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ON INTEGRAL EQUATIONS ARISING
IN THE FIRST-PASSAGE PROBLEM

FOR BROWNIAN MOTION

GORAN PESKIR

ABSTRACT. Let (Bt)t≥0 be a standard Brownian motion
started at zero, let g : (0,∞) → R be a continuous function
satisfying g(0+) ≥ 0, let

τ = inf {t > 0 | Bt ≥ g(t)}

be the first-passage time of B over g, and let F denote the
distribution function of τ . Then the following system of
integral equations is satisfied:

tn/2Hn

(
g(t)√

t

)
=

∫ t

0

(t − s)n/2Hn

(
g(t) − g(s)√

t − s

)
F (ds)

for t > 0 and n = −1, 0, 1 . . . , where Hn(x) =
∫ ∞

x
Hn−1(z) dz

for n ≥ 0 and H−1(x) = ϕ(x) = (1/
√

2π )e−x2/2 is the
standard normal density. These equations are derived from a
single ‘master equation’ which may be viewed as a Chapman-
Kolmogorov equation of Volterra type. The initial idea in the
derivation of the master equation goes back to Schrödinger
[23].

1. Introduction. Let (Bt)t≥0 be a standard Brownian motion
started at zero, let g : (0,∞) → R be a continuous function satisfying
g(0+) ≥ 0, let

(1.1) τ = inf {t > 0 | Bt ≥ g(t)}
Research supported by the Danish National Research Foundation.
2000 AMS Mathematics Subject Classification. Primary 60J65, 45D05, 60J60.

Secondary 45G15, 45G10, 45Q05, 45K05.
Key words and phrases. The (inverse) first-passage problem, Brownian motion,

a curve (nonlinear) boundary, a first-passage time, Markov process, the Chapman-
Kolmogorov equation, Volterra integral equation (of the first and second kind), a
system of nonlinear integral equations.

Received by the editors on September 5, 2002, and in revised form on November
20, 2002.

Copyright c©2002 Rocky Mountain Mathematics Consortium

397



398 G. PESKIR

be the first-passage time of B over g, and let F denote the distribution
function of τ .

The first-passage problem seeks to determine F when g is given. The
inverse first-passage problem seeks to determine g when F is given.
Both the process B and the boundary g in these formulations may be
more general, and our choice of Brownian motion is primarily motivated
by the tractability of the exposition. The facts to be presented below
can be extended to more general Markov processes and boundaries
(such as two-sided ones) and the time may also be discrete.

The first-passage problem has a long history and a large number of
applications. Yet explicit solutions to the first-passage problem (for
Brownian motion) are known only in a limited number of special cases
including linear or quadratic g. The law of τ is also known for a
square-root boundary g but only in the form of a Laplace transform
(which appears intractable to inversion). The inverse problem seems
even harder. For example, it is not known if there exists a boundary g
for which τ is exponentially distributed, cf. [20].

One way to tackle the problem is to derive an equation which links
g and F . Motivated by this fact many authors have studied integral
equations in connection with the first-passage problem (see e.g. [23,
26, 11, 24, 19, 9, 22, 6]) under various hypotheses and levels of
rigor. The main aim of this paper is to present a unifying approach to
the integral equations arising in the first-passage problem that is done
in a rigorous fashion and with minimal tools.

The approach naturally leads to a system of integral equations for
g and F (Section 6) in which the first two equations contain the
previously known ones (Section 5). These equations are derived from a
single master equation (Section 3) that can be viewed as a Chapman-
Kolmogorov equation of Volterra type (Section 2). The initial idea in the
derivation of the master equation goes back to Schrödinger [23]. The
master equation cannot be reduced to a partial differential equation of
forward or backward type, cf. [14]. A key technical detail needed to
connect the second equation of the system to known methods leads to
a simple proof of the fact that F has a continuous density when g is
continuously differentiable (Section 4). The problem of finding F when
g is given is tackled using classic theory of linear integral equations
(Section 7). The inverse problem is reduced to solving a system of
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nonlinear Volterra integral equations of the second kind (Section 8).
General theory of such systems seems far from being complete at
present.

2. Chapman-Kolmogorov equations of Volterra type. It will
be convenient to divide our discussion into two parts depending on if
the time set T of the Markov process (Xt)t∈T is either discrete (finite
or countable) or continuous (uncountable). The state space S of the
process may be assumed to be a subset of R.

1. Discrete time (and space). Recall that (Xn)n≥0 is a (time-
homogeneous) Markov process if the following condition is satisfied:

(2.1) Ex(Y ◦ θk | Fk) = EXk
(Y )

for all (bounded) measurable Y and all k and x. (Recall that X0 = x
under Px and that Xn ◦ θk = Xn+k.) Then the Chapman-Kolmogorov
equation, cf. [4, 14], holds:

(2.2) Px(Xn = z) =
∑

y

Py(Xn−k = z)Px(Xk = y)

for x, z in S and 1 < k < n given and fixed, which is seen as follows

(2.3)

Px(Xn = z) =
∑

y

Px(Xn = z,Xk = y)

=
∑

y

Ex(I(Xk = y)Ex(I(Xn−k = z) ◦ θk | Fk))

=
∑

y

Ex(I(Xk = y)EXk
(I(Xn−k = z)))

=
∑

y

Px(Xk = y)Py(Xn−k = z)

upon using (2.1) with Y = I(Xn−k = z).

A geometric interpretation of the Chapman-Kolmogorov equation
(2.2) is shown in Figure 1 (note that the vertical line passing through
k is given and fixed). Although for (2.2) we only considered the time-
homogeneous Markov property (2.1) for simplicity, it should be noted
that a more general Markov process creates essentially the same picture.
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FIGURE 1. A symbolic drawing of the Chapman-Kolmogorov equation (2.2).
The arrows indicate a time evolution of the sample paths of the process. The
vertical line at k represents the state space of the process. The equations (2.11)
have a similar interpretation.

Imagine now on Figure 1 that the vertical line passing through k
begins to move continuously and eventually transforms into a new curve
still separating x from z as shown in Figure 2. The question then arises
naturally how the Chapman-Kolmogorov equation (2.2) extends to this
case.

An evident answer to this question is stated in Theorem 2.1. This
fact is then extended to the case of continuous time and space in
Theorem 2.2 below.

Theorem 2.1. Let (Xn)n≥0 be a Markov process (taking values in a
countable set S), let x and z be given and fixed in S, let g : N → S be
a function separating x and z relative to X (i.e. if X0 = x and Xn = z
for some n ≥ 1, then there exists 1 ≤ k ≤ n such that Xk = g(k)) and
let

(2.4) τ = inf {k ≥ 1 | Xk = g(k)}
be the first-passage time of X over g. Then the following sum equation
holds

(2.5) Px(Xn = z) =
n∑

k=1

P (Xn = z | Xk = g(k))Px(τ = k).
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FIGURE 2. A symbolic drawing of the integral equation (2.5) (2.6). The
arrows indicate a time evolution of the sample paths of the process. The
vertical line at k has been transformed into a time-dependent boundary g.
The equations (2.16) (2.17) have a similar interpretation.

Moreover, if the Markov process X is time-homogeneous, then (2.5)
reads as follows

(2.6) Px(Xn = z) =
n∑

k=1

Pg(k)(Xn−k = z)Px(τ = k).

Proof. Since g separates x and z relative to X, we have

(2.7) Px(Xn = z) =
n∑

k=1

Px(Xn = z, τ = k).

On the other hand, by the Markov property

(2.8) Px(Xn = z | Fk) = PXk
(Xn = z)

and the fact that {τ = k} ∈ Fk, we easily find

(2.9) Px(Xn = z, τ = k) = P (Xn = z | Xk = g(k))Px(τ = k).

Inserting this into (2.7) we obtain (2.5). The time-homogeneous sim-
plification (2.6) follows then immediately, and the proof is complete.
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The equations (2.5) and (2.6) extend to the case when the state space
S is uncountable. In this case the relation ‘= z’ in (2.5) and (2.6) can
be replaced by the relation ‘∈ G’ where G is any measurable set that is
‘separated’ from the initial point x relative to X in the sense described
above. The extensions of (2.5) and (2.6) obtained in this way will be
omitted.

2. Continuous time (and space). A passage from the discrete to
the continuous case introduces some technical complications (regular
conditional probabilities) which we set aside in the sequel.

Recall that (Xt)t≥0 is a Markov process if the following condition is
satisfied

(2.10) P (Xt ∈ G | Fs) = P (Xt ∈ G | Xs)

for all measurable G and all s < t. Then the Chapman-Kolmogorov
equation, cf. [4, 14], holds:

(2.11) P (t1, x, t3, G) =
∫

S

P (t2, y, t3, G)P (t1, x, t2, dy)

where P (ti, x, tj , G) = P (Xtj
∈ G | Xti

= x) and t1 < t2 < t3 are given
and fixed.

Kolmogorov [14] calls (2.11) the ‘fundamental equation,’ notes that
(under a desired Markovian interpretation) it is satisfied if the state
space S is finite or countable (the ‘total probability law’), and in the
case when S is uncountable takes it as a ‘new axiom.’

If Xtj
under Xti

= x has a density function f satisfying

(2.12) P (ti, x, tj , G) =
∫

G

f(ti, x, tj , z) dz

for all measurable G, then the equations (2.11) reduce to

(2.13) f(t1, x, t3, z) =
∫

S

f(t1, x, t2, y)f(t2, y, t3, z) dy

for x and z in S and t1 < t2 < t3 given and fixed.

Kolmogorov [15] states that this integral equation was studied by
Smoluchowski [25], recalls that he proved in [14] that under some ad-
ditional conditions f satisfies certain differential equations of parabolic
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type (the forward and the backward equation), and in a footnote ac-
knowledges that these differential equations were introduced by Fokker
[10] and Planck [21] independently of the Smoluchowski integral equa-
tion. (The Smoluchowski integral equation [25] is a time homogeneous
version of (2.13). The Bachelier-Einstein equation, cf. [2, 8]:

(2.14) f(t+ s, z) =
∫

S

f(t, z − x)f(s, x) dx

is a space-time homogeneous version of the Smoluchowski equation.)

Without going into further details on these facts, we will only note
that the interpretation of the Chapman-Kolmogorov equation (2.2)
described above by means of Figure 1 carries over to the general case
of equation (2.11), and the same is true for the question raised above
by means of Figure 2. The following theorem extends the result of
Theorem 2.1 on this matter.

Theorem 2.2 (cf. Schrödinger [23] and Fortet [11, p. 217]). Let
(Xt)t≥0 be a strong Markov process with continuous sample paths
started at x, let g : (0,∞) → R be a continuous function satisfying
g(0+) ≥ x, let

(2.15) τ = inf {t > 0 | Xt ≥ g(t)}

be the first-passage time of X over g, and let F = Fx denote the
distribution function of τ .

Then the following integral equation holds

(2.16) Px(Xt ∈ G) =
∫ t

0

P (Xt ∈ G | Xs = g(s))F (ds)

for each measurable set G contained in [g(t),∞).

Moreover, if the Markov process X is time-homogeneous, then (2.16)
reads as follows

(2.17) Px(Xt ∈ G) =
∫ t

0

Pg(s)(Xt−s ∈ G)F (ds)

for each measurable set G contained in [g(t),∞).
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Proof. The key argument in the proof is to apply a strong Markov
property at time τ . This can be done informally (with G ⊆ [g(t),∞)
given and fixed) as follows

(2.18)

Px(Xt ∈ G) = Px(Xt ∈ G, τ ≤ t)
= Ex(I(τ ≤ t)Ex(I(Xt ∈ G) | τ ))

=
∫ t

0

Ex(I(Xt ∈ G) | τ = s)F (ds)

=
∫ t

0

P (Xt ∈ G | Xs = g(s))F (ds)

which is (2.16). In the last identity above we used that for s ≤ t we
have

(2.19) Ex(I(Xt ∈ G) | τ = s) = P (Xt ∈ G | Xs = g(s)),

which formally requires a precise argument. This is what we do in the
rest of the proof.

For this, recall that (Zt)t≥0 is a strong Markov process if the following
condition is satisfied

(2.20) Ez(Y ◦ θσ | Fσ) = EZσ
(Y )

for all (bounded) measurable Y and all stopping times σ. It turns out,
however, that the process Z has to be chosen carefully. This is due to
the fact that the time t on the left-hand side of (2.19) is deterministic.
For example, by taking Y = f(Xt−τ ) on {τ ≤ t} we fail to achieve
Y ◦ θτ = f(Xt), since Xβ ◦ θσ = Xσ+β◦σ whenever σ ≤ β.
We thus choose Zt = (t,Xt) and define

σ = inf {t > 0 | Zt /∈ C}(2.21)
β = inf {t > 0 | Zt /∈ C ∪D}(2.22)

where C = {(s, y) | 0 < s < t, y < g(s)} and D = {(s, y) | 0 < s <
t, y ≥ g(s)} so that C ∪D = {(s, y) | 0 < s < t}. Thus β = t under
P(0,x), i.e., Px and, moreover, β = σ + β ◦ θσ since both σ and β are
hitting times of the process Z to closed (open) sets, the second set
being contained in the first one, so that σ ≤ β.
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Setting F (s, y) = 1G(y) and Y = F (Zβ), we thus see that Y ◦ θσ =
F (Zβ) ◦ θσ = F (Zσ+β◦σ) = F (Zβ) = Y , which by means of (2.20)
implies that

(2.23) Ez(F (Zβ) | Fσ) = EZσ
(F (Zβ)).

In the special case z = (0, x), this reads

(2.24) E(0,x)(I(Xt ∈ G) | Fσ) = E(σ,g(σ))(I(Xt ∈ G))
where Fσ on the left-hand side can be replaced by σ since the right-hand
side defines a measurable function of σ. It then follows immediately
from such modified (2.24) that

(2.25) E(0,x)(I(Xt ∈ G) | σ = s) = E(s,g(s))(I(Xt ∈ G))
and, since σ = τ ∧ t, we see that (2.25) implies (2.19) for s ≤ t. Thus
the final step in (2.18) is justified and therefore (2.16) is proved as well.
The time-homogeneous simplification (2.17) is a direct consequence of
(2.16), and the proof of the theorem is complete.

The proof of Theorem 2.2 just presented is not the only possible
one. The proof of Theorem 3.2 given below can easily be transformed
into a proof of Theorem 2.2. Yet another quick proof can be given by
applying the strong Markov property of the process (t,Xt) to establish
(2.24) (multiplied by I(τ ≤ t) on both sides) with σ = τ ∧ t on the
left-hand side and σ = τ on the right-hand side. The right-hand side
then easily transforms to the right-hand side of (2.16), thus proving the
latter.

In order to examine the scope of the equations (2.16) in a clearer
manner, we will leave the realm of a general Markov process in the
sequel and consider the case of a standard Brownian motion instead.
The facts and methodology presented below extend to the case of more
general Markov processes, or boundaries, although some of the formulas
may be less explicit.

3. The master equation. The following notation will be used
throughout

(3.1) ϕ(x) =
1√
2π
e−x2/2, Φ(x) =

∫ x

−∞
ϕ(z) dz, Ψ(x) = 1− Φ(x)



406 G. PESKIR

for x ∈ R. We begin this section by recalling the result of Theorem 2.2.
Thus, let g : (0,∞) → R be a continuous function satisfying g(0+) ≥ 0,
and let F denote the distribution function of τ from (2.15).

If specialized to the case of standard Brownian motion (Bt)t≥0 started
at zero, the equation (2.17) with G = [g(t),∞) reads as follows

(3.2) Ψ
(
g(t)√
t

)
=

∫ t

0

Ψ
(
g(t)− g(s)√

t− s
)
F (ds)

where the scaling property Bt ∼ √
tB1 of B is used, as well as that

(z+Bt)t≥0 defines a standard Brownian motion started at z whenever
z ∈ R.

1. Derivation. It turns out that the equation (3.2) is just one in
the sequence of equations that can be derived from a single master
equation. This master equation can be obtained by taking G = [z,∞)
in (2.17) with z ≥ g(t). We now present yet another proof of this
derivation.

Theorem 3.1 (The master equation). Let (Bt)t≥0 be a standard
Brownian motion started at zero, let g : (0,∞) → R be a continuous
function satisfying g(0+) ≥ 0, let

(3.3) τ = inf {t > 0 | Bt ≥ g(t)}
be the first-passage time of B over g, and let F denote the distribution
function of τ .

Then the following integral equation holds

(3.4) Ψ
(
z√
t

)
=

∫ t

0

Ψ
(
z − g(s)√
t− s

)
F (ds)

for all z ≥ g(t) where t > 0.

Proof. We will make use of the strong Markov property of the process
Zt = (t, Bt) at time τ . This makes the present argument close to the
argument used in the proof of Theorem 2.2.

For each t > 0, let z(t) from [g(t),∞) be given and fixed. Setting
f(t, x) = I(x ≥ z(t)) and Y =

∫ ∞
0
e−λsf(Zs) ds by the strong Markov
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property (of the process Z) given in (2.20) with σ = τ , and the scaling
property of B, we find∫ ∞

0

e−λtP0(Bt ≥ z(t)) dt

= E0

( ∫ ∞

0

e−λtf(Zt) dt
)

= E0

(
E0

( ∫ ∞

τ

e−λtf(Zt) dt | Fτ

))

= E0

(
E0

( ∫ ∞

0

e−λ(τ+s)f(Zτ+s) ds | Fτ

))

= E0(e−λτE0(Y ◦ θτ | Fτ

))
= E0(e−λτEZτ

(Y ))

=
∫ ∞

0

e−λtE(t,g(t))

( ∫ ∞

0

e−λsf(Zs) ds
)
F (dt)(3.5)

=
∫ ∞

0

e−λt

∫ ∞

0

e−λsP0(g(t) +Bs ≥ z(t+ s)) dsF (dt)

=
∫ ∞

0

e−λt

∫ ∞

0

e−λsΨ
(
z(t+ s)− g(t)√

s

)
dsF (dt)

=
∫ ∞

0

e−λt

∫ ∞

t

e−λ(r−t)Ψ
(
z(r)− g(t)√

r − t
)
drF (dt)

=
∫ ∞

0

e−λr

∫ r

0

Ψ
(
z(r)− g(t)√

r − t
)
F (dt) dr

for all λ > 0. By the uniqueness theorem for Laplace transform, it
follows that

(3.6) P0(Bt ≥ z(t)) =
∫ t

0

Ψ
(
z(t)− g(s)√

t− s
)
F (ds)

which is seen to be equivalent to (3.4) by the scaling property of B.
The proof is complete.

2. Constant and linear boundaries. It will be shown in Section 4 that
when g is C1 on (0,∞) then there exists a continuous density f = F ′

of τ . The equation (3.2) then becomes

(3.7) Ψ
(
g(t)√
t

)
=

∫ t

0

Ψ
(
g(t)− g(s)√

t− s
)
f(s) ds
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for t > 0. This is a linear Volterra integral equation of the first kind
in f if g is known (it is a nonlinear equation in g if f is known). Its
kernel

(3.8) K(t, s) = Ψ
(
g(t)− g(s)√

t− s
)

is nonsingular in the sense that the mapping (s, t) �→ K(t, s) for
0 ≤ s < t is bounded.
If g(t) ≡ c with c ∈ R, then (3.2) or (3.7) reads as follows

(3.9) P (τ ≤ t) = 2P (Bt ≥ c)

and this is the reflection principle of André [1], Bachelier [2, p. 64] and
Lévy [16, p. 293].

If g(t) = αt+ β with α ∈ R and β > 0, then (3.7) reads as follows

(3.10) Ψ
(
g(t)√
t

)
=

∫ t

0

Ψ(α
√
t− s )f(s) ds

where we see that the kernel K(t, s) is a function of the difference
t − s and thus of a convolution type. Standard Laplace transform
techniques therefore can be applied to solve the equation (3.10) yielding
the following explicit formula

(3.11) f(t) =
β

t3/2
ϕ

(
αt+ β√

t

)

which is the well-known result of Doob [5, p. 397] and Malmquist [17,
p. 526].

Closed form expressions for f in the case of more general boundaries
g will be treated using classic theory of integral equations in Section 7
below.

3. Numerical calculation. The fact that the kernel (3.8) of the
equation (3.7) is nonsingular in the sense explained above makes this
equation especially attractive to numerical calculations of f if g is given.
This can be done using the simple idea of Volterra (dating back to
1896).
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Setting tj = jh for j = 0, 1, . . . , n where h = t/n and n ≥ 1 is given
and fixed, we see that the following approximation of the equation (3.7)
is valid (when g is C1 for instance):

(3.12)
n∑

j=1

K(t, tj)f(tj)h = b(t)

where we set b(t) = Ψ(g(t)/
√
t). In particular, applying this to each

t = ti yields

(3.13)
i∑

j=1

K(ti, tj)f(tj)h = b(ti)

for i = 1, 2, . . . , n. Setting

(3.14) aij = 2K(ti, tj), xj = f(tj), bi = 2b(ti)/h

we see that the system (3.13) reads as follows

(3.15)
i∑

j=1

aijxj = bi, i = 1, 2, . . . , n,

the simplicity of which is obvious, cf. [19]. We conjecture that this
system constitutes an efficient method for numerical computation of f
when g is given. Some examples of this computation are presented in
[28] where references to other numerical methods can be found as well.

4. Remarks. It follows from (3.11) that for τ in (3.3) with g(t) =
αt+ β we have

(3.16) P (τ <∞) = e−2αβ

whenever α ≥ 0 and β > 0. This shows that F in (3.4) does not have to
be a proper distribution function but generally satisfies F (+∞) ∈ (0, 1].

On the other hand, recall that Blumenthal’s 0-1 law implies that
P (τ = 0) is either 0 or 1 for τ in (3.3) and a continuous function
g : (0,∞) → R. If P (τ = 0) = 0, then g is said to be an upper function
for B, and if P (τ = 0) = 1, then g is said to be a lower function for B.
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Kolmogorov’s test (see e.g. [13, pp. 33 35]) gives sufficient conditions
on g to be an upper or lower function. It follows by Kolmogorov’s test
that

√
2t log log 1/t is a lower function for B and

√
(2 + ε)t log log 1/t

is an upper function for B for every ε > 0.

4. The existence of a continuous first-passage density. The
equation (3.7) is a Volterra integral equation of the first kind. These
equations are generally known to be difficult to deal with directly, and
there are two standard ways of reducing them to Volterra integral equa-
tions of the second kind. The first method consists of differentiating
both sides in (3.7) with respect to t, and the second method (Theorem
7.1) makes use of an integration by parts in (3.7) (see e.g. [12, pp.
40 41]). Our focus in this section is on the first method.

Being led by this objective we now present a simple proof of the fact
that F is C1 when g is C1 (compare the arguments given below with
those given in [27, p. 323] or [9, p. 322]).

Theorem 4.1. Let (Bt)t≥0 be a standard Brownian motion started
at zero, let g : (0,∞) → R be an upper function for B, and let τ in
(3.3) be the first-passage time of B over g.

If g is continuously differentiable on (0,∞) then τ has a continuous
density f . Moreover, the following identity is satisfied

(4.1)
∂

∂t
Ψ

(
g(t)√
t

)
=

1
2
f(t) +

∫ t

0

∂

∂t
Ψ

(
g(t)− g(s)√

t− s
)
f(s) ds

for all t > 0.

Proof. 1. Setting G(t) = Ψ(g(t)/
√
t) and K(t, s) = Ψ((g(t) −

g(s))/
√
t− s) for 0 ≤ s < t we see that (3.2), i.e., (3.4) with z = g(t),

reads as follows

(4.2) G(t) =
∫ t

0

K(t, s)F (ds)

for all t > 0. Note that K(t, t−) = ψ(0) = 1/2 for every t > 0 since
(g(t)− g(s))/√t− s → 0 as s ↑ t for g that is C1 on (0,∞). Note also
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that

(4.3)
∂

∂t
K(t, s) =

1√
t− s

(
1
2
g(t)− g(s)
t− s − g′(t)

)
ϕ

(
g(t)− g(s)√

t− s
)

for 0 < s < t. Hence we see that (∂K/∂t)(t, t−) is not finite (whenever
g′(t) �= 0), and we thus proceed as follows.

2. Using (4.2) we find by Fubini’s theorem that

(4.4)

lim
ε↓0

∫ t2

t1

( ∫ t−ε

0

∂

∂t
K(t, s)F (ds)

)
dt

= lim
ε↓0

(∫ t2−ε

0

K(t2, s)F (ds)−
∫ t1−ε

0

K(t1, s)F (ds)

−
∫ t2−ε

t1−ε

K(s+ ε, s)F (ds)
)

= G(t2)−G(t1)− 1
2
(F (t2)− F (t1))

for 0 < t1 ≤ t ≤ t2 <∞. On the other hand, we see from (4.3) that

(4.5)
∣∣∣∣
∫ t−ε

0

∂

∂t
K(t, s)F (ds)

∣∣∣∣ ≤ C
∫ t

0

F (ds)√
t− s

for all t ∈ [t1, t2] and ε > 0 while, by Fubini’s theorem, it is easily
verified that

(4.6)
∫ t2

t1

( ∫ t

0

F (ds)√
t− s

)
dt <∞.

We may thus by the dominated convergence theorem (applied twice)
interchange the first limit and the first integral in (4.4) yielding

(4.7)
∫ t2

t1

( ∫ t

0

∂

∂t
K(t, s)F (ds)

)
dt = G(t2)−G(t1)−1

2
(F (t2)−F (t1))

at least for those t ∈ [t1, t2] for which

(4.8)
∫ t

0

F (ds)√
t− s <∞.
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It follows from (4.6) that the set of all t > 0 for which (4.8) fails is of
Lebesgue measure zero.

3. To verify (4.8) for all t > 0 we may note that a standard rule on
the differentiation under an integral sign can be applied in (3.4), and
this yields the following equation

(4.9)
1√
t
ϕ

(
z√
t

)
=

∫ t

0

1√
t− s ϕ

(
z − g(s)√
t− s

)
F (ds)

for all z > g(t) with t > 0 upon differentiating in (3.4) with respect to
z. By Fatou’s lemma, hence we get

(4.10)

∫ t

0

1√
t− s ϕ

(
g(t)− g(s)√

t− s
)
F (ds)

=
∫ t

0

lim inf
z↓g(t)

1√
t− s ϕ

(
z − g(s)√
t− s

)
F (ds)

≤ lim inf
z↓g(t)

∫ t

0

1√
t− s ϕ

(
z − g(s)√
t− s

)
F (ds)

=
1√
t
ϕ

(
g(t)√
t

)
<∞

for all t > 0. Now for s < t close to t, we know that ϕ((g(t) −
g(s))/

√
t− s ) in (4.10) is close to 1/

√
2π > 0, and this easily establishes

(4.8) for all t > 0.

4. Returning back to (4.7) it is easily seen using (4.3) that t �→∫ t

0
(∂K/∂t)(t, s)F (ds) is right-continuous at t ∈ (t1, t2) if we have

(4.11)
∫ tn

t

F (ds)√
tn − s −→ 0

for tn ↓ t as n → ∞. To check (4.11) we first note that by passing
to the limit for z ↓ g(t) in (4.9), using (4.8) with the dominated
convergence theorem, we obtain (5.1) below for all t > 0. Noting that
(s, t) �→ ϕ((g(t) − g(s))/√t− s) attains its strictly positive minimum
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c > 0 over 0 < t1 ≤ t ≤ t2 and 0 ≤ s < t, we may write

(4.12)

∫ tn

t

F (ds)√
tn − s ≤ 1

c

∫ tn

t

1√
tn − s ϕ

(
g(tn)− g(s)√

tn − s
)
F (ds)

=
1
c

(
1√
tn
ϕ

(
g(tn)√
tn

)

−
∫ t

0

1√
tn − s ϕ

(
g(tn)− g(s)√

tn − s
)
F (ds)

)

where the final expressions tends to zero as n → ∞ by means of
(5.1) below and using (4.8) with the dominated convergence theorem.
Thus (4.11) holds and therefore t �→ ∫ t

0
(∂K/∂t)(t, s)F (ds) is right-

continuous. It can be similarly verified that this mapping is left-
continuous at each t ∈ (t1, t2) and thus continuous on (0,∞).

5. Dividing finally by t2 − t1 in (4.7) and then letting t2 − t1 → 0, we
obtain

(4.13) F ′(t) = 2
(
G′(t)−

∫ t

0

∂

∂t
K(t, s)F (ds)

)

for all t > 0. Since the right-hand side of (4.13) defines a continuous
function of t > 0, it follows that f = F ′ is continuous on (0,∞), and
the proof is complete.

5. Derivation of known equations. In the previous proof we saw
that the master equation (3.4) can be once differentiated with respect
to z implying the equation (4.9) and that in (4.9) one can pass to the
limit for z ↓ g(t) obtaining the following equation

(5.1)
1√
t
ϕ

(
g(t)√
t

)
=

∫ t

0

1√
t− s ϕ

(
g(t)− g(s)√

t− s
)
F (ds)

for all t > 0.

The purpose of this section is to show how the equations (4.1) and
(5.1) yield some known equations studied previously by a number of
authors.

1. We assume throughout that the hypotheses of Theorem 4.1 are
fulfilled (and that t > 0 is given and fixed). Rewriting (4.1) more
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explicitly by computing derivatives on both sides gives

(5.2)(
1
2
g(t)
t3/2

− g
′(t)√
t

)
ϕ

(
g(t)√
t

)

=
1
2
f(t)+

∫ t

0

(
1
2
g(t)−g(s)
(t− s)3/2

− g′(t)√
t−s

)
ϕ

(
g(t)−g(s)√
t− s

)
f(s) ds.

Recognizing now the identity (5.1) multiplied by g′(t) within (5.2) and
multiplying the remaining part of the identity (5.2) by 2, we get

(5.3)
g(t)
t3/2

ϕ

(
g(t)√
t

)
= f(t) +

∫ t

0

g(t)−g(s)
(t−s)3/2

ϕ

(
g(t)−g(s)√
t− s

)
f(s) ds.

This equation has been derived and studied by Ricciardi et al. [22] using
other means. Moreover, the same argument shows that the factor 1/2
can be removed from (5.2) yielding

(5.4)
(
g(t)
t3/2

− g
′(t)√
t

)
ϕ

(
g(t)√
t

)

= f(t) +
∫ t

0

(
g(t)− g(s)
(t− s)3/2

− g′(t)√
t− s

)
ϕ

(
g(t)− g(s)√

t− s
)
f(s) ds.

This equation has been derived independently by Ferebee [9] and
Durbin [6]. Ferebee’s derivation is, set aside technical points, the same
as the one presented here. Williams [7] presents yet another derivation
of this equation (assuming that f exists). (Note also that multiplying
both sides of (3.7) by 2r(t) and both sides of (5.1) by 2(k(t)+g′(t)), and
adding the resulting two equations to the equation (5.3), one obtains the
equation (2.9)+(3.4) in Buonocore et al. [3] derived by other means.)

2. With a view to the inverse problem (of finding g if f is given)
it is of interest to produce as many nonequivalent equations linking g
to f as possible. (Recall that (3.7) is a nonlinear equation in g if f
is known, and nonlinear equations are marked by a nonuniqueness of
solutions.) For this reason it is tempting to derive additional equations
to the one given in (5.1) starting with the master equation (3.4) and
proceeding similarly to (4.9) above.

A standard rule on the differentiation under an integral sign can be
inductively applied to (3.4), and this gives the following equations

(5.5)
1
tn/2

ϕ(n−1)

(
z√
t

)
=

∫ t

0

1
(t− s)n/2

ϕ(n−1)

(
z − g(s)√
t− s

)
F (ds)
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for all z > g(t) and all n ≥ 1 where t > 0. Recall that

(5.6) ϕ(n)(x) = (−1)nhn(x)ϕ(x)

for x ∈ R and n ≥ 1 where hn is a Hermite polynomial of degree n for
n ≥ 1.

Noting that ϕ′(x) = −xϕ(x) and recalling (5.3) we see that a passage
to the limit for z ↓ g(t) in (5.5) is not straightforward when n ≥ 2 but
complicated. For this reason we will not pursue it in further detail here.

3. The Chapman-Kolmogorov equation (2.11) is known to admit a
reduction to the forward and backward equation, cf. [14], which are
partial differential equations of parabolic type. No such derivation or
reduction is generally possible in the entire-past dependent case of the
equation (2.16) or (2.17), and the same is true for the master equation
(3.4) in particular. We showed above how the differentiation with
respect to z in the master equation (3.4) leads to the density equation
(5.1), which together with the distribution equation (3.2) yields known
equations (5.3) and (5.4). It was also indicated above that no further
derivative with respect to z can be taken in the master equation (3.4)
so that the passage to the limit for z ↓ g(t) in the resulting equation
becomes straightforward.

6. Derivation of new equations.

1. Expanding on the previous facts a bit further, we now note that it is
possible to proceed in a reverse order and integrate the master equation
(3.4) with respect to z as many times as we please. This yields the whole
spectrum of new nonequivalent equations which, taken together with
(3.2) and (5.1), may play a fundamental role in the inverse problem
(Section 8).

Theorem 6.1. Let (Bt)t≥0 be a standard Brownian motion starting
at zero, let g : (0,∞) → R be a continuous function satisfying
g(0+) ≥ 0, let τ in (3.3) be the first-passage time of B over g, and
let F denote the distribution function of τ .

Then the following system of integral equations is satisfied:

(6.1) tn/2Hn

(
g(t)√
t

)
=

∫ t

0

(t− s)n/2Hn

(
g(t)− g(s)√

t− s
)
F (ds)



416 G. PESKIR

for t > 0 and n = −1, 0, 1, . . . , where we set

(6.2) Hn(x) =
∫ ∞

x

Hn−1(z) dz

with H−1 = ϕ being the standard normal density from (3.1).

Remark. For n = −1, the equation (6.1) is the density equation (5.1).
For n = 0, the equation (6.1) is the distribution equation (3.2). All
equations in (6.1) for n �= −1 are nonsingular (in the sense that their
kernels are bounded over the set of all (s, t) satisfying 0 ≤ s < t ≤ T ).

Proof. Let t > 0 be given and fixed. Integrating (3.4) we get

(6.3)
∫ ∞

z

Ψ
(
z′√
t

)
dz′ =

∫ t

0

∫ ∞

z

Ψ
(
z′ − g(s)√
t− s

)
dz′F (ds)

for all z ≥ g(t) by means of Fubini’s theorem. Substituting u = z′/
√
t

and v = (z′ − g(s))/√t− s we can rewrite (6.3) as follows

(6.4)
√
t

∫ ∞

z/
√

t

Ψ(u) du =
∫ t

0

√
t− s

∫ ∞

(z−g(s))/
√

t−s

Ψ(v) dv F (ds)

which is the same as the following identity

(6.5)
√
tH1

(
z√
t

)
=

∫ t

0

√
t− sH1

(
z − g(s)√
t− s

)
F (ds)

for all z ≥ g(t) upon using that H1 is defined by (6.2) above with n = 1.

Integrating (6.5) as (3.4) prior to (6.3) above, and proceeding simi-
larly by induction, we get

(6.6) tn/2Hn

(
z√
t

)
=

∫ t

0

(t− s)n/2Hn

(
z − g(s)√
t− s

)
F (ds)

for all z ≥ g(t) and all n ≥ 1. (This equation was also established earlier
for n = 0 in (3.4) and for n = −1 in (4.9).) Setting z = g(t) in (6.6)
above we obtain (6.1) for all n≥1. (Using that Ψ(x) ≤ √

2/π ϕ(x) for
all x > 0, it is easily verified by induction that all integrals appearing



ON INTEGRAL EQUATIONS 417

in (6.1) (6.6) are finite.) As the equation (6.1) was also proved earlier
for n = 0 in (3.2) and for n = −1 in (5.1) above, we see that the system
(6.1) holds for all n ≥ −1, and the proof of the theorem is complete.

2. In view of our considerations in subsection 1 of Section 5 above it
is interesting to establish the analogues of the equations (5.3) and (5.4)
in the case of other equations in (6.1).

For this, fix n ≥ 1 and t > 0 in the sequel, and note that taking a
derivative with respect to t in (6.1) gives

(6.7)
n

2
tn/2−1Hn

(
g(t)√
t

)
+ tn/2H ′

n

(
g(t)√
t

)(
g′(t)√
t

− g(t)
2t3/2

)

=
∫ t

0

(
n

2
(t− s)n/2−1Hn

(
g(t)− g(s)√

t− s
)

+ (t−s)n/2H ′
n

(
g(t)−g(s)√
t− s

)(
g′(t)√
t−s −

g(t)−g(s)
2(t−s)3/2

))
F (ds).

Recognizing now the identity (6.1), with n− 1 instead of n using that
H ′

n = Hn−1, multiplied by g′(t) within (6.7), and multiplying the
remaining part of the identity (6.7) by 2, we get

(6.8)

tn/2−1

(
nHn

(
g(t)√
t

)
− g(t)√

t
Hn−1

(
g(t)√
t

))

=
∫ t

0

(t− s)n/2−1

(
nHn

(
g(t)−g(s)√
t− s

)

− g(t)−g(s)√
t− s Hn−1

(
g(t)−g(s)√
t− s

))
F (ds).

Moreover, the same argument shows that the factor 1/2 can be removed
from (6.7) yielding

(6.9) tn/2

(
n

t
Hn

(
g(t)√
t

)
−

(
g(t)
t3/2

− g
′(t)√
t

)
Hn−1

(
g(t)√
t

))

=
∫ t

0

(t−s)n/2

(
n

(t−s) Hn

(
g(t)−g(s)√
t− s

)
−

(
g(t)−g(s)
(t− s)3/2

− g′(t)√
t−s

)

·Hn−1

(
g(t)−g(s)√
t− s

))
F (ds).
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Each of the equations (6.8) and (6.9) is contained in the system (6.1).
No equation of the system (6.1) is equivalent to another equation from
the same system but itself.

7. A closed expression for the first-passage distribution.
In this section we briefly tackle the problem of finding F when g is
given using classic theory of linear integral equations (see e.g. [12]).
The key tool in this approach is the fixed-point theorem for contractive
mappings, which states that a mapping T : X → X, where (X, d) is a
complete metric space, satisfying

(7.1) d(T (x), T (y)) ≤ βd(x, y)
for all x, y ∈ X with some β ∈ (0, 1) has a unique fixed point in X, i.e.,
there exists a unique point x0 ∈ X such that T (x0) = x0.

Using this principle and some of its ramifications developed within
the theory of integral equations, the papers [18] and [22] present
explicit expressions for F in terms of g in the case when X is taken
to be a Hilbert space L2. These results will here be complemented
by describing a narrow class of boundaries g that allow X to be the
Banach space B(R+) of all bounded functions h : R+ → R equipped
with the sup-norm

(7.2) ‖h‖∞ = sup
t≥0

|h(t)|.

While examples from this class range from a constant to a square-root
boundary, the approach itself is marked by simplicity of the argument.

Theorem 7.1. Let (Bt)t≥0 be a standard Brownian motion started
at zero, let g : R+ → R be a continuous function satisfying g(0) > 0,
let τ in (3.13) be the first-passage time of B over g, and let F denote
the distribution function of τ .

Assume, moreover, that g is C1 on (0,∞), increasing, concave, and
that it satisfies

(7.3) g(t) ≤ g(0) + c√t
for all t ≥ 0 with some c > 0. Then we have

(7.4) F (t) = h(t) +
∞∑

n=1

( ∫ t

0

Kn(t, s)h(s) ds
)
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where the series converges uniformly over all t ≥ 0, and we set

(7.5) h(t) = 2Ψ
(
g(t)√
t

)

K1(t, s) =
1√
t− s

(
2g′(s)− g(t)−g(s)

(t− s)
)
ϕ

(
g(t)−g(s)√
t− s

)
(7.6)

Kn+1(t, s) =
∫ t

s

K1(t, r)Kn(r, s) dr(7.7)

for 0 ≤ s < t and n ≥ 1.

Moreover, introducing the function

(7.8) R(t, s) =
∞∑

n=1

Kn(t, s)

for 0 ≤ s < t, the following representation is valid

(7.9) F (t) = h(t) +
∫ t

0

R(t, s)h(s) ds

for all t > 0.

Proof. Setting u = Ψ
(
(g(t) − g(s))/√t− s )

and v = F (s) in the
integral equation (3.2) and using the integration by parts formula, we
obtain

(7.10) Ψ
(
g(t)√
t

)
=

1
2
F (t)−

∫ t

0

∂

∂s
Ψ

(
g(t)− g(s)√

t− s
)
F (s) ds

for each t > 0 that is given and fixed in the sequel. Using the notation
of (7.5) and (7.6) above we can rewrite (7.10) as follows

(7.11) F (t)−
∫ t

0

K1(t, s)F (s) ds = h(t).

Introduce a mapping T on B(R+) by setting

(7.12) (T (G))(t) = h(t) +
∫ t

0

K1(t, s)G(s) ds
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for G ∈ B(R+). Then (7.11) reads as follows

(7.13) T (F ) = F

and the problem reduces to solve (7.13) for F in B(R+).

In view of the fixed-point theorem quoted above, we need to verify
that T is a contraction from B(R+) into itself with respect to the
sup-norm (7.2). For this, note

(7.14)

‖T (G1)− T (G2)‖∞ = sup
t≥0

|(T (G1 −G2))(t)|

= sup
t≥0

∣∣∣∣
∫ t

0

K1(t, s)(G1(s)−G2(s)) ds
∣∣∣∣

≤
(
sup
t≥0

∫ t

0

|K1(t, s)| ds
)
‖G1 −G2‖∞.

Since s→ g(s) is concave and increasing, it is easily verified that s �→
(g(t)− g(s))/√t−s is decreasing and thus s �→ Ψ

(
(g(t)− g(s))/√t−s )

is increasing on (0, t). It implies that

(7.15)

β := sup
t≥0

∫ t

0

|K1(t, s)| ds = sup
t≥0

∫ t

0

∣∣∣∣2 ∂∂s Ψ
(
g(t)−g(s)√
t− s

)∣∣∣∣ ds

= sup
t≥0

∫ t

0

2
∂

∂s
Ψ

(
g(t)− g(s)√

t− s
)
ds = sup

t≥0
2
(
1
2
−Ψ

(
g(t)− g(0)√

t

))

≤ 1− 2Ψ(c) < 1

using the hypothesis (7.3). This shows that T is a contraction from
the Banach space B(R+) into itself, and thus by the fixed-point
theorem there exists a unique F0 in B(R+) satisfying (7.13). Since
the distribution function F of τ belongs to B(R+) and satisfies (7.13),
it follows that F0 must be equal to F .

Moreover, the representation (7.4) follows from (7.11) and the well-
known formula for the resolvent of the integral operator K = T − h
associated with the kernel K1:

(7.16) (I −K)−1 =
∞∑

n=0

Kn
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upon using Fubini’s theorem to justify that Kn+1 in (7.7) is the kernel
of the integral operatorKn+1 for n ≥ 1. Likewise, the final claim about
(7.8) and (7.9) follows by the Fubini-Tonelli theorem since all kernels in
(7.6) and (7.7) are nonnegative, and so are all maps s �→ Kn(t, s)h(s)
in (7.4) as well. This completes the proof.

Leaving aside the question on usefulness of the multiple-integral series
representation (7.4), it is an interesting mathematical question to find a
similar expression for F in terms of g that would not require additional
hypotheses on g such as (7.3) for instance. In this regard especially
those g satisfying g(0+) = 0 seem problematic as they lead to singular
(or weakly singular) kernels generating the integral operators that turn
out to be noncontractive.

8. The inverse problem. In this section we will reformulate
the inverse problem of finding g when F is given using the result of
Theorem 6.1. Recall from there that g and F solve

(8.1) tn/2Hn

(
g(t)√
t

)
=

∫ t

0

(t− s)n/2Hn

(
g(t)− g(s)√

t− s
)
F (ds)

for t > 0 and n ≥ −1 where Hn(x) =
∫ ∞

x
Hn−1(z) dz with H−1 =

ϕ. Then the inverse problem reduces to answer the following three
questions:

Question 8.1. Does there exist a (continuous) solution t �→ g(t) of
the system (8.1)?

Question 8.2. Is this solution unique?

Question 8.3. Does the (unique) solution t �→ g(t) solve the inverse
first-passage problem, i.e., is the distribution function of τ from (3.3)
equal to F?

It may be noted that each equation in g of the system (8.1) is a
nonlinear Volterra integral equation of the second kind. Nonlinear
equations are known to lead to nonunique solutions, so it is hoped
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that the totality of countably many equations could counterbalance
this deficiency.

Perhaps the main example one should have in mind is when F has
a continuous density f . Note that in this case f(0+) can be strictly
positive (and finite). Some information on possible behavior of g at
zero for such f can be found in [20].

A numerical treatment of the inverse first-passage problem is given
in a recent Ph.D. thesis by Zucca [28].
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