 1].
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FIGURE 4.2. The function ū32,0(αr(·)), r = 0.1, r = 0.05, r = 0.01 and
r = 0.001. With smaller r the functions have larger values. The interval
[0, π/2] is scaled to [0, 1].

For sufficiently small r > 0 the curve αr lies on ∆
(1)
1 , and we plot

ū32,0(αr(t)) in the next figure for r = 0.1, r = 0.05, r = 0.01 and
r = 0.001.

Figure 4.2 indicates that the solution ū is not continuous near the
origin with respect to the usual Euclidean norm; here we remember
that Table 4.2 suggests that ‖ū − ū32,0‖L∞(S(1)) ≈ 10−3 holds. So one
has to use a triangulation with respect to local polar coordinates to
guarantee convergence with respect to the L∞ norm.

In Figure 4.2 it is nearly impossible to determine the exact behavior
of ū32,0(αr(t)) near t = 0 or t = 1. Therefore, we calculate with a
difference quotient an approximation for

d

dt
ūN,0(α0.01(t)),

N = 8, 16, 32 and get the result shown in Figure 4.3.

Now it shows that there is some kind of singularity near the boundary
values 0 and 1. We have not tried to estimate the exponent because,
even for our most accurate solution, we expect an error of about 10−3,
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FIGURE 4.3. Three approximations for d
dt

ū(α0.01(t)) with N = 8, N = 16

and N = 32, p = 1.
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FIGURE 4.4. Three approximations for d
dt

ū(α0.01(t)), with N = 4, N = 8

and N = 16, p = 2.
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see Table 4.2, and the step width for the difference quotient is 10−2.
So this also seems not very promising.

In order to increase the order of convergence one can increase the
grading exponent. We have chosen p = 2 and calculated for different
values of N an approximate solution. This grading exponent was
used for all triangles and along all edges. We expect that the rate
of convergence will be doubled. The estimated convergence rates are
shown in Table 4.3.

TABLE 4.3. The convergence result for the first example with exponent p = 2.

Surface S(1), i∗ = 0, p = 2.

N degrees of ‖ūN,0 − ū32,0‖L∞(S(1)), disc relative EOC
freedom improvement

1 72 2.9553× 10−2

2 576 1.2696× 10−2 2.32 1.14
4 3168 4.9290× 10−3 2.58 1.18
8 15840 1.2296× 10−3 4.01 1.50
16 77760

The results of the case p = 1 are confirmed and this shows that a
weakly singular behavior of the solution ū has to be taken into account
if the solution has to be computed with a high accuracy.

Finally we consider another geometrical configuration in order to
study the influence on the convergence.

TABLE 4.4. The surface S(2) with the reflectivity

function ρ and the emissivity E.

S(2)

triangle vertices normal ρ E

∆(2)
1 (0, 0, 0)T (1, 0, 0)T (0, 1, 0)T (0, 0, 1)T 0.5 1.0

∆(2)
2 (0, 0, 0)T (0, 1, 0)T (1, 1, 1)T 1/

√
2(1, 0,−1)T 1.0 0.2

∆(2)
3 (0, 0, 0)T (1, 1, 1)T (1, 0, 0)T 1/

√
2(0, 1,−1)T 0.25 0.2
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Here the theory of [17, 10, 11] gives us the following Hölder expo-
nents of the solution along the different edges.

TABLE 4.5. The Hölder exponents along the different edges of S(2).

edge between exponent
∆(2)

1 and ∆(2)
2 ≈ 0.6527

∆(2)
1 and ∆(2)

3 ≈ 0.8782
∆(2)

2 and ∆(2)
3 ≈ 0.7644

Again the numerical results do not exactly show the predicted orders
of convergence, but the results indicate a rate which is smaller than in
example one.

TABLE 4.6. The convergence results for the second example with no grading.

Surface S(2), i∗ = 0, p = 1.

N degrees of ‖ūN,0 − ū32‖L∞(S(1)), disc relative EOC
freedom improvement

1 72 9.69035× 10−2

2 288 5.19997× 10−2 1.8635 0.829
4 1152 3.03553× 10−2 1.7130 0.588
8 4608 1.56782× 10−2 1.9361 0.626
16 18432 6.13000× 10−3 2.5576 0.639
32 73728

The maximal error in the first row, N = 1, is found in the middle of
the triangle ∆(2)

1 , but all other maximal errors are found in (0, 0.5, 0)T .
This corresponds to the smallest Hölder exponent along this edge, see
Table 4.5. We finish with Figure 4.5, which shows us the solution in
the second example.

ENDNOTES

1. The author would like to thank Dr. A. Rathsfeld for this hint.
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FIGURE 4.5. The radiosity distribution on S(2), viewed from (5, 5, 2)T .
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