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SOLUTION OF VOLTERRA INTEGRO-
DIFFERENTIAL EQUATIONS WITH GENERALIZED
MITTAG-LEFFLER FUNCTION IN THE KERNELS

ANATOLY A. KILBAS, MEGUMI SAIGO AND R.K. SAXENA

ABSTRACT. The present paper is intended for the inves-
tigation of the integro-differential equation of the form

(∗) (Dα
a+y)(x) = λ

∫ x

a

(x − t)µ−1Eγ
ρ,µ[ω(x − t)ρ]y(t) dt + f(x),

a < x � b,

with complex α, ρ, µ, γ and ω (Re (α),Re (ρ),Re (µ)>0) in the
space of summable functions L(a, b) on a finite interval [a, b]
of the real axis. Here Dα

a+ is the operator of the Riemann-

Liouville fractional derivative of complex order α (Re (α) > 0)
and Eγ

ρ,µ(z) is the function defined by

Eγ
ρ,µ(z) =

∞∑
k=0

(γ)k

Γ(ρk + µ)

zk

k!
,

where, when γ = 1, E1
ρ,µ(z) coincides with the classical

Mittag-Leffler function Eρ,µ(z), and in particular E1,1(z) =
ez . Thus, when f(x) ≡ 0, a = 0, α = 1, µ = 1, γ = 0, ρ = 1,
λ = −iπg, ω = iν, g and ν are real numbers, the equation (∗)
describes the unsaturated behavior of the free electron laser.
The Cauchy-type problem for the above integro-differential
equation is considered. It is proved that such a problem is
equivalent to the Volterra integral equation of the second kind,
and its solution in closed form is established. Special cases are
investigated.

1. Introduction. It is well known that solutions of integro-
differential equations of Volterra type can be obtained as solutions of
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the corresponding Volterra integral equations of second kind (see, for
example, [15] and [18]). The solutions of the linear Volterra integral
equations of second kind are given in terms of the resolvent kernels
which are constructed as a series of repeated kernels. In general, these
solutions have complicated forms and they are not suitable for the
practical interest and for the numerical treatment. Therefore, it is
important to construct solutions of Volterra integral equations in closed
form by their representation via a finite number of quadratures or in
terms of some special functions.

Our paper is accomplished in this direction and is devoted to the
study of the integro-differential equation

(1.1)
(Dα

a+y)(x) = λ

∫ x

a

(x− t)µ−1Eγ
ρ,µ[ω(x− t)ρ]y(t) dt+ f(x),

a < x � b,

on a finite interval [a, b] of the real axisR = (−∞,∞) with α, ρ, µ, γ, ω ∈
C (Re (α),Re (ρ),Re (µ) > 0), where C is the set of complex numbers.
Here (Dα

a+y)(x) is the Riemann-Liouville fractional derivative of order
α ∈ C (Re (α) > 0) defined for a < x � b by [22, Sections 2.3 and 2.4]

(1.2) (Dα
a+y)(x) =

(
d

dx

)n

(In−α
a+ y)(x), n = [Re (α)] + 1

in terms of the Riemann-Liouville fractional integral

(1.3)
(Iα

a+ϕ)(x) =
1
Γ(α)

∫ x

a

ϕ(t)
(x− t)1−α

dt

a < x � b; α ∈ C (Re (α) > 0),

and Eγ
ρ,µ(z) is a special function of the form

(1.4) Eγ
ρ,µ(z) =

∞∑
k=0

(γ)k
Γ(ρk + µ)

zk

k!
, ρ, µ, γ ∈ C, Re (ρ) > 0,

where (γ)k is the Pochhammer symbol [13, Section 2.1.1]

(1.5) (γ)0 = 1, (γ)k = γ(γ + 1) · · · (γ + k − 1), k = 1, 2, . . . .
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The function Eγ
ρ,µ(z) was introduced by Prabhakar [20]. When γ = 1,

(1.6) E1
ρ,µ(z) ≡ Eρ,µ(z) =

∞∑
k=0

zk

Γ(ρk + µ)
, ρ, µ ∈ C, Re (ρ) > 0;

and, in particular, for γ = µ = 1,

(1.7) E1
ρ,1(z) ≡ Eρ(z) =

∞∑
k=0

zk

(ρk + 1)
, ρ ∈ C, Re (ρ) > 0.

The functions in (1.6) and (1.7) are known as Mittag-Leffler functions
(see [14, Section 18.1]). The classical results in the theory of these func-
tions are given in [14, Section 18.1], and modern results in [11] and
[12]. When ρ = 1, Eγ

1,µ(z) coincides with Kummer’s confluent hyper-
geometric function Φ(γ, µ; z) defined by the 1F1-hypergeometric series
(see [13, Section 6.1]) with the exactness to the constant multiplier
[Γ(µ)]−1:

Eγ
1,µ(z) =

1
Γ(µ)

Φ(γ, µ; z),(1.8)

Φ(γ, µ; z) ≡ 1F1(γ;µ; z) =
∞∑

k=0

(γ)k
(µ)k

zk

k!
, γ, µ ∈ C.(1.9)

When α = m ∈ N = {1, 2, . . . }, (Dm
a+)(x) = y(m)(x) and (1.1) is the

ordinary integro-differential equation
(1.10)

y(m)(x) = λ

∫ x

a

(x− t)µEγ
ρ,µ[ω(x− t)ρ]y(t) dt+ f(x), a < x � b.

When a = 0, such a simplest homogeneous equation in the form

(1.11)
y′(x) = −iπg

∫ x

0

(x− t)eiν(x−t)y(t) dt

0 < x � 1; g, ν ∈ R,

with the initial condition y(0) = 1 describes the unsaturated behavior
of the free electron laser [8], [10] and its solution in closed form was
constructed in [9]. The fractional analogue of this equation

(1.12)
(Dα

0+y)(x) = −iπg

∫ x

0

(x− t)eiν(x−t)y(t) dt

0 < x � 1; g, ν ∈ R,
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with α > 0 was considered in [3] and [5]. In [3] there was an
attempt for solving this equation, but the obtained solution is not
correct because the fractional derivative (1.2) is not invariant with
respect to e−kx, k > 0. In [5] the solution of the equation (1.12)
was proved by using the methods of variation of parameters and of
successive approximations, and the numerical result was also obtained
by employing the algebraic system MAPLE V. We also mention that
the multi-dimensional analogues of the equations (1.11) and (1.12) were
considered in [4]. In this connection (see [6, Section IV]).

The simplest inhomogeneous equation (1.1) in the form

(1.13)
(Dα

0+y)(x) = λ

∫ x

0

(x− t)eiν(x−t)y(t) dt+ βeiνx,

0 < x � 1; λ, β ∈ C; ν ∈ R,

was investigated in [7] where its solution in closed form was obtained in
terms of the Kummer function (1.9) and the tau method of approxima-
tion [19] was used for the numerical treatment of this solution. Similar
results for the fractional integro-differential equations

(1.14) (Dα
0+y)(x) = λ

∫ x

0

(x− t)δeiν(x−t)y(t) dt+ βeiνx, 0 < x � 1

and

(1.15)
(Dα

0+y)(x) =
λ

Γ(δ + 1)

∫ x

0

(x− t)δΦ(b, δ + 1; iν(x− t))y(t) dt

+ βΦ(c, 1; iνx), 0 < x � 1

with λ, β, b, c ∈ C, ν ∈ R and δ > −1 were established in [2] and
[1], respectively. It should be noted that, in accordance with (1.7)
and (1.9), the equations (1.13) and (1.15) are particular cases of the
integro-differential equation (1.1) when γ = ρ = µ = 1, f(x) = βeiνx

and µ = δ + 1, ρ = 1, f(x) = βΦ(c, 1; iνx), respectively.

The present paper is devoted to the solution in closed form of
the integro-differential equation (1.1) with the Cauchy-type initial
conditions

(1.16) lim
x→+a

(Dα−k
a+ y)(x) = bk, k = 1, 2, . . . , n = −[−Re (α)],
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with Dα−n
a+ y being understood as Dα−n

a+ y = In−α
a+ y, in the space

L(a, b) of summable functions on the interval [a, b]. Properties of the
generalized Mittag-Leffler function (1.4) and of the integral operators
involving such a function in the kernels were investigated in our paper
[17]. Here we apply the results in [17] to reduce the problem (1.1),
(1.16) to the equivalent Volterra integral equation of second kind

(1.17)

y(x) =
n∑

k−1

bk

Γ(α− k + 1)
(x− a)α−k

+ λ

∫ x

a

(x− t)µ+α−1Eγ
ρ,µ+α[ω(x− t)ρ]y(t) dt

+
1
Γ(α)

∫ x

a

f(t)
(x− t)1−α

dt, a < x � b.

The solution of this equation is established by the method of successive
approximations, see, for example, [21].

The paper is organized as follows. Section 2 has preliminary character
and contains the results concerning some properties of the fractional
calculus operators (1.2), (1.3) and of the integral operators with the
generalized Mittag-Leffler function (1.4) in the kernels. Section 3 deals
with the solution in closed form of the integro-differential equation (1.1)
with the initial condition (1.16). Solutions of special cases are studied
in Sections 4 and 5.

2. Preliminaries. First we give some properties of the operators
of the Riemann-Liouville fractional integrals Iα

a+ and the fractional
derivatives Dα

a+ given in (1.3) and (1.2), respectively. The operator
Iα

a+ is defined on the space L(a, b) of Lebesgue measurable functions
g(x) on [a, b]:

(2.1) L(a, b) =
{
g : ‖g‖1 ≡

∫ b

a

|g(t)| dt < +∞
}
.

Lemma 1 [22]. The Riemann-Liouville fractional integral operator
Iα

a+ of order α ∈ C (Re (α) > 0) is bounded in the space L(a, b) and

(2.2) ‖Iα
a+ϕ‖1 � A‖ϕ‖1, A =

(b− a)Re (α)

Re (α)|Γ(α)| .
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Lemma 2 [22]. If α, β ∈ C (Re (α),Re (β) > 0), then the semigroup
property

(2.3) Iα
a+Iβ

a+ϕ = Iα+β
a+ ϕ

holds for any ϕ ∈ L(a, b).

The Riemann-Liouville fractional derivative (1.2) is the inverse to the
corresponding fractional integral (1.3) from the left.

Lemma 3 [22, Theorem 2.4]. If α∈C (Re (α)>0), then the equality

(2.4) Dα
a+Iα

a+ ϕ = ϕ

holds for any summable function ϕ ∈ L(a, b).

We also need the assertion on the equivalence of the Cauchy-type
problem for the fractional differential equation and the corresponding
Volterra integral equation.

Lemma 4 [16]. Let α ∈ C (Re (α) > 0), n = −[−Re (α)], and
let the functions y(x) on [a, b] and f(x, y) on [a, b] × R be given such
that y(x) ∈ L(a, b) and f [x, y(x)] ∈ L(a, b). Then the solution of the
Cauchy-type problem

(Dα
a+y)(x) = f [x, y(x)], a < x � b,(2.5)

lim
x→+a

(Dα−k
a+ y)(x) = bk, k = 1, 2, . . . , n,(2.6)

in the space L(a, b) is equivalent to the solution of the Volterra integral
equation of second kind

(2.7)
y(x) =

n∑
k=1

bk

Γ(α− k + 1)
(x− a)α−k +

1
Γ(α)

∫ x

a

f [t, y(t)]
(x− t)1−α

dt,

a < x � b.

There holds the following relation [17] for the generalized Mittag-
Leffler function (1.4):

(2.8)∫ x

0

(x− t)µ−1Eγ
ρ,µ(ω[x− t]ρ)tν−1Eσ

ρ,ν(ωtρ) dt = xµ+ν−1Eγ+σ
ρ,µ+ν(ωxρ)
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for ρ, µ, ν, γ, σ, ω ∈ C (Re (ρ),Re (µ),Re (ν) > 0). Now we consider the
integral operator

(2.9) (Eγ
ρ,µ,ω;α+ ϕ)(x) =

∫ x

a

(x− t)µ−1Eγ
ρ,µ[ω(x− t)ρ]ϕ(t) dt, x > a

with the generalized Mittag-Leffler function (1.4) in the kernel. In
particular, when γ = 1 and ρ = 1, we have the operators

(Eρ,µ,ω;a+ ϕ)(x) =
∫ x

a

(x− t)µ−1Eρ,µ[ω(x− t)ρ]ϕ(t) dt, x > a

(2.10)

and

(Φγ,µ,ω;a+ ϕ)(x) =
∫ x

a

(x− t)µ−1Φ[γ, µ, ω(x− t)]ϕ(t) dt, x > 0,

(2.11)

containing the Mittag-Leffler function (1.6) and the Kummer hyperge-
ometric function (1.9) in the kernels, respectively. When γ = 0,

(2.12) E0
ρ,µ(z) =

1
Γ(µ)

,

and hence

(2.13) (E0
µ,ρ,ω;a+ ϕ)(x) = (Iµ

a+ ϕ)(x).

The operator Eγ
ρ,µ,ω;a+ is bounded in L(a, b).

Theorem 1 [17, Theorem 4]. Let ρ, µ, γ, ω ∈ C (Re (ρ),Re (µ) > 0),
then the operator Eγ

ρ,µ,ω;a+ is bounded on L(a, b) and

(2.14) ‖Eγ
ρ,µ,ω;a+ ϕ‖1 � B‖ϕ‖1,

where

(2.15)

B = (b− a)Re (µ)
∞∑

k=0

|(γ)k|
|Γ(ρk + µ)|[Re (ρ)k +Re (µ)]

|ω(b−a)Re (ρ)|k
k!

.
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Corollary 1.1. Let ρ, µ, ω∈C (Re (ρ),Re (µ)>0), then the operator
Eρ,µ,ω;a+ is bounded on L(a, b) and

(2.16) ‖Eρ,µ,ω;a+ ϕ‖1 � B1‖ϕ‖1,

where

(2.17) B1 = (b− a)Re (µ)
∞∑

k=0

|ω(b− a)Re (ρ)|k
|Γ(ρk + µ)|[Re (ρ)k +Re (µ)] .

Corollary 1.2. Let µ, γ, ω ∈ C (Re (µ) > 0), then the operator
Φγ,µ,ω;a+ is bounded on L(a, b) and

(2.18) ‖Φγ,µ,ω;a+ ϕ‖1 ≤ B2‖ϕ‖1,

where

(2.19) B2 = (b− a)Re (µ)
∞∑

k=0

|(γ)k|
|Γ(k + µ)|[k + Re (µ)]

|ω(b−a)Re (µ)|k
k!

.

The integral transform Eγ
ρ,µ,ω;a+ of power function (t− a)β−1 yields

the same generalized Mittag-Leffler function.

Lemma 5 [17, Lemma 4]. Let ρ, µ, γ, ω, β ∈ C (Re (ρ),Re (µ),Re (β)>
0), then

(2.20) (Eγ
ρ,µ,ω;a+[(t−a)β−1])(x) = Γ(β)(x−a)µ+β−1Eγ

ρ,µ+β(ω(x−a)ρ).

In particular,

(2.21) (Eρ,µ,ω;a+[(t−a)β−1])(x) = Γ(β)(x−a)µ+β−1Eρ,µ+β(ω(x−a)ρ)

and
(2.22)

(Φγ,µ,ω;a+[(t−a)β−1])(x) =
Γ(µ)
Γ(µ+β)

(x−a)µ+β−1Φ(γ, µ+ β;ω(x−a)).
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Compositions of the operator Eγ
ρ,µ,ω;a+ with the Riemann-Liouville

fractional integration operator Iα
a+ are given by the following:

Theorem 2 [17, Theorem 6]. Let α, ρ, µ, γ, ω ∈ C (Re (α),Re (ρ),
Re (µ) > 0), then the relations

(2.23) Eγ
ρ,µ,ω;a+Iα

a+ ϕ = Eγ
ρ,µ+α,ω;a+ ϕ = Iα

a+Eγ
ρ,µ,ω;a+ ϕ

hold for any summable function ϕ ∈ L(a, b).

Corollary 2.1. Let α, ρ, µ, ω ∈ C (Re (α),Re (ρ),Re (µ) > 0), then
for any ϕ ∈ L(a, b)

(2.24) Eρ,µ,ω;a+Iα
a+ ϕ = Eρ,µ+α,ω;a+ ϕ = Iα

a+Eρ,µ,ω;a+ ϕ.

Corollary 2.2. Let α, µ, γ, ω ∈ C (Re (α),Re (µ) > 0), then for any
ϕ ∈ L(a, b),

(2.25) Φγ,µ,ω;a+Iα
a+ ϕ =

Γ(µ)
Γ(µ+ α)

Φγ,µ+α,ω;a+ ϕ = Iα
a+Φγ,µ,ω;a+ ϕ.

The next results generalize the semigroup property (2.3) to the
integral operators of the form (2.9) with the generalized Mittag-Leffler
function in the kernel.

Theorem 3 [17, Theorem 8]. Let ρ, µ, γ, ν, σ, ω ∈ C (Re (ρ),Re (µ),
Re (ν) > 0), then the relation

(2.26) Eγ
ρ,µ,ω;a+Eσ

ρ,ν,ω;a+ ϕ = Eγ+σ
ρ,µ+ν,ω;a+ ϕ = Eσ

ρ,ν,ω;a+Eγ
ρ,µ,ω;a+ ϕ

is valid for any summable function ϕ ∈ L(a, b). In particular,

(2.27) Eγ
ρ,µ,ω;a+E−γ

ρ,ν,ω;a+ ϕ = Iµ+ν
a+ ϕ = E−γ

ρ,ν,ω;a+Eγ
ρ,µ,ω;a+ ϕ.

Corollary 3.1. Let ρ, µ, ν, ω ∈ C (Re (µ),Re (ν) > 0), then for any
ϕ ∈ L(a, b)

(2.28) Eρ,µ,ω;a+Eρ,ν,ω;a+ ϕ = E2
ρ,µ+ν,ω;a+ ϕ = Eρ,ν,ω;α+Eρ,µ,ω;a+ ϕ.
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Corollary 3.2. Let µ, γ, ν, σ, ω ∈ C (Re (µ),Re (ν) > 0), then for
any ϕ ∈ L(a, b)

(2.29)
Φγ,µ,ω;a+Φσ,ν,ω;a+ ϕ =

Γ(µ)
Γ(µ+ ν)

Φγ+σ,µ+ν,ω;a+ ϕ

= Φσ,ν,ω;a+Φγ,µ,ω;a+ ϕ.

3. Solution of the Cauchy-type problem for the fractional
integro-differential equation with generalized Mittag-Leffler
function in the kernel. First we prove that a solution of the Cauchy-
type problem of (1.1) with (1.16) is equivalent to a solution of the
Volterra integral equation (1.17).

Lemma 6. Let α, ρ, µ, γ, ω, λ ∈ C (Re (α),Re (ρ),Re (µ) > 0). If
f(x) ∈ L(a, b), then the solution of the Cauchy-type problem

(Dα
a+y)(x) = λ

∫ x

a

(x−t)µ−1Eγ
ρ,µ[ω(x−t)ρ]y(t) dt+ f(x), a<x�b,

(3.1)

lim
x→+a

(Dα−k
a+ y)(x) = bk, k = 1, 2, . . . , n = −[−Re (α)],(3.2)

in the space L(a, b) is equivalent to the solution of the Volterra integral
equation

(3.3)

y(x) =
n∑

k=1

bk

Γ(α− k + 1)
(x− a)α−k

+ λ

∫ x

a

(x− t)α+µ−1Eγ
ρ,µ+α[ω(x− t)ρ]y(t) dt

+
1
Γ(α)

∫ x

a

f(t)
(x− t)1−α

dt, a < x � b.

Proof. Using (2.9) we rewrite the equation (3.1) in the form

(3.4) (Dα
a+y)(x) = λ(Eγ

ρ,µ,ω;a+y)(x) + f(x), a < x � b.
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Since the solution y of the equation (3.4) belongs to L(a, b), then, in
view of Theorem 1, Eγ

ρ,µ,ω;a+y also belongs to L(a, b). By the conditions
of the lemma, the righthand side of (3.4) belongs to L(a, b). Thus by
Lemma 4, the solution of the problem (3.1) (3.2) in L(a, b) is equivalent
to the solution of the integral equation

(3.5)
y(x) =

n∑
k=1

bk

Γ(α− k + 1)
(x− a)α−k + λ(Iα

a+Eγ
ρ,µ,ω;a+y)(x)

+ (Iα
a+f)(x), a < x � b.

By virtue of (2.23), the second term of the righthand side is
(Eγ

ρ,µ+α,ω;a+y)(x) and (3.5) is just (3.3).

Our next main result gives the solution in closed form of the Cauchy-
type problem (3.1) (3.2).

Theorem 4. Let α, ρ, µ, γ, ω, λ ∈ C (Re (α),Re (ρ),Re (µ) > 0). If
f ∈ L(a, b), then the Cauchy-type problem (3.1) (3.2) is solvable in the
space L(a, b) and its unique solution is given by

(3.6) y(x) =
n∑

k=1

bkyk(x) +
∫ x

a

K(x− t)f(t) dt,

where
(3.7)

yk(x) = (x−a)α−k
∞∑

j=0

λj(x−a)(µ+α)Eγj
ρ,(µ+α)j+α−k+1 [ω(x−a)ρ],

k = 1, 2, . . . , n

and

(3.8) K(u) =
∞∑

j=0

λju(µ+α)j+α−1Eγj
ρ,(µ+α)j+α (ωuρ).

Proof. By Lemma 6 it is sufficient to solve the Volterra integral
equation (3.3) or the equation (3.5). By the theory of Volterra integral
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equations of the second kind (see, for example, [19]) such an integral
equation has a unique solution y(x) ∈ L(a, b). To find the exact solution
we apply the method of successive approximation (see, for example
[21]) and consider the sequence ym(x) defined by

y0(x) =
n∑

k=1

bk

Γ(α− k + 1)
(x− a)α−k,(3.9)

ym(x) = y0(x) + λ(Eγ
ρ,µ+α,ω;a+ym−1)(x)(3.10)

+ (Iα
a+f)(x), m = 1, 2, . . . .

For m = 1,

(3.11) y1(x) = y0(x) + λ(Eγ
ρ,µ+α,ω;a+y0)(x) + (Iα

a+f)(x).

y2(x) is

y2(x) = y0(x) + λ(Eγ
ρ,µ+α,ω;a+y1)(x) + (Iα

a+f)(x)

and, in accordance with (3.11),

y2(x) = y0(x) + λ(Eγ
ρ,µ+α,ω;a+y0)(x)

+ λ2(Eγ
ρ,µ+α,ω;a+Eγ

ρ,µ+α,ω;a+y0)(x)

+ (Iα
a+f)(x) + λ(Eγ

ρ,µ+α,ω;a+Iα
a+f)(x).

Applying (2.26) and (2.23) to the last relation, we obtain

(3.12)

y2(x) = y0(x) + λ(Eγ
ρ,µ+α,ω;a+y0)(x)

+ λ2(E2γ
ρ,2(µ+α),ω;a+y0)(x)

+ (Iα
a+f)(x) + λ(Eγ

ρ,µ+2α,ω;a+f)(x).
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Similarly, for m = 3, we have

(3.13)
y3(x) = y0(x) + λ(Eγ

ρ,µ+α,ω;a+y2)(x) + (Iα
a+f)(x)

= y0(x) + λ(Eγ
ρ,µ+α,ω;a+y0)(x) + λ2(E2γ

ρ,2(µ+α),ω;a+y0)(x)

+ λ3(E3γ
ρ,3(µ+α),ω;a+y0)(x) + (Iα

a+f)(x)

+ λ(Eγ
ρ,µ+2α,ω;a+f)(x) + λ2(E2γ

ρ,2(µ+α)+α,ω;a+f)(x)

= y0(x) +
3∑

j=1

λj(Eγj
ρ,j(µ+α),ω;a+y0)(x)

+ (Iα
a+f)(x) +

2∑
j=1

λj(Eγj
ρ,j(µ+α)+α,ω;a+f)(x).

Continuing this process, we obtain

(3.14)

ym(x) = y0(x) +
m∑

j=1

λj(Eγj
ρ,j(µ+α),ω;a+y0)(x)

+ (Iα
a+f)(x) +

m−1∑
j=1

λj(Eγj
ρ,j(µ+α)+α,ω;a+f)(x).

By virtue of (2.12)

(3.15)

y0(x) =
n∑

k=1

bk

Γ(α− k + 1)
(x− a)α−k

=
n∑

k=1

bk(x− a)α−kE0
ρ,α−k+1[ω(x− a)ρ]

and by (2.20),

(3.16)

(Eγj
ρ,j(µ+α),ω;a+y0)(x) =

n∑
k=1

bk

Γ(α− k + 1)

· (Eγj
ρ,j(µ+α),ω;a+[(t− a)α−k]

)
(x)

=
n∑

k=1

bk(x−a)j(µ+α)+α−kEγj
ρ,j(µ+α)+α−k+1,ω;a+

· [ω(x− a)ρ], j = 1. . . . ,m.
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In accordance with (2.13)

(3.17) (Iα
a+f)(x) = (E0

α,ρ,ω;a+f)(x).

Using (3.15), (3.16) and (3.17), we rewrite (3.14) in the form

(3.18)

ym(x) =
n∑

k=1

bk(x− a)α−k

{ m∑
j=0

λj(x− a)(µ+α)j

· Eγj
ρ,(µ+α)j+α−k+1[ω(x− a)ρ]

}

+
m−1∑
j=0

λj(Eγj
ρ,j(µ+α)+α,ω;a+f)(x).

Passing to the limit as m → ∞, we obtain the following representation
for the solution y(x):

(3.19)

y(x) =
n∑

k=1

bk(x− a)α−k

{ ∞∑
j=0

λj(x− a)(µ+α)j

· Eγj
ρ,(µ+α)j+α−k+1[ω(x− a)ρ]

}

+
∞∑

j=0

λj(Eγj
ρ,j(µ+α)+α,ω;a+f)(x).

If we take (3.7) and (3.8) into account, then (3.19) can be represented
in the form (3.6). This completes the proof of the theorem.

4. Solution of the Cauchy-type problem for fractional
integro-differential equations with the Mittag-Leffler function
and the Kummar function in the kernels. The results in the
previous section can be applied to solve the Cauchy-type problems

(Dα
a+y)(x) = λ

∫ x

a

(x−t)α−1Eρ,µ[ω(x−t)ρ]y(t) dt+ f(x),(4.1)

a < x � b,

lim
x→+a

(Dα−k
a+ y)(x) = bk, k = 1, 2, . . . , n = −[−Re (α)],(4.2)
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and

(Dα
a+y)(x) =

λ

Γ(µ)

∫ x

a

(x− t)µ−1Φ(γ, µ;ω(x− t))y(t) dt+ f(x),

(4.3)

a < x � b,

lim
x→+a

(Dα−k
a+ y)(x) = bk, k = 1, 2, . . . , n = −[−Re (α)],(4.4)

containing the Mittag-Leffler function (1.4) and the Kummer function
(1.9) in the kernels, respectively.

Theorem 4 and (1.6) imply

Theorem 5. Let α, ρ, µ, ω, λ ∈ C (Re (α),Re (ρ),Re (µ) > 0). If
f ∈ L(a, b), then the Cauchy-type problem (4.1) (4.2) is solvable in the
space L(a, b) and its unique solution is given by

(4.5) y(x) =
n∑

k=1

bkyk(x) +
∫ x

a

K(x− t)f(t) dt,

where

(4.6) yk(x) = (x−a)α−k
∞∑

j=0

λj(x−a)(µ+α)jEj
ρ,(µ+α)j+α−k+1 [ω((x−a)ρ)]

for k = 1, 2, . . . , n, and

(4.7) K(u) =
∞∑

j=0

λju(µ+α)j+α−1Ej
ρ,(µ+α)j+α (ωuρ).

Theorem 6. Let α, µ, γ, ω, λ ∈ C (Re (α),Re (µ) > 0). If f ∈
L(a, b), then the Cauchy-type problem (4.3) (4.4) is solvable in the space
L(a, b) and its unique solution is given by

(4.8) y(x) =
n∑

k=1

bkyk(x) +
∫ x

a

K(x− t)f(t) dt,
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where

(4.9)

yk(x) = (x− a)α−k
∞∑

j=0

λj(x− a)(µ+α)j

· 1
Γ[j(µ+ α) + α− k + 1]

· Φ(γj, (µ+ α)j + α− k + 1;ω(x− a))

for k = 1, 2, . . . , n, and

(4.10)

K(u) =
∞∑

j=0

λju(µ+α)j+α−1 1
Γ[j(µ+α) + α]

Φ(γj, (µ+α)j + α;ωu).

5. Solutions of the Cauchy-type problems in special cases.
Now we treat the solution of the Cauchy-type problem of the form
(3.1) (3.2) with f(x) = p(x− a)ν−1Eσ

ρ,ν [ω(x− a)ρ]:

(5.1)
(Dα

a+y)(x) = λ

∫ x

a

(x− t)µ−1Eγ
ρ,µ[ω(x− t)ρ]y(t) dt

+ p(x− a)ν−1Eσ
ρ,ν [ω(x− a)ρ], a < x � b,

(5.2) lim
x→+a

(Dα−k
a+ y)(x) = bk, k = 1, 2, . . . , n = −[−Re (α)].

From Theorem 4 we deduce the following result.

Theorem 7. Let α, ρ, µ, ν, γ, σ, ω, p, λ ∈ C (Re (α),Re (ρ),Re (µ),
Re (ν) > 0). Then the Cauchy-type problem (5.1) (5.2) is solvable in
the space L(a, b) and its unique solution is given by

(5.3)
y(x) =

n∑
k=1

bkyk(x) + p(x− a)α+ν−1
∞∑

j=0

λj(x− a)(µ+α)j

· Eγj+σ
ρ,(µ+α)j+α+ν [ω(x− a)ρ],



SOLUTION OF VOLTERRA EQUATIONS 393

where yk(x), k = 1, 2, . . . , n, are given by (3.7).

Proof. We apply Theorem 4 with f(x) = p(x− a)ν−1Eσ
ρ,ν [ω(x− a)ρ].

Since such an f belongs to L(a, b), then by Theorem 4 the problem
(5.1) (5.2) is solvable in L(a, b) and its unique solution has the form

(5.4) y(x) =
n∑

k=1

bkyk(x) + p
∞∑

j=0

λjKj(x),

where
(5.5)

Kj(x) =
∫ x

a

(x−t)(µ+α)j+α−1Eγj
ρ,(µ+α)j+α

· [ω(x−t)ρ](t−a)ν−1Eσ
ρ,ν [ω(t−a)ρ] dt j = 0, 1, 2, . . . .

Making the change of variable t − a = τ and applying (2.8) with x
being replaced by x− a, we find

(5.6) Kj(x) = (x− a)(µ+α)j+α+ν−1Eγj+σ
ρ,(µ+α)j+α+ν [ω(x− a)ρ].

Substituting (5.6) into (5.4), we obtain (5.3), and the theorem is proved.

Similarly from Theorems 5 and 6 we deduce the following statements
which present solutions in closed form of the Cauchy-type problems
(4.1) (4.2) and (4.3) (4.4) with the special function f(x) = p(x −
a)ν−1Eρ,ν [ω(x − a)ρ] and f(x) = p(x − a)ν−1Φ[σ, ν;ω(x − t)]/Γ(ν),
respectively.

Theorem 8. Let α, ρ, µ, ν, ω, p, λ ∈ C (Re (α), Re (ρ), Re (µ),
Re (ν) > 0). Then the Cauchy-type problem

(5.7)
(Dα

a+y)(x) = λ

∫ x

a

(x− t)µ−1Eρ,µ[ω(x− t)ρ]y(t) dt

+ p(x− a)ν−1Eρ,ν [ω(x− a)ρ], a < x � b,

(5.8) lim
x→+a

(Dα−k
a+ y)(x) = bk, k = 1, 2, . . . , n = −[−Re (α)],
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is solvable in the space L(a, b) and its unique solution is given by

(5.9)
y(x) =

n∑
k=1

bkyk(x) + p(x− a)α+ν−1
∞∑

j=0

λj(x− a)(µ+α)j

· Ej+1
ρ,(µ+α)j+α+ν [ω(x− a)ρ],

where yk(x), k = 1, 2, . . . , n, are given by (4.6).

Theorem 9. Let α, µ, ν, γ, σ, ω, p, λ ∈ C (Re (α),Re (µ),Re (ν) > 0).
Then the Cauchy-type problem

(5.10)
(Dα

a+y)(x) =
λ

Γ(µ)

∫ x

a

(x− t)µ−1Φ[γ, µ;ω(x− t)]y(t) dt

+
p

Γ(ν)
(x− a)ν−1Φ[σ, ν;ω(x− t)], a < x � b,

(5.11) lim
x→+a

(Dα−k
a+ y)(x) = bk, k = 1, 2, . . . , n = −[−Re (α)],

is solvable in the space L(a, b), and its unique solution is given by

(5.12)
y(x) =

n∑
k=1

bkyk(x) + p(x− a)α+ν−1
∞∑

j=0

[λ(x− a)µ+α]j

Γ[(µ+ α)j + α+ ν]

· Φ[γj + σ, (µ+ α)j + α+ ν;ω(x− a)],

where yk(x), k = 1, 2, . . . , n, are given by (4.9).
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