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ELECTROMAGNETIC SCATTERING FROM AN
ORTHOTROPIC MEDIUM

ROLAND POTTHAST

ABSTRACT. We investigate electromagnetic wave propa-
gation in an inhomogeneous anisotropic medium. For the case
of an orthotropic medium we derive the Lippmann-Schwinger
equation, which is equivalent to a system of strongly singu-
lar integral equations. Uniqueness and existence of a solution
is shown and we examine the regularity of the solution by
means of integral equations. We prove the infinite Fréchet
differentiability of the scattered field in its dependence on the
refractive index of the anisotropic medium and we derive a
characterization of the Fréchet derivatives as a solution of an
anisotropic scattering problem.

1. Introduction. Integral equation methods play a central role in
the study of electromagnetic scattering problems. This is primarily due
to the fact that the mathematical formulation of scattering problems
leads to equations defined over unbounded domains, and hence by the
reformulation in terms of integral equations one can replace the problem
over an unbounded domain by one over a bounded domain. They also
form a powerful tool to study the various features of the problem and
to treat the corresponding inverse scattering problems, cf., [3].

Although integral equation methods for electromagnetic scattering
from obstacles and isotropic inhomogeneous media have been quite
far developed, the corresponding theory for anisotropic media is yet
in its infancy. In many cases of practical importance, however, the
assumption of an isotropic medium is unwarranted. There is a wide
range of materials with an anisotropic behavior in the presence of
electromagnetic waves. For example, in medical imaging the nerves
and organs such as the brain, the heart and the liver are strongly
anisotropic.

With this paper we want to start the investigation of electromagnetic
scattering from anisotropic inhomogeneous bounded media by means
of integral equations. For the sake of simplicity we will restrict our
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attention to the case of orthotropic media since in this case we can
reduce our problem to a problem in two dimensions. We will derive
an integral equation of Lippmann-Schwinger type for the anisotropic
scattering problem. Due to the anisotropic structure this equation
no longer has the form ‘identity operator plus a compact operator’
(as in the isotropic case), but it is an integro-differential equation.
We transform the equation into a system of strongly singular integral
equations.

We investigate the uniqueness and the existence of solutions to our
system of integral equations in L2(�2) in Section 3. In Section 4 we
then derive regularity properties of the solution by means of integral
equations, i.e., we develop the existence theory in H l(�2), l ≥ 1. Here
we give a proof which is independent of the existence and regularity
theorems which are derived within the general theory of partial differ-
ential equations.

In recent years the development of the theory of inverse problems has
led to many further questions on the corresponding direct scattering
problems. Of central importance is the fact that the inverse scattering
problem is both nonlinear and improperly posed. A lot of work
is done to develop Newton-type methods for the solution of inverse
problems based on recent results for the Fréchet differentiability of
boundary value problems with respect to the domain, cf., [6, 9,
10]. In Section 5 we derive the infinite Fréchet differentiability of
the solution to the anisotropic scattering problem with respect to
the refractive index N which, due to anisotropy, is now a matrix.
Further we give a characterization of the nth derivative by means of a
corresponding anisotropic scattering problem. By this, we lay a basis
for the application of Newton-type methods for the solution of the
inverse anisotropic scattering problem.

2. Maxwell‘s equations in an orthotropic medium. We con-
sider time-harmonic electromagnetic wave propagation in an inhomoge-
neous anisotropic medium in �3. The electric field E and the magnetic
field H satisfy the reduced Maxwell equations

(2.1)
curl E − iκH = 0

curl H + iκN (x)E = 0,

where the wave number κ > 0 is defined by κ2 = ε0μ0ω
2 and where we
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assume the refractive index N = N (x) to be a matrix which is given
by

(2.2) N (x) =
1
ε0

(
ε(x) + i

σ(x)
w

)
.

Here μ0 denotes the magnetic permeability which is assumed to be
constant, ε = ε(x) denotes the tensor of the electric permittivity,
σ = σ(x) denotes the tensor of the electric conductivity and ω is the
frequency of the electromagnetic wave. For physical reasons we can
assume that ε is positive definite and σ is positive semi-definite. In the
case of a diagonal tensor this can be reduced to the usual positivity-
conditions which are imposed on ε and σ in the scalar case. Further
we assume that N (x) − I has compact support D ⊂ �2, i.e., the
inhomogeneity is bounded.

By H(l)(D) we denote the Sobolev space of all functions f ∈ L2(D)
which possess generalized derivatives f (k) ∈ L2(D), k = 1, 2, . . . , l.
The space H

(l)
loc(�2) is the space of functions f for which fφ ∈ H(l)(D)

for all φ ∈ C∞
0 (�2) where D = supp (φ).

Let Ei, Hi be a solution of Maxwell’s equations for a homogeneous
medium N (x) ≡ I representing an incident field. We want to find a
sufficiently smooth solution E, H of (2.1) in �3 such that the scattered
field Es, Hs defined by

(2.3)
E = Ei + Es,

H = Hi + HS ,

satisfies the Silver-Müller radiation condition

(2.4) lim
r→∞(Hs × x − rEs) = 0

uniformly for all directions x̂ = x/|x| where r = |x|. In this paper
we consider continuously differentiable matrix functions N and an
orthotropic medium, i.e., we assume for N the form

(2.5) N (x) =

⎛
⎝ n11(x) n12(x) 0

n21(x) n22(x) 0
0 0 n33(x)

⎞
⎠
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where the matrix is independent of the z-coordinate. We consider
electromagnetic fields which are also independent of the z-coordinate.
Then we get the following two groups of scalar equations which are
called TM-mode and TE-mode, respectively:

(2.6)

∂E3

∂y
= iκH1

∂E3

∂x
= −iκH2

∂H2

∂x
− ∂H1

∂y
= −iκn33E3

and

(2.7)

∂H3

∂y
= −iκ(n11E1 + n12E2)

∂H3

∂x
= iκ(n21E1 + n22E2)

∂E2

∂x
− ∂E1

∂y
= iκH3,

where the first group involves only H1, H2 and E3 and the second group
involves only E1, E2 and H3. The first group of equations describe the
scattering problem for an electromagnetic wave polarized perpendicular
to the z-axis. The solution to this problem is well known, cf. [3]. From
the second group of equations we obtain for u = H3 the equation

(2.8) (∇ · N(x)∇ + κ2)u = 0,

or in a weak sense

(2.9)
∫

D

∇v · N∇u dx −
∫

∂D

ν · (vN∇u) ds = κ2

∫
D

vu dx

for all domains D with C1-boundary having unit outward normal vector
ν and all v ∈ H1(D), where the matrix N(x) is given by

(2.10) N(x) =
1

n11n22 − n12n21

(
n11 n21

n12 n22

)
.
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In the case of the TM or TE-mode we replace the Silver-Müller
radiation condition for Es, Hs by the Sommerfeld radiation condition
for the field us := Hs

3

(2.11) lim
r→∞

√
r

(
∂us

∂r
− ikus

)
= 0,

uniformly in all directions where r = |x|, x ∈ �2.

We will work with matrices N(x) which can be pointwise diago-
nalized with a unitary complex matrix U(x), i.e., we have N(x) =
U∗(x)ND(x)U(x) with a diagonal matrix ND(x) and U∗(x)U(x) = I
for every x ∈ �2. Further we will assume that ND has a positive defi-
nite real part and a negative semi-definite imaginary part (for diagonal
matrices this can be obtained from the assumptions on the matrix N ).
We call this set of matrices S. For a wide range of practical applications
these conditions are fulfilled.

3. Uniqueness and existence. In this section we will establish
the uniqueness and the existence of solutions to the scattering problem
(2.8) (2.11). For the uniqueness proof we use the unique continuation
principle. The existence will be shown by means of integral equations.
A complex matrix N(x) is called coercive, (semi-coercive), if

(3.1) Im (a · Na) ≥ γ(x)|a|2

for every a ∈ C2 where γ(x) > 0, γ ≥ 0, compare [1]. Matrices N ∈ S
are semi-coercive. A complex matrix N(x) is called elliptic, if a·Na 	= 0
for all a 	= 0, a ∈ �2. Matrices N ∈ S are elliptic.

Theorem 1. Assume that N is semi-coercive and elliptic. Then the
scattering problem (2.8) has at most one solution.

Proof. Let u be a solution of (2.8) with ui = 0. Apply equation (2.9)
to v = ū for D ⊃ supp (M) and use the coercivity of N to obtain

(3.2) Im
( ∫

∂D

u
∂u

∂ν
ds

)
=

∫
D

Im
(
∇u · (N∇u)

)
dy ≥ 0.
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From Theorem 2.12 of [3] we obtain u ≡ 0 in the exterior of D (note
that u ∈ H1

loc(�2) solves in a weak sense the Helmholtz equation in
the exterior of supp (M) and is therefore analytic) and from the unique
continuation principle, see [5, Theorem 17.2.1], we get u = 0, which
ends the proof (in Hörmander’s theorem it is shown that the set of
generalized normal vectors to the subset supp (u) ⊂ �2 is empty and
therefore u = 0 in all of �2).

We now transform problem (2.8) (2.11) into an integral equation.
Let D ⊂ �2 be a bounded domain which contains the support of M .
The fundamental solution to the Helmholtz equation in two dimensions
is given by

Φ(x, y) :=
i

4
H

(1)
0 (κ|x − y|), x 	= y

where H
(1)
0 is the Hankel function of the first kind of order zero. Let

us denote the ball with center x and radius ε by B(ε, x). From (2.9)
for v(y) = Φ(x, y) we obtain for D(ε, x) := D \ B(ε, x) the equation

(3.3)
∫

D(ε,x)

∇yΦ(x, y) · ∇u(y) dy

−
∫

D(ε,x)

∇yΦ(x, y) · M(y)∇u(y) dy

−
∫

∂D(ε,x)

ν(y) · Φ(x, y)∇u(y) ds(y)

+
∫

∂B(ε,x)

ν(y) · Φ(x, y)M(y)∇u(y) ds(y)

= κ2

∫
D(ε,x)

Φ(x, y)u(y) dy.

The function Φ(x, .) solves (2.9) in D(ε, x) for N ≡ I. Therefore with
v = u we obtain

(3.4)
∫

D(ε,x)

∇u(y) · ∇Φ(x, y) dy −
∫

∂D(ε,x)

ν(y) · u(y)∇Φ(x, y) ds(y)

= κ2

∫
D(ε,x)

u(y)Φ(x, y) dy.
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We subtract (3.4) from (3.3) and get

(3.5) −
∫

D(ε,x)

∇Φ(x, y) · M(y)∇u(y) dy

−
∫

∂D(ε,x)

{
∂u(y)
∂ν(y)

Φ(x, y) − u(y)
∂Φ(x, y)
∂ν(y)

}
ds(y)

= −
∫

∂B(ε,x)

ν(y) · Φ(x, y)M(y)∇u(y) ds(y).

Using Green’s formula [3, (2.5)] applied to ui and Green’s theorem [3,
(2.3)] and the radiation condition (2.11) applied to us we derive

(3.6)

∫
∂D

{
Φ(x, y)

∂ui(y)
∂ν(y)

− ui(y)
∂Φ(x, y)
∂ν(y)

}
ds(y) = ui(x),

∫
∂D

{
Φ(x, y)

∂us(y)
∂ν(y)

− us(y)
∂Φ(x, y)
∂ν(y)

}
ds(y) = 0.

Finally we estimate the integrals over ∂B(ε, x) in (3.5). We estimate
(note that ν is directed into the interior of B(ε, x))

(3.7)
∫

∂B(ε,x)

u(y)
∂Φ(x, y)
∂ν(y)

ds(y) =
1
2π

∫
∂B(ε,x)

u(y)
ds(y)

ε
+ O(ε)

and ∫
∂B(ε,x)

∂u(y)
∂ν(y)

Φ(x, y) ds(y) = O(ε ln(ε)).

uniformly for x in compact subsets of �2. Using the convergence

lim
ε→0

∥∥∥∥
∫

∂B(ε,x)

(u(y) − u(x))
ds(y)

ε

∥∥∥∥
L2(D)

= 0,

which is valid for functions in H1(D), we get the L2−convergence

(3.8) −
∫

∂B(ε,x)

{
∂u(y)
∂ν(y)

Φ(x, y) − u(y)
∂Φ(x, y)
∂ν(y)

}
ds(y) −→ u(x).

Now collecting the equations (3.3) (3.8) and passing to the limit ε → 0
we obtain the integral equation

(3.9) u(x) −
∫

D

∇Φ(x, y) · M∇u(y) dy = ui(x), x ∈ D,
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which is an equation of Lippmann-Schwinger type. Note that the
integral exists in the sense of an improper integral.

We will prove existence of a solution of (3.9) in H1(D). For a domain
D ⊂ �2 define the space X(D) := L2(D) × L2(D) equipped with the
norm

||v||X := (||v1||2L2(D) + ||v2||2L2(D))
1/2

for v = (v1, v2) ∈ X(D). We consider matrices M(x), x ∈ �2, to
be multiplication operators on X(D) and we abbreviate X := X(�2).
Take the gradient of equation (3.9), i.e.,

(3.10) ∇u(x) + ∇
(
∇ ·

∫
D

Φ(x, y)(M∇u)(y) dy

)
= ∇uin(x).

Here we work with the weak derivative of a function in H1(D), the
integrals exist in the sense of Cauchy’s principal value. We use the
formula

(3.11)
∂

∂xk

∂

∂xi

∫
D

Φ(x, y)ϕ(y) dy

=
∫

D

∂

∂xk

∂

∂xi
Φ(x, y)ϕ(y)dy − 1

2
δkiϕ(x),

see [8, p. 310] for L2−densities to obtain the equation

(3.12)

∇u(x)− 1
2
(M∇u)(x)+

∫
D

∇x(∇x ·{Φ(x, y)(M∇u)(y)} dy = ∇uin(x).

Using the diagonal matrix

I − ND =: MD =
(

d1(x) 0
0 d2(x)

)
,

we have
(3.13)(

I − 1
2
M

)
(x) = U∗(x)

(
1 − (1/2)d1(x) 0

0 1 − (1/2)d2(x)

)
U(x)

where from the conditions on N we obtain 1 − Re(d1) > 0 and
1 − Re(d2) > 0. We use this to derive that the matrix I − (1/2)M is
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invertible. We multiply the vector equation (3.12) by M(I−(1/2)M)−1.
Using the new function v := M∇u we get the equation

(3.14) v(x) + M

(
I − 1

2
M

)−1

(x)
∫

D

∇x(∇x · {Φ(x, y)v(y)} dy

= M

(
I − 1

2
M

)−1

∇uin(x), x ∈ D

which is a system of strongly singular integral equations for the
components vi, i = 1, 2 of v.

We first show the equivalence of (3.14) to (3.9). Assume that the L2-
vector field v solves (3.14). We note that the integral in (3.14) maps
X(D) into X(D), see [8, p. 257]. We define

v̂(x) := −
(

I − 1
2
M

)−1

(x)

·
∫

D

∇x(∇x · {Φ(x, y)v(y)} dy +
(

I − 1
2
M

)−1

∇uin(x)

and obtain Mv̂ = v from (3.14). From the definition of v̂ using (3.11)
we derive that v̂ satisfies

(3.15) v̂(x) + ∇
(
∇ ·

∫
D

Φ(x, y)(Mv̂)(y) dy

)
= ∇uin(x).

From (3.15) we see that v̂ is the gradient of a vector field

(3.16) u(x) := −∇ ·
∫

D

Φ(x, y)(Mv̂)(y) dy + uin(x)

and that u satisfies

u(x) + ∇ ·
∫

D

Φ(x, y)(M∇u)(y) dy = uin(x),

which is equation (3.9).

Note that if u ∈ H2(D), we also easily obtain (2.8) from (3.9) by
partial integration, application of � + κ2 and (3.11). Let us consider
the integral

(3.17) (Tv)(x) :=
∫
�2

∇x(∇x · Φ(x, y)v(y)) dy, x ∈ �2.
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T defines a strongly singular bounded integral operator in the space
X(�2), cf., [8, p. 257) and therefore also on the space X(D) ⊂ X(�2).
Let T0 denote the operator T in the case κ = 0, i.e., where Φ is replaced
by the fundamental solution of Laplace’s equation. Using the operators
T0 and T − T0 we can rewrite equation (3.14) in the form

(3.18) v + M

(
I − 1

2
M

)−1

T0v + M

(
I − 1

2
M

)−1

(T − T0)v

= M

(
I − 1

2
M

)−1

∇uin.

We estimate the norm of the operator T0 in the following

Lemma 2. On the space X = L2(�2) × L2(�2) equipped with the
norm

||v||X = (||v1||2L2 + ||v2||2L2)1/2, v = (v1, v2) ∈ X

the operator norm of T0 is given by

||T0||BL(X,X) = 1/2

where BL(X, X) denotes the space of bounded linear operators on X
equipped with the canonical operator norm.

Proof. For the kernel k0 of the operator T0 we compute
(3.19)

k0(x, y) =
−1
2π

1
|x − y|2

⎛
⎜⎜⎜⎝

1 − 2
(x1 − y1)2

|x − y|2
(x1 − y1)(x2 − y2)

|x − y|2
(x1 − y1)(x2 − y2)

|x − y|2 1 − 2
(x2 − y2)2

|x − y|2

⎞
⎟⎟⎟⎠ .

We use r = |x − y|, φ = arg[(y − x)/r] and the trigonometric formulas
1 − 2 cos2 φ = − cos(2φ) and 2 sinφ cos φ = sin(2φ) to obtain

(3.20) k0(x, y) =
−1
2π

1
r2

(− cos(2φ) sin(2φ)
sin(2φ) cos(2φ)

)

Since sin(2φ) and cos(2φ) are the spherical harmonics of order 2 in
two dimensions we can use [8, Chapter 10] to compute the Fourier
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transform of k0. We obtain

(3.21) k̂0(ξ) =
1
2

(− cos(2θ) sin(2θ)
sin(2θ) cos(2θ)

)

with ξ = |ξ|(cos θ, sin θ). In the Fourier-space the operator T0 becomes
a multiplication operator k̂0(ξ). For every point ξ ∈ �2 the matrix

(3.22)
(− cos(2θ) sin(2θ)

sin(2θ) cos(2θ)

)

simply rotates and reflects the vector (Fv1(ξ),Fv2(ξ)) which does not
affect its L2-norm ||.||X . Since v and Fv have the same norms we
obtain the statement of the lemma.

For N ∈ S the norm of the matrix operator M(I − (1/2)M)−1 in
X(D) can be estimated by

(3.23)
∥∥∥∥M

(
I − 1

2
M

)−1

v

∥∥∥∥
X(D)

≤ c||v||X(D)

with some constant c < 2. This can be done by again using the diagonal
matrix MD := I − ND. We have

(3.24) M

(
1 − 1

2
M

)−1

(x)

= U∗(x)

⎛
⎜⎜⎝

d1(x)
1 − (1/2)d1(x)

0

0
d2(x)

1 − (1/2)d2(x)

⎞
⎟⎟⎠ U(x)

with 1 − Re (d1) > 0 and 1 − Re (d2) > 0 for the continuous and
compactly supported functions d1 and d2. For the diagonal matrix we
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have

∥∥∥∥
⎛
⎜⎜⎝

d1(x)
1 − (1/2)d1(x)

0

0
d2(x)

1 − (1/2)d2(x)

⎞
⎟⎟⎠ ṽ

∥∥∥∥
X(D)

=
(∥∥∥∥ d1(x)

1 − (1/2)d1(x)
ṽ1(x)

∥∥∥∥
L2(D)

+
∥∥∥∥ d2(x)

1 − (1/2)d2(x)
ṽ2(x)

∥∥∥∥
L2(D)

)1/2

≤ max
i=1,2

sup
x∈D

∣∣∣∣ di(x)
1 − (1/2)di(x)

∣∣∣∣ ||ṽ||X(D)

= max
i=1,2

sup
x∈D

2
(

(Re di(x))2 + (Im di(x))2

(2 − Re di(x))2 + (Im di(x))2

)1/2

||ṽ||X(D),

from which we get the estimate. Therefore by restricting T0 to X(D)
we obtain that the operator norm of M(I − (1/2)M)−1T0 in X(D) is
less than one. Looking at the power series of Φ(x, y), cf., [3, (3.51),
(3.52)] we see that the kernel of T − T0 is weakly singular. Hence the
operator is compact in X(D) for the bounded domain D. We have thus
shown that in X(D) the lefthand side of (3.18) consists of the sum of
the identity operator, an operator with norm lower than one and a
compact operator.

Lemma 3. Assume that the matrix N = I − M is semi-coercive
and elliptic. Then the integral operator on the lefthand side of (3.14)
is injective and the integral equation (3.14) has at most one solution in
X(D).

Proof. Consider a solution v ∈ X(D) of (3.14) with zero righthand
side. We first obtain v ≡ 0 in �2 \ supp (M). From the regularity
results of the next chapter we obtain v ∈ H1(D) × H1(D). Then we
get as shown above a solution u ∈ H2(�2) to the scattering problem
with vanishing incident field. The uniqueness of the scattering problem
yields u ≡ 0. From this we obtain v = M∇u ≡ 0, which proves the
injectivity of the integral equation in X(D).

We now come to the existence theorem.
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Theorem 4. For N = I −M ∈ S the operator given by the lefthand
side of (3.14) is invertible in X(D) and the inverse operator is bounded.

Proof. Since the integral operator is injective we obtain the invertibil-
ity and the boundedness of the inverse by the Neumann series theorem
and the Riesz-Fredholm theory for compact operators, see for example
[7, Corollary 3.8].

4. Regularity properties of the solution. In this section we
prove regularity properties of the solution of (3.14) by means of singular
integral equations.

For a domain D ⊂ �2 we introduce the Sobolev space X(l)(D) :=
H(l)(D) × H(l)(D) equipped with the norm

(4.1) ||v||X(l)(D) :=
∑
|α|≤l

(||Dαv1||2L2(D) + ||Dαv2||2L2(D))
1/2

for v = (v1, v2) ∈ X(l)(D). X
(l)
0 (D) denotes the subspace of functions

in X(l)(D) with compact support in D. Note that the term in brackets
is the X(D)-norm of the function Dαv. We use the abbreviation
X(l) := X(l)(�2) and M(x) := M(x)(I − (1/2)M(x))−1.

Let us first consider the solution of the equation

(4.2) (I + M(x)T0)v = f.

We will show that for M ∈ Cl
0(D) and f ∈ X

(l)
0 (D) the solution of (4.2)

is in X
(l)
0 (D). From the proof of Theorem 4 we obtain the invertibility

of the operator I + M(x)T0 in X(D) and the representation

(4.3)

v = (I + M(x)T0)−1f

=
∞∑

ν=0

(−M(x)T0)νf

where we have q := ||M(x)T0||X(D) < 1. From

||DαT0v||X = ||ξαF(k0)F(v)||X =
1
2
||ξαF(v)||x =

1
2
||Dαv||X
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we see that T0 maps X
(l)
0 (D) into X(l)(D). Thus M(x)T0 maps X

(l)
0 (D)

into itself. We conclude that every term in the expansion (4.3) is l times
differentiable with respect to x. We want to show that the sum of the
derivatives converges in X. For the derivative of T0 we have

(4.4) DαT0f = T0(Dαf),

see, for example [8, p. 303]. Therefore we obtain

∇j(M(x)T0f) = (∇jM(x))T0f + M(x)T0(∇jf),

(4.5)
∇j((M(x)T0)2f) = (∇jM(x))T0(M(x)T0)f

+ (M(x)T0)(∇jM(x))T0f

+ (M(x)T0)2(∇jf)

and an analogous expression for the terms (−M(x)T0)νf . Let us
estimate the norm of ∇j((−M(x)T0)νf) in X(D). Inductively we
obtain

(4.6) ||∇j((M(x)T0)νf)||X(D) ≤ ν
1
2
Cqν−1||f ||X(D) + qν ||f ||X1(D).

where C is a bound for the derivatives of M. From (4.6) we clearly
see that the sum of the derivatives of (4.3) is convergent in X(D), i.e.,
the function v is in X

(1)
0 (D). An analogous estimate holds true for the

higher derivatives up to the order l. We have proven that v ∈ X
(l)
0 (D).

Let us look at the term M(x)(I − (1/2)M(x))−1(T −T0) of equation
(3.18). In the Appendix it is shown that that the operator M(I −
(1/2)M)−1(T − T0) maps X

(j)
0 (D) continuously into X

(j+1)
0 (D) for all

j = 0, 1, 2, . . . , l−1. By induction we now obtain the following theorem.

Theorem 5. Assume that M ∈ Cl
0(�2) for some l ∈ N and that

N = I − M ∈ S and let D be a domain with supp (M) ⊂ D. Then the
solution of (3.14) is in X

(l)
0 (D), i.e., the solution u to the scattering

problem (2.8) is in H
(l+1)
loc (�2). We have the estimate

(4.7) ||u||Hl+1(D) ≤ C||ui||Hl(D)
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with some constant C depending on M .

Remark. Note that we have avoided using both the classical regularity
results for elliptic partial differential equations of second order with
coefficients in Cl, cf., [4] as well as the use of the symbol of singular
integral operators, cf., [8].

5. Fréchet differentiability with respect to M . We now come
to the differentiability properties of the mapping M �→ us(M). Let
SM := {M : I − M ∈ S}.

Theorem 6. The mapping of the matrix M onto the solution u of
(3.9) is infinitely Fréchet differentiable from SM ⊂ C1

0 (�2) into H1(D).
The nth derivative is given by

(5.1)
∂nu

∂Mn
(dM) = n!((I − L(M))−1L(dM))n(I − L(M))−1uin

Proof. Define L(M) : H1(D) → H1(D) by

(5.2) L(M)u :=
∫

D

∇Φ(., y) · M∇u(y) dy

From its linearity in M we see that the mapping

(5.3) SM −→ BL(H1(D), H1(D)), M �−→ L(M)

is infinitely Fréchet differentiable on SM . Therefore the operator

I − L(M)

is infinitely Fréchet differentiable SM → BL(H1(D), H1(D)). Since
the operator is invertible for M ∈ SM from Theorem 2 of [9] we
obtain that its inverse is Fréchet differentiable as a mapping SM →
BL(H1(D), H1(D)), and we obtain the given form of the inverse. The
statement for higher derivatives can be obtained by induction.
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Analogously to [6, 9] or [10] we can obtain a characterization of the
Fréchet derivative as the solution to a special scattering problem.

Theorem 7. The nth Fréchet derivative u(n) of the scattering
problem (2.8) with respect to the M = I − N at the point M and
direction δ satisfies the Sommerfeld radiation condition and solves the
PDE

(∇ · N∇)u(n) + κ2u(n) = n(∇ · δ∇)u(n−1).

Proof. The statement is an immediate consequence of equation (5.1).

Acknowledgments. I would like to thank Prof. Dr. David Colton
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enjoyed discussions with Prof. Dr. Ralf Kleinman and his student Wen
Lixin on the scalar version of the equation.

Appendix

Here we investigate the mapping properties of the operator M(I −
(1/2)M)−1(T − T0).

Theorem 8. Assume that M ∈ Cl
0(D). Then the operator M(I −

(1/2)M)−1(T −T0) maps the space X
(j)
0 (D) continuously into the space

X
(j+1)
0 (D) for all j + 1 ≤ l.

Proof. We first examine the operator T − T0. From the expansions
of the Hankel function we obtain for the difference Φ − Φ0 the form

(5.4) Φ(x, y)−Φ0(x, y) = c1|x−y|2 ln |x−y|+ c2|x−y|2 +O(|x−y|3)

as |x− y| → 0 with some constants c1 and c2. Since the expansions are
absolutely convergent we can differentiate each term and we obtain for



ELECTROMAGNETIC SCATTERING 213

the kernel k of T − T0 the form

(5.5)
kij(x, y) = 2c1δij ln |x − y|

+ 2c1
(x − y)i(x − y)j

|x − y|2 + 2c2δij + Rij(x, y)

where Rij(x, y) = O(|x−y|) for |x−y| → 0. According to [3, Theorem
8.2], the leading term in (5.5) defines a bounded integral operator
V : L2(D) → H2(D). Denote the second term of the right hand side of
(5.5) by t2. The term t2 is continuously differentiable for x 	= y with
weakly singular partial derivatives

(5.6)
δiμ(x − y)j

|x − y|2 +
δjμ(x − y)i

|x − y|2 − 2
(x − y)i(x − y)j(x − y)μ

|x − y|4 ,

μ = 1, 2.

Assume first that u ∈ C0(D). Then we get

(5.7)
∂

∂xμ

∫
D\B(ε,x)

t2(x, y)u(y) dy

=
∫

D\B(ε,x)

∂t2(x, y)
∂xμ

u(y) dy

−
∫

∂B(ε,x)

t2(x, y)u(y) cos(y − x, xμ) ds(y).

In the limit ε → 0 the last term vanishes. We obtain that the integral

w(x) :=
∫

D

(x − y)i(x − y)j

|x − y|2 u(y) dy, x ∈ D

with the second term of the righthand side of (5.5) as kernel is a differen-
tiable function w, that differentiation can be done by the differentiation
of the kernel and that the first derivatives are bounded with respect to
the norm on L2(D), i.e., the operator maps the space C0(D) ⊂ L2(D)
continuously into H1(D). Since C0(D) is dense in L2(D) there exists a
unique continuous extension of the operator from L2(D) into H1(D).

For the function 2c2δij +Rij in (5.5) we now can proceed in the same
way as for the second term. Together we obtain that the operator
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T − T0 maps X(D) = X(0)(D) continuously into X(1)(D). Therefore
the operator M(I − (1/2)M)−1(T − T0) maps X

(0)
0 (D) continuously

into X
(1)
0 (D).

To prove the statement for higher derivatives we will use induction.
Assume that we have m ∈ Cl

0(D). For u ∈ Cl
0(D), l ≥ 1, we get, using

Gauss’s divergence theorem,

(5.8)
∂

∂xμ
(m(x)

∫
D

kij(x, y)u(y) dy)

=
∂m(x)
∂xμ

∫
D

kij(x, y)u(y) dy

+ m(x)
∫

D

kij(x, y)
∂u

∂yμ
(y) dy, x ∈ D.

Assume that the operators on the righthand side of (5.8) define bounded
operators from H l−1

0 (D) into H l
0(D). For l = 1 this was proven in the

first part of our proof. Then from (5.8) we obtain that m times the
integral over kij is bounded from Cl

0(D) ∩ H l
0(D) into H l+1

0 (D) with
respect to the Sobolev norms. Since Cl

0(D) is dense in H l
0(D) we now

obtain the statement by induction.
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