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INTEGRAL OPERATORS OF MARCINKIEWICZ TYPE

AHMAD AL-SALMAN AND HUSSAIN AL-QASSEM

ABSTRACT. In this paper we study integral operators of
Marcinkiewicz type. We formulate a general method which
allows us to obtain the Lp boundedness of several classes of
integral operators of Marcinkiewicz type. Our results extend
as well as improve previously known results on Marcinkiewicz
integral operators.

1. Introduction and statements of results. Let n ≥ 2 and
Sn−1 be the unit sphere in Rn equipped with the normalized Lebesgue
measure dσ. Suppose that Ω is a homogeneous function of degree zero
on Rn that satisfies Ω ∈ L1(Sn−1) and

(1.1)
∫
Sn−1

Ω(x) dσ(x) = 0.

Let U(r) be the open ball centered at the origin in Rn with radius 2r,
r ∈ R. If r = ∞, we shall let U(r) = Rn. For a suitable mapping
Θ : U(r) → Rd, d ∈ N and a measurable function h : R+ → R, let
{σt,Θ,Ω,h,r : t ∈ R} be the family of measures defined on Rd by

(1.2)∫
Rd

f dσt,Θ,Ω,h,r = 2−tχ(−∞,r)(t)
∫
|y|≤2t

f(Θ(y))|y|1−nΩ(y)h(|y|) dy,

where χ(−∞,r)(t) is the characteristic function of the interval (−∞, r).
Define the operator SΘ,Ω,h,r by

(1.3) SΘ,Ω,h,rf(x) =
( ∫ ∞

−∞
|σt,Θ,Ω,h,r ∗ f(x)|2 dt

)1/2

.

2000 AMS Mathematics Subject Classification. Primary 42B20, Secondary
42B15, 42B25.

Key words and phrases. Marcinkiewicz integral operators, Fourier transform,
submanifolds of finite type, surfaces of revolution, real-analytic submanifolds,
maximal functions, rough kernels.

This paper is supported by Yarmouk University Research Council.

Copyright c©2002 Rocky Mountain Mathematics Consortium

343



344 A. AL-SALMAN AND H. AL-QASSEM

If r = ∞, we shall simply denote the measures σt,Θ,h,r and the
operator SΘ,Ω,h,r by σt,Θ,Ω,h and SΘ,Ω,h, respectively. Obviously, if
r = ∞, n = d and Θ(y) = (y1, y2, . . . , yn), then the operator SΘ,Ω,1

is the well-known Marcinkiewicz integral operator introduced by Stein
which we shall denote by SΩ. When Ω ∈ Lipα(Sn−1), 0 < α ≤ 1, Stein
proved that SΩ is bounded on Lp for all 1 < p ≤ 2. Subsequently,
Benedek, Calderón and Panzone proved the Lp boundedness of SΩ for
all 1 < p < ∞ under the condition Ω ∈ C1(Sn−1), [4]. Recently,
Chen, Fan and Pan [5] proved an Lp boundedness result concerning
the operator SΘ,Ω,1 under the conditions that n = d, Θ(y) = P (|y|)y′
where y′ = |y|−1y for y �= 0, P is a real polynomial on R which
satisfies P (0) = 0, and Ω satisfies Grafakos-Stefanov’s condition [12].
Very recently, when n = d, Θ(y) = P(y) = (P1(y), . . . , Pd(y)) is
a polynomial mapping, Al-Qassem and Al-Salman [1] studied the
Lp boundedness of the operator SΘ,Ω,1 under the assumption that
Ω ∈ ∩∞

k=1F (α, k, n) (for the definition of F (α, k, n) see [1] or [3]).

The main focus of this paper is to prove the Lp boundedness of sev-
eral classes of Marcinkiewicz integral operators of the form (1.3) with
kernels satisfying the natural condition Ω ∈ L(log+ L)(Sn−1). In fact,
we present a systematic method which not only allows us to deal with
the operators under consideration, but also has found applications on
other problems in this area which will appear in forthcoming papers.
The operators which we consider include Marcinkiewicz integral opera-
tors along submanifolds of finite type, Marcinkiewicz integral operators
with nonhomogeneous kernels, Marcinkiewicz integral operators along
real-analytic manifolds, and Marcinkiewicz integral operators along sur-
faces of revolutions. Our results are the following

Theorem 1.1. Suppose Θ is of finite type at 0 and Ω ∈ L(log+ L)
(Sn−1). Then SΘ,Ω,1,1 is bounded on Lp(Rd) for 1 < p <∞.

This result was proved by Ding, Fan and Pan in [7] under the stronger
condition Ω ∈ Lq(Sn−1), q > 1.

Theorem 1.2. Suppose that

(i) Θ(y) = (P1(y), . . . , Pd(y)) is a polynomial mapping with
Θ(−y) = −Θ(y).
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(ii) supR>0(1/R
∫ R

0
|h(t)|γ dt)1/γ <∞ for some γ > 1.

Then SΘ,Ω,h is bounded on Lp for 1 < p < ∞ provided that
Ω ∈ L(log+ L)(Sn−1). Moreover, the bound for the operator norm
‖SΘ,Ω,h‖p,p is independent of the coefficients of the polynomials {Pj}.

We should point out that, using the technique in [9], one can only
prove the above result in Theorem 1.2 under the stronger condition
Ω ∈ Lq(Sn−1), q > 1. Our next results are motivated by the work on
singular integrals in [6] and [11].

Theorem 1.3. Suppose that |r| < ∞ and that Θ is real-analytic
mapping from U(r) into Rd. If Ω ∈ L(log+ L)(Sn−1), then SΘ,Ω,1,r is
bounded on Lp(Rd) for 1 < p <∞.

Theorem 1.4. Suppose that d = n+ 1 and Θ = (y,Γ(|y|)), where Γ
is a strictly increasing function on [0,∞) that satisfies

(a) Γ′(t) ≥ C(Γ(t)/t) for t > 0;

(b) Γ(2t) ≤ cΓ(t) for t > 0 and for some nonnegative constant c.

Then SΘ,Ω,1 is bounded on Lp(Rn+1) for 1 < p < ∞ provided that
Ω ∈ L(log+ L)(Sn−1).

Throughout this paper, the letters C and θp are positive constants
that may vary at each occurrence but they are independent of the
essential variables.

2. Main tools. Suppose 0 < δ < 1. By an elementary procedure,
choose a collection of C∞ functions {ψδ,t}t∈R on (0,∞) with the
following properties:

supp (ψδ,t) ⊆
[
2(−t−1)/δ, 2(−t+1)/δ

]
, 0 ≤ ψδ,t ≤ 1,

∣∣∣ dsψδ,t

dus(u)

∣∣∣ ≤ C

us
and

∑
j∈Z

ψδ,j+t(u) = 1.

For a linear transformation L : Rn → Rd, d ≥ 1, let ϕδ,t,L be such
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that ϕ̂δ,t,L(ξ) = ψδ,t(|L(ξ)|). For j ∈ Z, define the operator gδ
j,L by

(2.1) gδ
j,L(f)(x) =

( ∫ ∞

−∞
|ϕδ,j+t,L ∗ f(x)|2 dt

)1/2

.

Then

(2.2) ‖gδ
j,L(f)‖p ≤ C‖f‖p

for all 1 < p <∞. By using a technique developed in [9], one only needs
to verify (2.2) in the special case where d ≤ n and L is a projection
πn

d . The latter can be obtained by a well-known argument (see [13,
pp. 26 28]). For a family of measures {σt : t ∈ R}, define the operator
Jδ

j,L by

(2.3) Jδ
j,L(f)(x) =

( ∫ ∞

−∞
|σt/δ ∗ ϕδ,j+t,L ∗ f(x)|2 dt

)1/2

.

Let σ∗ be the maximal function which corresponds to the family
{σt : t ∈ R}, i.e., σ∗(f)(x) = supt∈R ||σt| ∗ f(x)|.

Lemma 2.1. Let A be a positive real number and {σt : t ∈ R} be a
family of measures on Rn such that

(i) supt∈R ‖σt‖ ≤ 1;

(ii) ‖σ∗(f)‖q ≤ A‖f‖q for some q > 1.

Then, for |1/2− 1/p0| = 1/2q, there exists a constant C such that

(2.4) ‖Jδ
j,L(f)‖p0 ≤ C‖gδ

j,L(f)‖p0

√
A‖f‖p0 .

Proof. We follow a similar argument as in [8]. By duality, it suffices
to prove (2.4) for p0 > 2. Let q = (p0/2)′ and choose a nonnegative
function v ∈ Lq

+(Rn) with ‖v‖q = 1 such that

‖Jδ
j,L(f)‖2

p0
=

∫
Rn

∫ ∞

−∞
|σt/δ ∗ ϕδ,j+t,L ∗ f(x)|2v(x) dt dx.
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Then it is easy to see that

‖Jδ
j,L(f)‖2

p0
≤

∫
Rn

[gδ
j,L(f)]

2(z)σ∗(v)(−z) dz

≤ ‖gδ
j,L(f)‖2

p0
‖σ∗(v)‖q ≤ C2A‖gδ

j,L‖2
p0
‖f‖2

p0
,

where the last inequality follows by (2.2) and (ii). This concludes the
proof of the lemma.

Theorem 2.2. Let 0 < δ < 1 and A > 1. Suppose that {σt : t ∈ R}
is a family of measures on Rn such that

(i) supt∈R ‖σt‖ ≤ 1;

(ii) ‖Jδ
j,L(f)‖2 ≤ 2−|j|‖f‖2 for all j ∈ Z;

(iii) ‖Jδ
j,L(f)‖p0 ≤ CA‖f‖p0 for all j ∈ Z and for some p0 > 2.

Then for p′0 < p < p0, there exists a constant C such that the operator
S defined by (1.3) with σt,Θ,Ω,h,r replaced by σt satisfies

(2.5) ‖Sf‖p ≤ AC√
δ
‖f‖p.

Proof. By interpolation between (ii) and (iii), we get that

(2.6) ‖Jδ
j,L(f)‖p ≤ 2−θp|j|AC‖f‖p

for all p′0 < p < p0. By the properties of the collection {ψδ,j}j∈Z and a
simple change of variable we see that

(2.7) Sf(x) ≤ 1√
δ

∑
j∈Z

Jδ
j,L(f)(x).

Hence, by combining (2.6) and (2.7) we get (2.5) for all p′0 < p < p0.
This completes the proof of our theorem.

By minor modifications of the proof of Lemma 2.5 in [1], we get

Lemma 2.3. Let {σl
t : l = 0, 1, . . . , N, t ∈ R} be a family of

measures such that σ0
t = 0 for all t ∈ R. Let Dl : Rn → Rml ,
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l = 0, 1, . . . , N be linear transformations, ml ∈ N. Let dl ∈ R+ and
δl ∈ R+, l = 1, . . . , N . Suppose that for all t ∈ R and l = 0, 1, . . . , N ,
we have

(i) ‖σl
t‖ ≤ C;

(ii) |(σl
t)̂(ξ)| ≤ C(2dlt|Dl(ξ)|)δl ;

(iii) |(σl
t)̂(ξ)− (σl−1

t )̂(ξ)| ≤ C(2dlt|Dl(ξ)|)−δl .

Then there exists a family of measures {νl
t : l = 1, . . . , N, t ∈ R}

such that

(i′) ‖νl
t‖ ≤ C;

(ii′) |(νl
t)(ξ)| ≤ Cmin{(2dlt|Dl(ξ)|)δl , (2dlt|Dl(ξ)|)−δl};

(iii′) σN
t =

∑N
l=1 ν

l
t.

Remark 2.4. One can show that, if the families {σl
t : t ∈ R}, l =

0, 1, . . . , N , have the additional assumption that their corresponding
maximal functions are bounded on Lp(Rn) for some 1 < p < ∞, then
so are the families {νl

t : t ∈ R}, l = 1, . . . , N , with the same Lp bounds.

The following lemma is a key in proving our results and it may be
useful in some other situations as well.

Lemma 2.5. Suppose that for some α > 0, Ω ∈ L(log+ L)α(Sn−1)
that satisfies (1.2). Then there exists a subset D of N, a sequence
{λm : m ∈ N} of nonnegative real numbers, and a sequence of functions
{Ωm : m ∈ D ∪ {0}} in L1(Sn−1) such that

(i)
∫
Sn−1 Ωm dσ = 0 for m ∈ D ∪ {0};

(ii) ‖Ωm‖∞ ≤ 24m and ‖Ωm‖1 ≤ 2 for m ∈ D;

(iii) Ω0 ∈ L2(Sn−1);

(iv)
∑

m∈Dmαλm <∞;

(v) Ω = Ω0 +
∑

m∈D λmΩm.

Proof. We argue as in [2]. For a natural number m ∈ N, let Em be
the set of points x′ ∈ Sn−1 which satisfy 2m ≤ |Ω(x′)| < 2m+1. Also
we let E0 be the set of points x′ ∈ Sn−1 which satisfy |Ω(x′)| < 2. For
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m ∈ N ∪ {0}, let bm = ΩχEm
and λm = ‖ΩχEm

‖1, where χEm
is the

characteristic function of the set Em. Let D be the set of all m ∈ N
with 23mλm ≥ 1. Define the sequence of functions {Ωm}m∈D∪{0} by

Ω0(x) = b0(x)−
∫
Sn−1

b0(x) dσ(x) +
∑

m/∈D

{
bm(x)−

∫
Sn−1

bm(x) dσ(x)
}

and for m ∈ D,

Ωm(x) = (λm)−1(bm(x)−
∫
Sn−1

bm(x) dσ(x)).

Now (i) (iii) and (v) hold trivially. On the other hand,

∑
m∈D

mαλm ≤
∑

m∈D

∫
Em

(log+ Ω)α|Ω| dσ ≤ ‖Ω‖L(log+ L)α(Sn−1).

3. Maximal functions. In this section we prove the following
general result concerning maximal functions

Theorem 3.1. Let L : Rn → Rd be a linear transformation and
0 < δ < 1. Let {σt : t ∈ R} and {µt : t ∈ R} be two families of
measures that satisfy

(i) supt∈R ‖σt‖ ≤ 1 and supt∈R ‖µt‖ ≤ 1;

(ii) |σ̂t(ξ)− µ̂t(ξ)| ≤ (2t|L(ξ)|)δ;
(iii) |σ̂t(ξ)| ≤ (2t|L(ξ)|)−δ;

(iv) For any nonnegative function f , F (t, x) = |σt ∗ f(x)| satisfies

F (t, x) ≤ 2s−tF (s, x) for t ≤ s;

(v) ‖µ∗(f)‖p ≤ C/δ‖f‖p for all 1 < p <∞.

Then

(3.1) ‖σ∗(f)‖p ≤ C

δ
‖f‖p

for all 1 < p <∞.
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Proof. By a technique developed in [9], we may assume that d ≤ n
and L = πn

d is a projection. Choose F ∈ S(Rd) such that F̂(η) = 1 for
|η| ≤ 1/2, and F̂(η) = 0 for |η| ≥ 1. Let Fr(x) = r−dF(x/r) for r > 0.
Define the family of measures {τt : t ∈ R} by

(3.2) τ̂t(ξ) = σ̂t(ξ)− F̂(2tπn
d (ξ))µ̂t(ξ).

Let Jδ
j,τ,πn

d
be the operator defined by (2.3) with σt/δ replaced by τt/δ.

Then by (iv), (3.2) and the properties of the collection {ψδ,j}j∈Z, we
can easily see that the following inequalities hold

σ∗(f)(x) ≤ 2√
δ

∑
j∈Z

Jδ
j,τ,πn

d
(f)(x) + (M ⊗ IRn−d)(µ∗(f)(x))

(3.3)

τ∗(f)(x) ≤ 2√
δ

∑
j∈Z

Jδ
j,τ,πn

d
(f)(x) + 2(M ⊗ IRn−d)(µ∗(f)(x)),

(3.4)

whereM stands for the Hardy-Littlewood maximal function on Rd and
IRn−d is the identity operator on Rn−d.

By the estimates (i) (iii) and the definition of the measures {τt : t ∈
R}, we have

sup
t∈R

‖τt/δ‖ ≤ C;(3.5)

|τ̂t/δ(ξ)| ≤ Cmin{(2t/δ|πn
d (ξ)|)δ, (2t/δ|πn

d (ξ)|)−δ}.(3.6)

Now, for j ∈ Z, by (3.6), it is easy to see that

‖Jδ
j,τ,πn

d
(f)‖2

2 ≤ 2−2|j|+2

∫
Rd

|f̂(ξ)|2

·
( ∫ δ

log 2 log(2(−j+1)/δ|πn
d (ξ)|−1)

δ
log 2 log(2(−j−1)/δ|πn

d
(ξ)|−1)

dt

)
dξ

= 2−2|j|+3‖f‖2
2.

Thus

(3.7) ‖Jδ
j,τ,πn

d
(f)‖2 ≤ 2−|j|√8‖f‖2.
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By (3.4) and (3.7), we have

(3.8) ‖τ∗(f)‖2 ≤ C

δ
‖f‖2.

Thus, by Lemma 2.1, (2.1) and (3.8) with q = 2, we get

(3.9) ‖Jδ
j,τ,πn

d
(f)‖p0 ≤ C√

δ
‖f‖p0

for |1/p0 − 1/2| = 1/4. Therefore, by (3.4), (3.7), (3.9) and condition
(v) we have

(3.10) ‖τ∗(f)‖p ≤ C

δ
‖f‖p

for p ∈ [(4/3), 4]. Next, repeating the above argument with q =
(4/3) + ε(ε→ 0+), we get that

(3.11) ‖τ∗δ ‖p ≤ C

δ
‖f‖p

for p ∈ [(7/8), 8]. By successive applications of the above argument, we
get

(3.12) ‖τ∗δ ‖p ≤ C

δ
‖f‖p

for all 1 < p <∞. Thus by Lemma 2.1, (2.1) and (3.12), we have

(3.13) ‖Jδ
j,τ,πn

d
(f)‖p ≤ C√

δ
‖f‖p

for all 1 < p <∞. Hence (3.1) follows by (3.3), (3.7) and (3.13).

4. Proof of main results.

Definition 4.1. Let U be an open set in Rn and Θ : U → Rd a
smooth mapping. For x0 ∈ U we say that Θ is of finite type at x0 if,
for each unit vector η in Rd, there is a multi-index α so that

∂α
x [Θ(x) · η]x=x0 �= 0.
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Proof of Theorem 1.1. Assume that Ω ∈ L(log+ L)(Sn−1). Let D,
{λm : m ∈ N} and {Ωm : m ∈ D ∪ {0}} be as in Lemma 2.5 (here
α = 1). For m ∈ D ∪ {0}, let {σt,Θ,Ωm,1,1 : t ∈ R} be the family
of measures defined by (1.2) and SΘ,Ωm,1,1 be the integral operator
defined by (1.3). Thus

SΘ,Ω,1,1(f) ≤ SΘ,Ω0,1,1(f) +
∑

m∈D

λmSΘ,Ωm,1,1(f).

We will show that ‖SΘ,Ωm,1,1(f)‖p ≤ Cm‖f‖p for p ∈ (1,∞) which im-
plies by condition (iv) of Lemma 2.5 that ‖∑

m∈D λmSΘ,Ωm,1,1(f)‖p ≤
C‖f‖p for p ∈ (1,∞). On the other hand, a similar but easier argument
yields that SΘ,Ω0,1,1(f) is bounded on Lp for p ∈ (1,∞).

By a similar argument as in the proof of Theorem B in [10], there
exist a natural number N , polynomial mappings Pl : Rn → Rd, linear
transformations Ll : Rd → Rλ(l), positive integers dl, l = 1, . . . , N ,
and measures {σt,Pl,Ωm,1,1 : t ∈ R, 0 ≤ l ≤ N} such that

|(σt,Pl,Ωm,1,1 )̂(ξ)− (σt,Pl−1,Ωm,1,1)̂(ξ)| ≤ C‖Ωm‖1(2dlt|Ll(ξ)|)εl ;
(4.1)

|σt,Pl,Ωm,1,1)̂(ξ)| ≤ C‖Ωm‖2(2dlt|Ll(ξ)|)−εl ;(4.2)
‖σt,Pl,Ωm,1,1‖ ≤ C‖Ωm‖1,(4.3)

for t ≤ t0 < 0 and l = 0, 1, . . . , N with σt,P0,Ωm,1,1 = 0 and
σt,PN ,Ωm,1,1 = σt,Θ,Ωm,1,1. Here λ(l) denote the cardinality of {β ∈
(N ∪ {0})n : |β| = l}. Thus, by condition (ii) of Lemma 2.5 and an
interpolation argument, we get

|(σt,Pl,Ωm,1,1)̂(ξ)− (σt,Pl−1,Ωm,1,1 )̂(ξ)| ≤ C(2dlt|Ll(ξ)|)εl/m;
(4.4)

‖(σt,Pl,Ωm,1,1 )̂(ξ)‖ ≤ C(2dlt|Ll(ξ)|)−εl/m;(4.5)
‖σt,Pl,Ωm,1,1‖ ≤ C,(4.6)

for l = 0, 1, . . . , N and t ≤ t0.

For l = 1, . . . , N , let

(σm
Pl
)∗(f) = sup

t∈R
‖σt,Pl,Ωm,1,1| ∗ f |
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and

(σm,+
Pl

)∗(f) = sup
t∈R

‖σt,Pl,|Ωm|,1,1| ∗ f |.

By the Lp boundedness result in [13, pp. 476 478], and the fact that
‖Ωm‖1 ≤ 2, we have

(4.7) ‖(σm,+
Pl

)∗(f)‖p ≤ C‖f‖p

for all 1 < p <∞ and l = 1, . . . , N − 1.

Since the measures σt,Pl,|Ωm|,1,1 satisfy (4.4) (4.6) for l = N , then by
Remark 2.4, (4.7) and Theorem 3.1, we get

(4.8) ‖(σm,+
Θ )∗(f)‖p ≤ Cm‖f‖p

for all 1 < p < ∞. Since (σm
Pl
)∗(f)(x) ≤ (σm,+

Pl
)∗(f)(x), then by (4.7)

and (4.8) we have

(4.9) ‖(σm
Pl
)∗(f)‖p ≤ Cm‖f‖p

for all 1 < p < ∞ and l = 1, . . . , N . Therefore, by Lemma 2.3 and
Remark 2.4, there exists a family of measures {νl,m

t : t ∈ R, 1 ≤ l ≤ N}
which satisfies (i′) (iii′) of Lemma 2.3 with δl = εl/m and

(4.10) ‖(νl,m)∗(f)‖p ≤ Cm‖f‖p

for all 1 < p < ∞ and l = 1, . . . , N . Thus by (iii′) of Lemma 2.3, we
see that

(4.11) SΘ,Ωm,1,1(f) ≤
N∑

l=1

Sl,m(f),

where Sl,m has the same definition as SΘ,Ωm,1,1 with σt,Θ,Ωm,1,1 re-
placed by νl,m

t . Hence by the estimates (i′) (iii′), (4.10) (4.11),
Lemma 2.1 and Theorem 2.2, we have

(4.12) ‖SΘ,Ωm,1,1(f)‖p ≤ Cm‖f‖p

for all 1 < p <∞. This ends the proof of our theorem.
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The proofs of Theorems 1.2 1.4 can be easily obtained by adapting
the same arguments employed in the proof of Theorem 1.1 and the
techniques in [6], [9] and [11]. We omit the details.
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