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THREE-POINT BOUNDARY VALUE PROBLEMS
WITH SOLUTIONS THAT CHANGE SIGN

G. INFANTE AND J.R.L. WEBB

ABSTRACT. Using the theory of fixed point index, we give
new results for some three-point boundary value problems. In
particular we study problems where the associated integral
equation has a kernel that changes sign, so that positive
solutions cannot exist. We obtain the existence of at least
one or of multiple nonzero solutions.

1. Introduction. In this paper we study the existence of nonzero
solutions of second order differential equations of the form

(1.1) u′′(t) + g(t)f(u(t)) = 0, 0 < t < 1

under one of the boundary conditions (BC’s)

u′(0) = 0, αu(η) = u(1), 0 < η < 1,(1.2a)
u(0) = 0, αu(η) = u(1), 0 < η < 1.(1.2b)

These so-called three-point boundary value problems (BVP’s), and
more general m-point BVP’s, are examples of nonlocal boundary con-
ditions whose study has been motivated by work of Bitsadze and
Samarskii and Il’in and Moiseev [6]. In recent years, the existence
of solutions of equations more general than (1.1) has been thoroughly
studied by Gupta, et al., see, for example, [3, 4] and the references
therein.

Other authors, for example Ma [9] and Webb [11], have studied the
existence of one or of multiple positive solutions when 0 < α < 1 for
(1.2a) and 0 < αη < 1 for (1.2b).

One approach is to write the BVP as an equivalent Hammerstein
integral equation

(1.3) u(t) =
∫ 1

0

k(t, s)g(s)f(u(s)) ds := Tu(t)
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and find a solution as a fixed point of the operator T by using the
classical theory of fixed point index in cones.

In the present paper we shall consider the other possible ranges for
the parameter α. For (1.2a) when α < 0, the kernel k(t, s) is not
positive for all values of t, s, indeed k(1, s) < 0 for all s. Therefore,
when g and f are positive, a fixed point of the operator T cannot be
positive on [0, 1].

Nevertheless, as we intend to show in this paper, it is possible to
prove that nonzero solutions exist which have the property that they
are positive (or negative) on some subinterval [a, b] of [0, 1].

We shall show that one or more nonzero solutions exists for each of
the other possible range of parameter α in each of the BC’s above under
suitable conditions on the nonlinear term.

While there are many publications dealing with the existence of mul-
tiple positive solutions, we believe our work establishing the existence of
multiple nonzero solutions that change sign by using fixed point index
theory is new.

In a recent paper, Lan and Webb [8] used the cone

K̃ = {u ∈ C[0, 1] : u ≥ 0, min{u(t) : a ≤ t ≤ b} ≥ c‖u‖}

(which is of a type due to Guo, see for example [5]) to prove that
at least one positive solution existed for some boundary conditions of
separated type. These results strictly included f being either sublinear
or superlinear. These results have been improved by Lan [7] to yield
existence of multiple positive solutions under suitable conditions on f
for the separated BC’s.

Using K̃, rather than P = {x ∈ C[0, 1] : x(t) ≥ 0 for t ∈ [0, 1]}, has
been purely a device to prove existence of positive solutions.

However, we employ the similar but larger cone

K = {u ∈ C[0, 1] : min{u(t) : a ≤ t ≤ b} ≥ c‖u‖}

and this seems to be natural for the type of nonzero solutions that we
study.

The methods we use are rather similar to those of Lan [7] but we
seek solutions of a different type.



THREE-POINT BOUNDARY VALUE PROBLEMS 39

The conditions we impose on g are quite weak, for example we can
allow g to be a non-negative L1 function which is positive on a set of
positive measure.

We suppose f is positive; some of our other hypotheses involve

lim
x→0+

f(x)/x and lim
x→∞ f(x)/x.

Our conditions strictly include the sublinear and superlinear cases.

2. Existence of nonzero solutions of Hammerstein integral
equations. We begin by giving some results for the following Ham-
merstein integral equation.

(2.1) u(t) =
∫ 1

0

k(t, s)g(s)f(u(s)) ds ≡ Tu(t).

We shall make the following assumptions on f, g and the kernel k.

(F) f : R → [0,∞) is continuous.
(C) k : [0, 1] × [0, 1] → R is continuous and there exist a measurable

function Φ : [0, 1] → [0,∞), a subinterval [a, b] and c ∈ (0, 1] such
that

|k(t, s)| ≤ Φ(s) for t, s ∈ [0, 1],
and

cΦ(s) ≤ k(t, s) for t ∈ [a, b] and s ∈ [0, 1]

(G) g : [0, 1]→ [0,∞) is measurable and
∫ 1

0
Φ(s)g(s) ds < ∞.

The hypothesis (C) means finding upper bounds for |k(t, ·)| when
t ∈ [0, 1] and lower bounds of the same form for k(t, ·) with t ∈ [a, b].
In applications we have some freedom of choice in determining a, b. We
need k(t, s) to be positive for all t ∈ [a, b] and s ∈ [0, 1], but we do not
require k(t, s) to be positive for all t, s.

These hypotheses will allow us to work in the cone

K = {u ∈ C[0, 1] : min{u(t) : a ≤ t ≤ b} ≥ c‖u‖}.
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This is a larger cone than the one used by Lan [7]. Note that functions
in K are positive on the subinterval [a, b] but may change sign on [0, 1].

In order to use the well-known fixed point index for compact maps,
we need to prove that T : K → K is compact, that is, T is continuous
and T (Q) is compact for each bounded subset Q ⊂ K.

Theorem 2.1. Assume that (F), (G) and (C) hold. Then T maps
K into K and is compact.

Proof. Let T : C[0, 1] → C[0, 1] be defined by (T x)(t) =∫ 1

0
k(t, s)g(s)x(s) ds. Then the kernel has the properties:

(i)
∫ 1

0
|k(t, s)|g(s) ds ≤

∫ 1

0
Φ(s)g(s) ds for all t ∈ [0, 1].

(ii) For each τ ∈ [0, 1], limt→τ

∫ 1

0
|k(t, s)g(s)− k(τ, s)g(s)| ds = 0.

To see (ii), note that if tn → τ , then |k(tn, s)g(s) − k(τ, s)g(s)| → 0
and

|k(tn, s)g(s)− k(τ, s)g(s)| ≤ 2Φ(s)g(s) for every n.

Therefore, by the dominated convergence theorem, (ii) holds. Since
[0, 1] is compact, the limit in (ii) is uniform in τ . Hence Proposition 3.4
[10, p. 167] shows that T : C[0, 1] → C[0, 1] is compact. As f is
continuous, it follows that T : C[0, 1]→ C[0, 1] is compact.

Furthermore we see that T : K → K. Indeed, we have

|Tu(t)| ≤
∫ 1

0

|k(t, s)|g(s)f(u(s)) ds

so that

‖Tu‖ ≤
∫ 1

0

Φ(s)g(s)f(u(s)) ds.

Also

min
a≤t≤b

{Tu(t)} ≥ c

∫ 1

0

Φ(s)g(s)f(u(s)) ds.

Hence Tu ∈ K for every u ∈ K.
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We require some knowledge of the classical fixed point index for
compact maps, see for example [1] or [5] for further information.

Let K be a cone in a Banach space X. If Ω is a bounded open subset
of K (in the relative topology) we denote by Ω and ∂Ω the closure and
the boundary relative to K. When D is an open bounded subset of X
we write DK = D ∩K, an open subset of K.

Lemma 2.2. Let D be an open bounded set with DK �= ∅ and
DK �= K. Assume that T : DK → K is a compact map such that
x �= Tx for x ∈ ∂DK . Then the fixed point index iK(T,DK) has the
following properties.

(1) If there exists e ∈ K \ {0} such that x �= Tx+λe for all x ∈ ∂DK

and all λ > 0, then iK(T,DK) = 0.

(2) If ‖Tx‖ ≤ ‖x‖ for x ∈ ∂DK , then iK(T,DK) = 1.

(3) Let D1 be open in X with D1 ⊂ DK . If iK(T,DK) = 1 and
iK(T,D1

K) = 0, then T has a fixed point in DK \D1
K . The same result

holds if iK(T,DK) = 0 and iK(T,D1
K) = 1.

Let q : C[0, 1]→ R denote the continuous function q(u) = min{u(t) :
a ≤ t ≤ b}. For ρ > 0 we let Kρ := {x ∈ K : ‖x‖ < ρ} and following
Lan [7] we will use the set Ωρ := {u ∈ K : q(u) < cρ}.

Lemma 2.3. Ωρ defined above has the following properties.

(a) Ωρ is open relative to K.

(b) Kcρ ⊂ Ωρ ⊂ Kρ.

(c) u ∈ ∂Ωρ if and only if q(u) = cρ.

(d) If u ∈ ∂Ωρ, then cρ ≤ u(t) ≤ ρ for t ∈ [a, b].

We omit the simple proof as it is exactly similar to the one in [7].
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Notation. Let

fcρ,ρ = min{f(u)/ρ : u ∈ [cρ, ρ]},
f−ρ,ρ = max{f(u)/ρ : u ∈ [−ρ, ρ]},

M =
(
min

a≤t≤b

∫ b

a

k(t, s)g(s) ds
)−1

and

m =
(
max
0≤t≤1

∫ 1

0

|k(t, s)|g(s) ds
)−1

.

We now prove two lemmas which give conditions when the fixed point
index is either 0 or 1.

Lemma 2.4. Suppose
∫ b

a
Φ(s)g(s) ds > 0 and that

(*) fcρ,ρ ≥ Mc and x �= Tx for x ∈ ∂Ωρ.

Then iK(T,Ωρ) = 0.

Proof. Let e(t) ≡ 1 for t ∈ [0, 1]. Then e ∈ K. We prove that

x �= Tx+ λe for x ∈ ∂Ωρ and λ > 0.

In fact, if not, there exist x ∈ ∂Ωρ and λ > 0 such that x = Tx + λe.
By condition (∗) and (d) of Lemma 2.3, we have for t ∈ [a, b],

x(t) =
∫ 1

0

k(t, s)g(s)f(x(s)) ds+ λ ≥
∫ b

a

k(t, s)g(s)f(x(s)) ds+ λ

≥ cMρ

∫ b

a

k(t, s)g(s) ds+ λ ≥ cρ+ λ.

This implies that q(x) ≥ cρ + λ > cρ contradicting (c) of Lemma 2.3.
Hence (1) of Lemma 2.2 gives iK(T,Ωρ) = 0.

Lemma 2.5. Suppose max0≤t≤1

∫ 1

0
|k(t, s)|g(s) ds > 0 and that f

satisfies

(**) f−ρ,ρ ≤ m and x �= Tx for x ∈ ∂Kρ.



THREE-POINT BOUNDARY VALUE PROBLEMS 43

Then iK(T,Kρ) = 1.

Proof. By (**), for u ∈ ∂Kρ and t ∈ [0, 1], we have

|Tu(t)| =
∣∣∣∣
∫ 1

0

k(t, s)g(s)f(u(s)) ds
∣∣∣∣ ≤

∫ 1

0

|k(t, s)| g(s)f(u(s)) ds

≤ mρ

∫ 1

0

|k(t, s)| g(s) ds ≤ ρ = ‖u‖.

Therefore ‖Tu‖ ≤ ‖u‖ for u ∈ ∂Kρ. By (2) of Lemma 2.2, we have
iK(T,Kρ) = 1.

We now give our new result which asserts that Equation (2.1) has at
least two nonzero solutions which are positive on the subinterval [a, b].

Theorem 2.6. Assume that
∫ b

a
Φ(s)g(s) ds > 0 and one of the

following conditions holds:

(S1) There exist ρ1, ρ2, ρ3∈(0,∞) with ρ1 < cρ2 and ρ2 < ρ3 such that

f−ρ1,ρ1 ≤ m, fcρ2,ρ2 ≥ Mc,

x �= Tx for x ∈ ∂Ωρ2 , and f−ρ3,ρ3 ≤ m.

(S2) There exist ρ1, ρ2, ρ3 ∈ (0,∞) with ρ1 < ρ2 < cρ3 such that

fcρ1,ρ1 ≥ Mc, f−ρ2,ρ2 ≤ m,

x �= Tx for x ∈ ∂Kρ2 , and fcρ3,ρ3 ≥ Mc.

Then Equation (2.1) has two solutions in K each of which is positive
on [a, b]. Moreover, if in (S1), f−ρ1,ρ1 ≤ m is replaced by f−ρ1,ρ1 < m,
then Equation (2.1) has a third solution x0 ∈ Kρ1 .

Proof. Assume that (S1) holds. We show that either T has a fixed
point x1 in ∂Kρ1 or in Ωρ2 \ Kρ1 . If x �= Tx for x ∈ ∂Kρ1 ∪ ∂Kρ3 ,
by Lemmas 2.4 and 2.5, we have iK(T,Kρ1) = 1, iK(T,Ωρ2) = 0 and
iK(T,Kρ3) = 1. By (b) of Lemma 2.3, we have Kρ1 ⊂ Kcρ2 ⊂ Ωρ2
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since ρ1 < cρ2. It follows from (3) of Lemma 2.2 that T has a fixed
point x1 in Ωρ2 \Kρ1 . Similarly, T has a fixed point x2 in Kρ3 \ Ωρ2 .
The proof is similar when (S2) holds.

Remark 2.7. Note that the third solution x0 ∈ Kρ1 might be zero.
The other solutions are not because their norms are bounded away
from zero. Although the statement and proof is almost identical to the
similar result in [7] which deals with positive solutions, our new result
allows solutions that are only positive on a subinterval and may change
sign, and indeed this happens in the differential equations we consider
below.

Theorem 2.6 can be generalized so as to assert the existence of many
solutions, similar to a result of [7]. We could state such results for the
existence of many solutions below but we give only the simpler results,
leaving such statements to the reader.

Notation. Let

f0 = lim sup
u→0

f(u)
|u| , f0 = lim inf

u→0

f(u)
|u| ,

f∞ = lim sup
u→∞

f(u)
u

and f∞ = lim inf
u→∞

f(u)
u

.

As a special case of Theorem 2.6 we have the following result.

Corollary 2.8. Assume that
∫ b

a
Φ(s)g(s) ds > 0 and there exists

ρ > 0 such that one of the following conditions holds.

(E1) 0 ≤ f0 < m, fcρ,ρ ≥ Mc, x �= Tx for x ∈ ∂Ωρ, and 0 ≤ f∞ < m.

(E2) M<f0≤∞, f−ρ,ρ≤ m, x �= Tx for x ∈ ∂Kρ, and M<f∞ ≤ ∞.

Then Equation (2.1) has two nonzero solutions in K.

Proof. We show that (E1) implies (S1). In fact, 0 ≤ f0 < m implies
that there exists ρ1 ∈ (0, cρ) such that f−ρ1,ρ1 < m. Let τ ∈ (f∞,m).
Then there exists r > ρ such that f(u) ≤ τu for u ∈ [r,∞) since
0 ≤ f∞ < m.
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Let β = max{f(u) : 0 ≤ u ≤ r} and ρ3 > β/(m− τ ). Then we have

f(u) ≤ τu+ β ≤ τρ3 + β < mρ3 for u ∈ [0, ρ3].

This implies f−ρ3,ρ3 < m, hence (S1) holds. Similarly, (E2) implies
(S2).

By a similar argument to that of Theorem 2.6, we obtain the following
new results on existence of at least one nonzero solution of Equation
(2.1).

Theorem 2.9. Assume that
∫ b

a
Φ(s)g(s) ds > 0 and one of the

following conditions holds.

(H1) There exist ρ1, ρ2 ∈ (0,∞) with ρ1 < cρ2 such that

f−ρ1,ρ1 ≤ m and fcρ2,ρ2 ≥ Mc.

(H2) There exist ρ1, ρ2 ∈ (0,∞) with ρ1 < ρ2 such that

fcρ1,ρ1 ≥ Mc and f−ρ2,ρ2 ≤ m.

Then Equation (2.1) has a nonzero solution in K.

Theorem 2.9 generalizes Theorem 2.2 in [8] by allowing solutions that
change sign.

Remark 2.10. We shall see below that, for certain values of the
parameter α, the kernel k(t, s) is negative for t in some interval [a, b],
for all s. In this case, assuming g and f are positive, we can show
that nonzero solutions exist that are negative on [a, b]. Indeed, u is a
solution of

u(t) =
∫ 1

0

k(t, s)g(s)f(u(s)) ds

if and only if v := −u is a solution of

v(t) =
∫ 1

0

k̃(t, s)g(s)f̃(v(s)) ds ≡ T̃ v(t)
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where k̃ = −k and f̃(v) = f(−v). Moreover v is positive on [a, b] if
and only if u is negative on [a, b]. Hence we can obtain results, exactly
similar to the ones above, for the existence of solutions that are negative
on [a, b]. We do not state the obvious theorems thus obtained.

3. Multiple nonzero solutions of problem (1.2a). We investi-
gate the BVP

(3.1) u′′ + g(t)f(u) = 0, a.e. on [0, 1],

with boundary conditions

(3.2) u′(0) = 0, αu(η) = u(1), 0 < η < 1.

By a solution of this BVP we will mean a solution of the corresponding
Hammerstein integral equation

(3.3) u(t) =
∫ 1

0

k(t, s)g(s)f(u(s)) ds.

The solution of u′′+y = 0 with the BC’s (3.2) is (by routine integration)

u(t) =
1

1− α

∫ 1

0

(1−s)y(s) ds− α

1− α

∫ η

0

(η−s)y(s) ds−
∫ t

0

(t−s)y(s) ds.

Thus the kernel [Green’s function] of (3.3) is

k(t, s) =
1

1− α
(1− s)−

{ α

1− α
(η − s) s ≤ η

0 s > η
−

{
t− s s ≤ t

0 s > t.

We shall study separately the cases α < 0 and α > 1. The existence
of positive solutions when α = 0 has been studied in [8], and when
0 < α < 1 in [11]. α = 1 is the resonance case and cannot be dealt
with by the methods here, but existence in this case was studied in [2].

3.1 The case α < 0. To simplify the calculations we write −β in
place of α, so that β > 0.
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We have to exhibit Φ(s), a subinterval [a, b] ⊂ [0, 1] and a constant
c < 1 such that

|k(t, s)| ≤ Φ(s) for every t, s ∈ [0, 1],
k(t, s) ≥ cΦ(s) for every s ∈ [0, 1], t ∈ [a, b].

We show that for these BC’s we can take Φ(s) = (1− s).

Upper bounds.

Case 1. s ≤ η. If s > t then k(t, s) ≥ 0 and

k(t, s) =
1− s

1 + β
+

β

1 + β
(η − s) ≤ 1− s+ β(1− s)

1 + β
= (1− s).

If s ≤ t then

k(t, s) =
1− s

1 + β
+

β

1 + β
(η − s)− (t− s) =

1 + βη − t(1 + β)
1 + β

.

If t ≤ (1 + βη)/(1 + β) then k(t, s) ≥ 0 and

k(t, s) =
1 + βη − t(1 + β)

1 + β
≤ 1 + βη − s(1 + β)

1 + β
≤ (1− s).

If t > (1 + βη)/(1 + β) then k(t, s) ≤ 0 and

− k(t, s) =
−1− βη + t(1 + β)

1 + β
≤ −1− βη + (1 + β)

1 + β

=
β(1− η)
1 + β

≤ β(1− s)
1 + β

.

Case 2. s > η. If s > t then

k(t, s) =
(1− s)
1 + β

≥ 0
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and we are done. If s ≤ t then

k(t, s) =
1 + βs− t(1 + β)

1 + β
.

If t ≤ (1 + βs)/(1 + β) then k(t, s) ≥ 0 and

k(t, s) ≤ 1 + βs− s(1 + β)
1 + β

=
(1− s)
1 + β

.

If t > (1 + βs)/(1 + β) then k(t, s) ≤ 0 and

− k(t, s) =
−1− βs+ t(1 + β)

1 + β
≤ −1− βs+ (1 + β)

1 + β
=

β(1− s)
1 + β

.

Lower bounds. We show that we may take arbitrary [a, b] ⊂ [0, η]

Case 1. s ≤ η. If s > t then

k(t, s) =
1− s

1 + β
+

β

1 + β
(η − s) ≥ (1− s)

1 + β
.

If s ≤ t, since t ≤ b ≤ η we have

k(t, s) ≥ 1− s

1 + β
+

β

1 + β
(η − s)− (η − s) =

1− η

1 + β
≥ 1− η

1 + β
(1− s).

Case 2. s > η. If s > t then k(t, s) = (1− s)/(1 + β) and we are
done. Since we take b ≤ η the case s ≤ t does not occur.

The conclusion is that we may take c = (1− η)/(1 + β).

Theorem 3.1. Let a, b ∈ [0, η] and suppose that
∫ b

a
g(s) ds > 0. Let

c be as given above. Let m,M be as defined previously. Then for α < 0
the BVP (3.1), (3.2) has at least one nonzero solution, positive on [a, b],
if either

(h1) 0 ≤ f0 < m and M < f∞ ≤ ∞ or
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(h2) 0 ≤ f∞ < m and M < f0 ≤ ∞, and has two nonzero solutions,
positive on [a, b], if there is ρ > 0 such that either

(E1) 0 ≤ f0 < m, fcρ,ρ ≥ cM , x �= Tx for x ∈ ∂Ωρ, and 0 ≤ f∞ < m,
or

(E2) M<f0≤∞, f−ρ,ρ≤m, x �= Tx for x∈∂Kρ, and M<f∞≤∞.

We give a simple example to illustrate the theorem.

Example 3.2. Set g ≡ 1 and f ≡ 2, in this case f∞ = 0, f0 = ∞.
The solution of (3.1) with (3.2) is u(t) = −t2+(1 + βη2)/(1 + β). This
is a solution that is positive on an interval containing (0, η] but negative
at t = 1.

3.2 The case α > 1. For these BC’s the kernel k is negative on
an interval so we apply Remark 2.10 and consider −k in place of k.
Thus we have to find Φ such that |k(t, s)| ≤ Φ(s) for every t, s ∈ [0, 1]
and show that there exists [a, b] ⊂ [0, 1] and a constant c such that
−k(t, s) ≥ cΦ(s) for every s ∈ [0, 1] and t ∈ [a, b]. In fact we show that
we can take

Φ(s) =
α

α− 1 (1− s).

Upper bounds.

Case 1. s ≤ η. If s > t then

− k(t, s) =
1− s

α− 1 − α

α− 1 (η − s) =
1− s− αη + αs

α− 1 .

If s ≥ (−1 + αη)/(α− 1) (this occurs in particular when αη < 1 )
−k(t, s) ≥ 0 and

− k(t, s) ≤ 1− s− αη + αη

α− 1 =
(1− s)
α− 1 .

If s < (−1 + αη)/(α− 1) then k(t, s) > 0 and

k(t, s) =
−1 + s+ αη − αs

α− 1 ≤ −1 + s+ α− αs

α− 1 = (1− s).
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If s ≤ t then

− k(t, s) =
1− s

α− 1 − α

α− 1 (η − s) + (t− s) =
1− αη + αt− t

α− 1 .

If t ≥ (−1 + αη)/(α− 1) then −k(t, s) ≥ 0 and

− k(t, s) ≤ 1− αη + α− 1
α− 1 ≤ α(1− s)

α− 1 .

If t < (−1 + αη)/(α− 1) then k(t, s) > 0 and

k(t, s) =
−1 + αη − αt+ t

α− 1 ≤ −1 + α− αs+ s

α− 1 = (1− s)

Case 2. s > η. If s > t then

0 ≤ − k(t, s) =
(1− s)
α− 1

and we are done.

If s ≤ t then

0 ≤ − k(t, s) =
(1− s)
α− 1 + (t− s) ≤ α(1− s)

α− 1 .

Lower bounds. We will show that we may take a = η and b ∈ (η, 1]
which will yield a solution that is negative on [η, b]. But, if also αη < 1,
we may take an arbitrary [a, b] ⊂ [0, 1]. In particular this means that
there exists a solution which is negative on the whole interval [0, 1]
when α > 1 and αη < 1.

Case 1. s ≤ η. If s > t then

− k(t, s) =
1− s− αη + αs

α− 1 ≥ 1− s− αη + αηs

α− 1 = (1− αη)
(1− s)
α− 1 .

If αη < 1 we may take an arbitrary a, but if αη > 1 we would have a
problem. However, if αη > 1 we choose a ≥ η so that this case does
not occur.
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If s ≤ t and αη < 1 then

− k(t, s) ≥ 1− αη + αs− s

α− 1 ≥ (1− αη)
(1− s)
α− 1 .

If s ≤ t and αη > 1, as we choose a ≥ η we have

− k(t, s) =
1− αη + αt− t

α− 1 ≥ 1− αη + αη − η

α− 1 ≥ (1− η)
(1− s)
α− 1 .

Case 2. s > η. If s > t then

− k(t, s) =
(1− s)
α− 1

and we are done. If s ≤ t then

− k(t, s) =
1 + αt− t− αs

α− 1 ≥ 1 + αs− s− αs

α− 1 =
(1− s)
α− 1 .

The conclusion is that we may take either a = η, b ∈ (η, 1] and
c = (1 − η)/α or, when αη < 1, we may take a, b arbitrary and
c = (1− αη)/α. Thus we can state the following results:

Theorem 3.3. Let α > 1, let a = η, b ∈ (η, 1] (or a, b arbitrarily
chosen in [0, 1] if αη < 1 ). Suppose that

∫ b

a
g(s) ds > 0. Let c be as

given above and let m,M be as defined previously. Then the BVP (3.1),
(3.2) has at least one nonzero solution, negative on [a, b], if either

(h1) 0 ≤ f0 < m and M < f∞ ≤ ∞ or

(h2) 0 ≤ f∞ < m and M < f0 ≤ ∞, and has two nonzero solutions,
negative on [a, b], if there is ρ > 0 such that either

(E1) 0 ≤ f0 < m, fcρ,ρ ≥ cM , x �= Tx for x ∈ ∂Ωρ and 0 ≤ f∞ < m,
or

(E2) M < f0 ≤ ∞, f−ρ,ρ ≤ m, x �= Tx for x ∈ ∂Kρ and M < f∞ ≤
∞.

We illustrate the theorem with the following simple example.
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Example 3.4. Let α > 1, and take g ≡ 1, f ≡ 2. The solution
of the BVP (3.1), (3.2) is u(t) = (αη2 − 1)/(α − 1) − t2. If αη < 1
this solution is negative on all of [0, 1]. When αη2 > 1 the solution
is negative on an interval, for example, when η = 1/2 and α = 5 the
solution is u(t) = 1/16 − t2. By taking α very large, the interval on
which the solution is negative approaches (η, 1], hence our choice of
[a, b] is optimal in giving the largest interval on which the solution is
negative.

4. Multiple nonzero solutions of problem (1.2b). We now
investigate the second BVP

(4.1) u′′ + g(t)f(u) = 0, a.e on [0, 1],

with boundary conditions

(4.2) u(0) = 0, αu(η) = u(1), 0 < η < 1.

The kernel in this case is

k(t, s) =
1

1− αη
t(1− s)−

{ αt

1− αη
(η − s) s ≤ η

0 s > η
−

{
t− s s ≤ t

0 s > t.

4.1 The case αη < 0. Again we write β = −α > 0. We show that
we may take

Φ(s) = (1 + β)
s(1− s)
1 + βη

.

Upper bounds.

Case 1. s ≤ η. If s > t then k(t, s) ≥ 0 and

k(t, s) =
t(1− s) + βt(η − s)

1 + βη
≤ s(1− s) + βs(1− s)

1 + βη
= (1+β)

s(1− s)
1 + βη

.

If s ≤ t,

k(t, s) =
t(1− s)
1 + βη

+
βt

1 + βη
(η − s)− (t− s) =

−st− βts+ s+ βηs

1 + βη
,
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and k(s, t) is negative for t > (1 + βη)/(1 + β) and s �= 0; note also
that (1 + βη)/(1 + β) > η.

For k(t, s) ≥ 0 we have

k(t, s) =
−st− βts+ s+ βηs

1 + βη
≤ s(1− s) + βs(η − s)

1 + βη

≤ (1 + β)
s(1− s)
1 + βη

,

and for k(t, s) < 0 we have

− k(t, s) =
st+ βts− s− βηs

1 + βη
≤ βs(1− η)

1 + βη
≤ β

s(1− s)
1 + βη

.

Case 2. s > η. If s > t then k(t, s) ≥ 0

k(t, s) =
t(1− s)
1 + βη

≤ s(1− s)
1 + βη

.

If s ≤ t then

k(t, s) =
−ts− βηt+ s+ βηs

1 + βη

and k(s, t) is negative for t > (s(1 + βη))/(s + βη). When k(t, s) ≥ 0
we have

k(t, s) =
−ts− βηt+ s+ βηs

1 + βη
≤ −s2 − βηs+ s+ βηs

1 + βη
=

s(1− s)
1 + βη

,

and when k(t, s) < 0 we have

− k(t, s) =
ts+ βηt− s− βηs

1 + βη
≤ βη(1− s)

1 + βη
≤ β

s(1− s)
1 + βη

.

Lower bounds. We show that we may take arbitrary [a, b] ⊂ (0, η].

Case 1. s ≤ η. If s > t then

k(t, s) =
t− st+ βtη − βts

1 + βη
≥ t(1− s)
1 + βη

≥ a(1− s)
1 + βη

≥ a
s(1− s)
1 + βη

.
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If s ≤ t and t ≤ b ≤ η,

k(t, s) ≥ −sη − βηs+ s+ βηs

1 + βη
=

s(1− η)
1 + βη

≥ (1− η)
s(1− s)
1 + βη

.

Case 2. s > η. If s > t then

k(t, s) =
t(1− s)
1 + βη

≥ a(1− s)
1 + βη

≥ a
s(1− s)
1 + βη

.

The case s ≤ t does not occur since we take b ≤ η. Therefore we may
take

c = min{a, 1− η}/(1 + β).

Now it is clear that a theorem exactly similar to Theorem 3.1 holds.
We leave the obvious statement to the reader. The following simple
example illustrates the unstated result.

Example 4.1. Set g ≡ 1 and f ≡ 2. The solution of (4.1) with (4.2)
is

u(t) =
1 + βη2

1 + βη
t− t2.

Thus u(t) is positive on [0, η] but u(1) < 0.

4.2 The case αη > 1. For these BC’s the kernel k is negative on
an interval so we apply Remark 2.10. We show that for these BC’s we
may take

Φ(s) = α
s(1− s)
αη − 1 .

Upper bounds.

Case 1. s ≤ η. If s > t then

− k(t, s) =
t(1− s− αη + αs)

αη − 1 ≤ t(1− s)
αη − 1 ≤ s(1− s)

αη − 1 .
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Also

k(t, s) =
t(−1 + s+ αη − αs)

αη − 1 ≤ t(−1 + s+ α− αs)
αη − 1 ≤ (α−1) s(1− s)

αη − 1 .

If s ≤ t then

− k(t, s) =
−st+ αts− αηs+ s

αη − 1 =
s(−t+ αt− αη + 1)

αη − 1 .

When t ≥ (αη − 1)/(α− 1) then −k(s, t) ≥ 0 and

− k(t, s) ≤ s(α− αη)
αη − 1 ≤ α

s(1− s)
αη − 1 .

If t < (αη − 1)/(α− 1) then k(s, t) ≥ 0 and

− k(t, s) ≤ s(s−1 + α(η−s))
αη − 1 ≤ s(s−1 + α(1−s))

αη − 1 ≤ (α− 1) s(1− s)
αη − 1 .

Case 2. s > η. If s > t then −k(t, s) ≥ 0 and

− k(t, s) =
t(1− s)
αη − 1 ≤ s(1− s)

αη − 1 .

If s ≤ t then −k(t, s) ≥ 0 and

− k(t, s) =
−ts+ αηt− αηs+ s

αη − 1 ≤ −s+ αη − αηs+ s

αη − 1 =
αη(1− s)
αη − 1

< α
s(1− s)
αη − 1 .

Lower bounds. We show that we may take an arbitrary [a, b] ⊂
[η, 1].

Case 1. s ≤ η. Since we take a ≥ η we only have the case s ≤ t and
then

− k(t, s) =
s(−t+ αt− αη + 1)

αη − 1 .
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Since η > αη − 1/α− 1 we have −k(t, s) ≥ 0 and

− k(t, s) ≥ s(−η + αη − αη + 1)
αη − 1 ≥ (1− η)

s(1− s)
αη − 1 .

Case 2. s > η. If s > t then

− k(t, s) =
t(1− s)
αη − 1 ≥ a(1− s)

αη − 1 ≥ a
s(1− s)
αη − 1 .

If s ≤ t then

− k(t, s) =
−ts+ αηt− αηs+ s

αη − 1 ≥ −s2 + αηs− αηs+ s

αη − 1 =
s(1− s)
αη − 1 .

Thus we may take c = min{a, 1− η}/α. A theorem exactly similar to
Theorem 3.3 holds. We omit its obvious statement.
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