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Dedicated to Professor Kazuo Okamoto on the occasion of his fiftieth birthday

ABSTRACT. For a class of singular Volterra integral
equations we establish a necessary and sufficient condition for
unique solvability in suitable function space settings. The
discussion is based on the convolution calculus associated
with the one-sided Mellin transform with weight 0. This
study is motivated by some inverse nonlinear Sturm-Liouville
problems, whose linearizations give rise to integral equations
of our class. The method developed in this paper settles them
in a unified manner.

1. Statement of main theorems. This paper is concerned with
the integral equation for u(z):

1
(1.1) /0 S (t)u(zt)dt = f(z), a<z<b

where a < 0 < b and the kernel & and the right side f are known
functions. Equation (1.1) can be rewritten as a Volterra integral
equation of the first kind:

(1.2) / D(s/z)u(s)ds = xf(z).
0

However, in general, this can not be handled by the standard method,

see, e.g., [2, Chapter 2], [6, Section 3.3], [10, Section 40]. Indeed, the

reduction to a Volterra integral equation of the second kind cannot be

applied, since (0/0z)®(s/x) may have a singularity at x = 0. Also it
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would not be a good idea to use a change of variables t = e~ %, x = €¥;
U(y) = u(e?), F(y) = f(e¥), so that one gets a convolution equation.
This idea is useful only when one considers (1.1) on the interval [0, c0)
in the framework of LP-spaces.

The purpose of this paper is to show that a necessary and sufficient
condition for the well-posedness of (1.1) in suitable function spaces is
given by

1
(%) / ®(t)t*dt # 0 in the right half plane Rez > 0.
0

Our work is motivated by some inverse problems of determining un-
known nonlinear terms of nonlinear Sturm-Liouville problems from
their spectral information, which can be reduced to solving linear inte-
gral equations of the form (1.1) through the implicit function theorem
in suitable function space settings. Later we shall present two exam-
ples, see Examples 1.10 and 1.11, arising in inverse problems.

Throughout the paper we use the notation

(1.3) Jou(z) = /0 B(t)u(zt) dt.

Let I = [a,b] be a bounded interval containing 0 and let C/(I),
7 =0,1,..., denote function spaces defined by

CI(1) = {f(z) € CV(I\{0}) | f(a),zf'(x),
-2/ f9(x) € B(I\ {0})},

where B(I'\{0}) represents the space of bounded functions on I'\ {0} and
C7(I\{0}) denotes the space of functions having continuous derivatives
up to the order j on I\ {0}. The space C7(I) becomes a Banach space
with the norm

(1.4)

j
1715 := Y supla’f O (z)].

i=0 “€1

With this notation, our first main theorem is stated as follows:

Theorem A. Let n be a nonnegative integer. Let ®(t) € C™(0,1] N
C™*1(0,1) and assume that
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(i) (1) = @'(1) =--- = @~ I(1) =0, (™) (1) # 0,
(ii) |®(2)], [t®'(t)], .- - , \t”+1<1>("+1)(t)| < Mt==! with some M, e > 0.
Then:

(a) Jo is a bounded linear operator from C°(I) to C"T1(I).

(b) Jg is an isomorphism of C°(I) onto C"T(I) if and only if
condition (%) is satisfied.

The proof of Theorem A will be given in Section 3. However, the
following remarks on the theorem may be helpful at this stage.

Remark 1.1. The only if part of Theorem A (b) follows directly from

condition (%), since if fol ®(t)t*dt = 0 for some z in the right half
plane Rez > 0, then u(z) = z* is a nonzero solution in C°(I) of the
homogeneous equation

(1.5) /0 ' B(t)ulat) dt = 0.

Remark 1.2. Theorem A will be proved by induction on n, namely, a
reduction to the case n = 0. In that case, if condition (%) is satisfied,
then the solution u of (1.1) can be written in the form

(1.6) u(z) = <I>(1)1(3:1S(xsf)'—i—mlSﬁ{ws/olA(t)f(xt) dt})

with some function A(t) € L'[0,1]. The concrete form of A(t) will be
given in Section 3, Remark 3.5.

Theorem A, together with Remark 1.1, leads to the following alter-
native theorem.

Corollary 1.3. Under assumptions (i) and (ii) of Theorem A, either
equation (1.1) has a unique solution u in C°(I) for each f € C**t1(I)
or the homogeneous equation (1.5) has nonzero solutions in C°(I).
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We here present an example, which illustrates an application of
Theorem A.

Example 1.4. Consider the case ®(t) = 1+pt+qt?, that is, consider

(1.7) /0(l+pt+qt2)u(a:t)dt:f(a:), (p,q) € R2.

If p+ g+ 1 # 0, then the assumptions in Theorem A are satisfied for
n = 0. As will be shown in Section 4, condition (%) is equivalent to

(1.8) pP+qg+1>0, 3p+2¢+6>0, 4p+3¢+5>0

or
p+q+1<0, 3p+2¢+6<0.

Hence, when p + ¢ + 1 # 0, equation (1.7) has a unique solution
u(z) in CO(I) for each f € C'(I) if and only if (p,q) satisfies (1.8).
Moreover, if p+qg+1 =0, (p,q) # (—2,1), then the assumptions in
Theorem A are satisfied for n = 1. In this case, condition (%) is given
by p < —4 or p > —2, and (1.7) has a unique solution in C°(I) for each
f € C3(I) precisely when p < —4 or p > —2. Finally for (p,q) = (—2,1)
Theorem A applies with n = 2. We easily see that condition (%) is
satisfied and conclude that (1.7) has a unique solution in C°(I) for each
f € C3(I). The details will be discussed in Section 4.

In order to solve the integral equation (1.1), the first idea occurring
to us would be the use of the Neumann series. A necessary and
sufficient condition for it to work will be given in Section 4, Theorem
4.1. Applying Theorem 4.1 to Example 1.4, we shall see that it generally
occurs that this method is not available. It is in such cases that
Theorem A is of vital importance.

Condition (%) applies to the integral equation (1.1) for a kernel ®(¢)
which is singular at ¢t = 1 as well. To explain this we need the following
function space with 0 < a < 1:

(1.9)

lfu)-plrute) |

(1) = {uwe B (0)) |1 5= sup D]
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The space C*(I) becomes a Banach space with the norm ||u||o. By
using this space, our second main theorem is stated as follows.

Theorem B. Let
®(t) = At* (1 —t°) L+ R(t), B,e>0,0<d<]1,
and assume that
(i) A#0,

(i) R(t) € C(0,1] N C?%(0,1),
)Pt [R(t)| < Mt"=3(1 —t)P~

Let 0 < aa<1—4. Then:
(a) Jg is a bounded linear operator from C*(I) to C+o(I).

(b) Je is an isomorphism of C*(I) onto C*t°(I) if and only if
condition () is satisfied.

R(t)] < Mt"=', |R'(t)| < Mt*—2(1 -

|
2 with some M,v,p > 0.

Remark 1.5. If (%) is satisfied, then the solution u of (1.1) can be
written as

w(z) = wl_E%{xa /01 W (1) f(zt) dt}
=21 2 (Ju ) (@)}

with some ¥(t) € L[0,1]. The concrete form of ¥(t) will be given in
Section 5, Remark 5.6.

(1.10)

The proof of Theorem B will be given in Section 5. By using the
notation

(1.11) D, f(x) := xl*a%{xef(w)},

the inversion formula (1.10) can be expressed as J;' = D.Jy. This
situation is indicated by the following diagram:
Jo Jy
CH(I)———— CoP([)———— CH ()

D,
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Here C1*(I) denotes the following function space:
(1.12)

che(I) = {U(w) € CYI\{0}) | 2U'(x) € B(I\ {0}),

|ly|*yU’ (y) —|z|*zU' (z)]| < 0o
ly — x| '

|U]l1,0 := sup |U(x)[+sup
zel z#y
It should be pointed out that Jg, Jg are “integrations” of orders ¢ and

1 — 6, respectively.

Since Remark 1.1 remains valid for Theorem B, we have the following:

Corollary 1.6. Under assumptions (i) and (ii) of Theorem B, either
equation (1.1) has a unique solution u in C*(I) for each f € C*+9(I)
or the homogeneous equation (1.5) has nonzero solutions in C*(I).

The following example illustrates an application of Theorem B.

Example 1.7. Consider

1
/0 (102 el 2 u(et)dt = f(x),
F(z) € CoFV3(T),

(1.13)

where ¢ € R and 0 < o < 1/2. The function ®(t) = (1 —t)"Y/2 +¢(1 —
t)3/2 satisfies assumptions (i) and (ii) in Theorem B with (v, p) = (1,1).
In this case we have

/1 B(1)t7 dt = B(1/2,1+ 2) + cB(5/2,1 + 2)

(56 +22)(3422)+ 3¢

= B2+ ) e o G

where B(a,b) denotes the beta function. Since B(1/2,1 + z) does not
vanish for z # —3/2,-5/2,..., an elementary calculation shows that
condition (%) can be rewritten as ¢ > —5. Thus we conclude that
(1.13) has a unique solution u(x) in C*(I) for each f € Co+/2(I) if
and only if ¢ > —5.
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In the case ¢ = 0, equation (1.13) is Abel’s integral equation and can
be solved by well-known methods, see, e.g., [2, Chapter 2, Section 6,
Chapter 5, Section 4] and [10, Section 41]. However, when ¢ # 0,
(1.13) cannot be solved by the standard method for a generalized Abel’s
equation, see, e.g., [10, Section 41].

We now explain our main idea for establishing Theorem B. First we
shall show the following formula:

(1.14) Jo,Ja, = Ja,«0, 1,Q € LY[0,1],
where * is the convolution product defined by

1
(1.15) (1 % Qo) (2) ::/t Ql(t/s)Qg(s)%.

Suppose that there exists a function ¥(t) such that
(1.16) (@ +T)(t) ="

Then we apply Jyg to (1.1) and multiply both sides by z¢ to obtain

/z s tu(s) ds = x° Jy f(z).
0

Differentiating this equality in x we arrive at (1.10). Thus our task
becomes to find a function ¥(t) satisfying (1.16).

If we define the integral transform XC by

1

(1.17) K[Q](€) := / Q(t)t*dt, ¢ecR.
0

Then the following convolution formula holds:

The integral transform K is a slight modification of the Mellin transform

M: -
MIQ(€) ::/ Qt)t—%tdt, ¢eR.
0
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The relation between K and M is given by K[Q(t)] = M[t2(t)X[o,1]-
Moreover note that the integral transform K can be expressed in terms
of the Fourier transform:

(1.19)
0

1
K[Q](g):/o Q(t)t*ifdt:/ e®Q(e%)e %% do =: Fle®Q(e?)](€),

— 00

where Q(t) is the extension of Q(t) defined by Q(t) = 0 for t > 1. We
now take the integral transform K of (1.16) to get K[®](&)K[T](¢) =
(e — €)=t for £ € R. Condition (%) implies K[®](£) # 0 for £ € R,
which yields

1

(1.20) KO = =R

£EeR.

Loosely speaking, condition (%) enables us to use the Paley-Wiener
theorem, and to show the existence of a function ¥ satisfying (1.20).
The procedure mentioned above is an outline of the proof of Theorem B.

If A#0, R(t) =0 in Theorem B, namely ®(¢) = ®y(t), where
(1.21) ®o(t) := At 1(1 —P)° L,

then K[®0](¢) = AB1B((e —i€)/B,6). From properties of the beta
function it follows that KC[®](£) is holomorphic in Im £ > 0, continuous
and nonvanishing in Im& > 0. Moreover, the right side of (1.20) can
be computed as

v e L))

- A—lSin;"sB<6 ;if +6,1- 5).

Here we have used the identity p B(p, ¢)B(p+¢q,1—q) = (7/sinmq) for
Req € (0,1), which follows from I'(¢)I'(1 — q) = (7 /sinmq). It follows
from this computation that the function

(1.23) Wo(t) 1= A=1gS0T erpi-1() _ 48y
T
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satisfies (1.20). Hence the inverse J‘;Ol of the operator Jg, is given by
Jgi = DelJuy,.

Remark 1.8. Consider the special case where A = 3/T'(§). Then
the operator Jg, is called the Eldélyi-Kober operator in the literature.
Following [5], we use parameters (v, d, 8) instead of (g, 6, 8), where they

are related by € = B(y + 1), and we denote the operator Jg by Ig"s, It
follows from Theorem B and (1.23) that if 3 >0,y > —1,0< 4 < 1,

then the operator Ig’é is an isomorphism of C*(I) onto C**9(I) and its

. 51
inverse (I5"°) ! is expressed as

l 1
= Dg/ (POTEO=1(1 _ 18)=8 £ (24) d.
0

(137 1) = 57 =55

This gives a justification of the formal inversion formula (Ig"s)*1 =

Ig""s’_é, see, e.g., [5, p. 51].

Now we observe that formula (1.6) may be formally deduced from
formula (1.10). Let Uo(t) be the principal part of ¥(¢) defined by
(1.23), and let A(t) denote the remainder term of ¥(¢). Then we obtain

(Juf)(@) = / o (t) dt f ()
+ / Bo(t) (f (at) — f(z)) dt + / At f(at) dt

=A! SiI;W‘SB(% +6,1— 5>f(:1:)

+ / Wo(t) (f (at) — f(z)) dt + / At f(at) dt
1 DUe/B) 1 D)

FOI((e/B) 1 1)

+/0 \Ifo(t)(f(a:t)—f(a:))dt+/0 A(t) f(xt) dt.

Since the middle term in the right side tends to zero as 6 — 1, it follows
from this equality that

Juf(z) — A7 f(2) + Iaf(z) asé— 1.

f(z)
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Hence, by letting 6 — 1 in (1.10), we arrive at (1.6). Thus Theorem A
may be regarded as a limit version of Theorem B as § — 1, in a natural
fashion.

In general it is not easy to verify condition (¥ ). The following lemma,
which will be proved at the end of Section 2, gives a useful, simple
sufficient condition for (¥%).

Lemma 1.9. Let ®(t) € L'[0,1] N C(0,1), and assume that
B(t), (t®(t)) >0 foranyte (0,1), () Z0.

Then condition (%) is satisfied.

Example 1.10. The function ®(t) := t(1 + ct)~%/2, ¢ > 0, satisfies
the assumptions in Lemma 1.9 and hence, in view of Theorem A, the
equation

1
t

(1.24) /0 Tt dt= 1)

has a unique solution u in CY[0,b] for each f(x) € C'[0,b]. This
equation is the linearized equation of a nonlinear integral equation
which arises in a nonlinear inverse problem investigated by Lorenzi [7].
By solving (1.24), the second author of the present paper has improved
the existence result in [7] and has established a uniqueness result. The
reader may refer to [4].

Example 1.11. Let v(s) be the first eigenfunction, normalized by
v(0) = 1, of the operator

d?v

Lu(s) := i

+q(s)v, 0<s<m/2,

with the boundary condition v'(0) = v(w/2) = 0, and consider the
integral equation

/2
(1.25) /0 v(s)u(zv(s))ds = f(x).
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If v'(z) < 0 for any = € (0,7/2] then this equation can be written in
the form (1.1) by setting

t

V(v (2)

where v~!(t) denotes the inverse function of v(s). An elementary
calculation shows that the function ®(t) can be expressed as ®(t) =
A(1 — t2)71/2 4 R(t), where A, R(t) satisfies assumptions (i) and (ii)
of Theorem B, provided that ¢(s) is sufficiently smooth and v"(0) < 0.
Furthermore, if v(s) satisfies the condition

D(t) :=—

v"(s)v(s) £ 20'(s)? for 0 < s < 7/2,
then ®(t) satisfies the assumptions in Lemma 1.9. Therefore the
integral equation (1.25) can be solved in the form (1.10). This is
the core of the analysis in [3], where the authors established the
existence of the nonlinear term g of the nonlinear Sturm-Liouville
equation Lv = Av + g(v) realizing a given first bifurcating branch,
under some conditions on ¢(s). It should be mentioned that, in the
case ¢(s) = 0, equation (1.25) is obtained by differentiating Schlomilch’s
integral equation, see [9, Section 11.81].

We conclude this section with the remark that more general integral
equations

(1.26) /0 (2, tyu(ot) dt = f(z)

can be treated as perturbations of (1.1), because (1.26) can be rewritten
as

/0 (0, t)u(xt) dt + /0 (®(z,t) — ®(0,t))u(zt) dt = f(x),

where the second term of the left side may be regarded as a residual.
For instance, we can establish that: if ®(z,t) is a C'-function on
I x [0,1] with ®(0,t) satisfying (%), then u(z) — fol O (z, t)u(xt) dt
is an isomorphism of C°(I) onto C1(I).
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2. Preliminaries. In this section we shall prove some lemmas which
will be used later. We first pick out basic properties of the convolution
product (1.15):

Lemma 2.1. Let Q1,Qs € LY[0,1]. Then:
(a) Ql * Qz € Ll[O, ].] and K[Ql * Qz] = ’C[Ql]K[Qz]
(b) Ja, Ja,u = Ja,Ja,u = Ja,.q,u for any u € C°(I).

Proof. Changing the order of integration, we have for any u € C%(I),

o Jo,u(z) = o1 / ’ Ql(T/x)dT—T /0 " Qa(o/7)ulo) do

0

=gt /Oz u(o) do/: Q1(T/$)92(U/T)dT_T
= /Dlu(xt) dt /: Ql(r/w)ﬂz(xt/T)dT—T

t
ds

S

- /0 u(xt) dt /t O (t/2)$2(s)
— /1(91 * Qo) () u(zt) dt.
0

This proves (b). Assertion (a) follows from an inspection of the above
calculation and Fubini’s theorem. The proof is complete. a

In Section 5 we shall need the following estimate:

Lemma 2.2. Assume that Q;(t) € C1(0,1), i = 1,2, satisfy

(1) < Mit T (1 -7,
Q4(t)] < Mit™ 2 (1 - )72,
where M;,0;,7; > 0. Then (Q; * Q2)(t) € C1(0,1), and for any
o < min{oy, 03},
(O = Q) ()] < MEm (1 - i,
(0 * Qo) (1) < MET2(L— )"+ 72,
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with some constant M > 0. If oy # o2, then we can take o =
min{ol,og},

Proof. By definition (1.15) and the substitution s =1 — (1 — t)n, we
have

! t 1t
: = [ Q| ——— ) 0(l-(1-t)n) ———dn.
21) (2 02)0) = [ (1= ) (-0t - do
Since |Qy(t)] < Mlt" 1 — )™= |Qa(t)] < Mato271(1 — ¢)™2= 1
1—(1—1¢t)n>1-—n,it follows that

T1—1

To—1 1—
n= (1 —mn) dn
1—(1—t)p)nteo—o2
)

|(Q * Q2)(t)] < My Myt (1—¢)2F7271

(
S M1M2t071(1_t)7-1+7-271 ‘rzfl(l -7 op—0o—1 d77'

N
[

Differentiating (2.1) leads to

(21%92)'(t)
o )
- Ql(l—(l—t)n>92(l(lt)n)(l—(l—t)n)3 @
Yol N At
+f “1(1—<1—t>n>“(1 =0T gy,
1 t 1
- “1(1—<1—t>n>“2(1(”)’7)<1—<1—t>n>2 -

This, together with the assumption on €2, Q9, yields

|(Q1%€22)"(2)]
1 a1 e ) i
< MiMyt® (1 =)™ 7T
R W e e
1 Tz 1(1_77)71—1
1 7{:) )1+7'1+¢7702 dT]

dn

+2M; Mot 1 (1 — ¢)r 722
0

1
< 3M1M2to— 2(1 o t)'rl+7'2 2/ ,'77'2 1(1 o ,'7)0270'71 d’l’],
0
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where we have used ¢ < 1 — (1 — ¢)n. In the case o1 < o2, the above
estimate remains true if o is replaced by ;. The proof is complete.
[}

The following lemma is direct from the rewriting:

Jpemru(z) = acfg/ s tu(s) ds.
0

Lemma 2.3. Lete > 0,0 < a < 1. Then the operator Ji--1 is an
isomorphism of C*(I) onto C*(I). Moreover the operator Ji-1 is an
isomorphism of C°(I) onto C'(I). In either case the inverse J,., is

given as J;}l =D..

We shall use the Paley-Wiener theorem of the following form, which
is verified by the argument in, e.g., [1, Chapter 4], [8].

Lemma 2.4. Let D C C be a domain containing 0, and let ¢(z) be
a holomorphic function in D with ¢(0) = 0. If Q € L'(—o0, 0] satisfies
F(Q(€) € D for any & in the upper half plane Im& > 0, then there
exists a function © € L'(—00,0] such that ¢(F[Q](€)) = F[O](&) for
any £ € R.

Since the integral transform K defined in (1.17) is connected with the
Fourier transform F by (1.19), Lemma 2.4 can be rewritten in terms
of K. In particular, in the case ¢(z) = +(z/(1+ 2)), we have the
following:

Lemma 2.5. If Q € L1[0,1] satisfies 1 + K[Q](§) # 0 for any € in
the upper half plane Im& > 0, then there exist functions Oy € L'[0,1]
such that

Kl
+ T+ K@) K©](€), ¢e€R.

We conclude this section with the
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Proof of Lemma 1.9. Let z = a + bi, a > 0. In the case b = 0
the assertion follows directly from the assumption ®(t) = 0, ®(¢) Z 0.
Hence, in what follows, we assume b # 0. An elementary calculation
shows that

1 1
Im/ @(t)tzdt:/ t*®(t)sin(blogt) dt
0 0
= —/ e e *®(e °)sin(bs) ds.
0

Since ¢®(t) is nondecreasing, e *®(e~*) is nonincreasing and hence
the function e~ **e~*®(e~*), which is not a constant function, is non-
increasing as well. Hence, by means of the alternating series test,
Im fol ®(t)t* dt < 0 for b = 0. The proof is complete. O

3. Proof of Theorem A. In this section we shall prove Theorem A.
Throughout this section let I = [a, b] be a bounded interval containing
0, and let C/(I), 5 = 0,1,..., denote the function space defined in (1.4).

We first prove assertion (a). Let u € C%(I). Then

(3.1) zJpu(x) :/ D(s/z)u(s)ds
0
is a differentiable function with the derivative

d T
—(zJpu(z)) = ®(Vu(z) — [ @ (s/z)(s/z*)u(s)ds
(3.2) e /0

1
= ®(1)u(z) — /0 t®' (t)u(xt) dt,

provided that ®(t) € C(0,1] N C*(0,1), t®'(t) € L'[0,1]. Hence we
have
z(Jpu) (z) = —Jou(z) + (zJou(z)) € CO(I).

This proves assertion (a) in the case n = 0. If ®(1) = 0 then, from
(3.2), we obtain

1
%(%Lyu(x)) :/0 @ (t)u(xt) dt,
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where we set ®,(t) := —t®'(t). Hence

x%(aﬂ@u(x)) = /Oz D (s/x)u(s)ds

is a differentiable function with the derivative
d \? !
(d—m> Jau(z) = ®1(1)u(z) — / t®] (t)u(xt) dt € C°(I),
€T 0

provided that ®;(t) € C(0,1]NC*(0,1),t®}(¢t) € L'[0,1]. Similarly, by
setting

k
. p(t) i =—t— ) D¢t
(33) (0= (~15,) 20
it follows that for £k =0,1,2,...,

k+1 1
(3.4) (%x) Teu(z) = B(1)u(z) + /0 B (t)ulat) dt € CO(I),

provided that ®4(t) € C(0,1] N CY(0,1), ®ry1(t) € LY0,1], ®(1) =
®'(1) = -+- = ®,_1(1) = 0. Therefore, under the assumptions in
Theorem A, we have

(%) Jou(a), .., (%) " e € )

This proves assertion (a).

We turn to the proof of assertion (b). We first treat the case n = 0.
The following is direct from an inspection of (3.2).

Lemma 3.1. Let ®(t) € C(0,1] and assume that ®(t),td'(t) €
L'[0,1]. Then Js is a bounded linear operator from C°(I) to C1(I),
and also from C1(I) to C*(I).

Let I/ denote the identity operator on C’(I). The following lemma
asserts that the right side of (1.6) gives an operator from C*(I) to C°(I).
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Lemma 3.2. Let ¢ > 0 and assume that A(t) € L'[0,1]. Then
D.(I' + Jy) is an operator from C1(I) to C°(I), where D. is defined by
(1.11).

Proof. It is easy to see that if A(t) € L'[0,1] then J, is an operator
on C(I). On the other hand, D, is an operator from C(I) to C°([).
This proves the lemma. u]

We need the following:
Lemma 3.3. Let ®(t) € C(0,1], and assume that
l 1 : —
d(t),td'(t) € L]0, 1], }1_1)1(1)t<1>(t) =0.

Then, as operators on C¥(I), 5 =0,1,...,

Jeepr-<a(t)y = (1) — D.Js.

Proof. For any u € C/(I), (3.1) yields

T

(@(1)[P—D.Jg)u = ®(1)u(z) — xlsdix“{ /qui'(s/m)u(s) ds}
= (ls)xl/oqili'(s/w)u(s) ds —f-/oazlf"(s/x)(s/xz)u(s) ds
- /0 e (e () ulet) di.
This proves the lemma. O
The following result is the core of the proof of (b) for the case n = 0:

Proposition 3.4. Let ®(t) € C(0,1], and assume that

®(1) £0, ®(t),td'(t) € L'[0,1], lim ¢ (t) = 0.
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Suppose that there exists a function A(t) € L'[0,1] satisfying
(3.5) (®*A)(t) =t % (t°(t'7°®(t))) for almost every t € [0,1].

Then Jg is an isomorphism of C°(I) onto C*(I). The inverse of Jo is
given by J3' = ®(1) " D (I* + Jp).

Proof. Because A(t) € L'[0,1], J4 is an operator on C'(I). Hence it
follows from Lemmas 2.1, 3.3, and 2.3 that

Jodn = Jye1dye(p-canyy = Jpe-1 (R~ DoJg) = (1) Jyper I' — Jg,

as operators from C1(I) to C?(I). By Lemmas 2.1 and 2.3 we have
JoD. = D.Jye1JpD. = D.JgJye 1D, = D.Jp

as operators on C!(I). These equalities yield

Jo[®(1) " D (I* + Jp)] = ®(1) ' D (Jo + JaJa)
=®(1)"'D.®(1)Jpe It =T".

Similarly we have JjyJgp = ®(1)J;e-11° — Jg, which leads to

[@(1)*D.(I' + JA)]Je = ®(1) 'D.(Jg + JpJs)
=®(1)"'D.®(1)Jpe 1 I° = I°.

The proof is complete. u]

In view of Proposition 3.4, the proof of (b) in the case of n = 0 is
reduced to finding a function A(t) € L[0,1] satisfying (3.5). For this
we set

(3.6) p(t) == =@ (1)~ e (= d(t))".

Integrating by parts we have for Im& > 0,

1 .
Klpl(€§) = 7@(1)71/0 1o (e (t) dt
= -1+ (1) (e — i6)K[®](€),
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which yields

(3.7) (e —i)K[®](§) = 2(1){1 + K[p](§)}, Im¢ > 0.

Assumption (%) implies that this function does not vanish in the upper
half plane Im¢& > 0. Hence, by Lemma 2.5, there exists a function
A(t) € L'[0,1] such that

Klpl(€)

(38) TTHKE)

=K[Al(€), €€R.

By Lemma 2.1 (a), (3.7), (3.8) and (3.6), we have
K[®* A](§) = K[2](§)K[A](£)
MU Klplce

T
_ ﬁlc[te(tl’%(t))'](ﬁ)
= K[t= = (£ (t =@ (1))'](€),

(3.9)

where K[t*71](£) = (e — i€) ™! is used in the last equality. This shows
that A satisfies (3.5). In view of Proposition 3.4, in the case n = 0, the
proof of the assertion (b) is complete.

We shall treat the case n = 1,2,.... To show the injectivity of Jg,
we assume that Jeu = 0 for u € C%(I). Then assumption (i) and (3.4)
with £k = n — 1 yield

/1 @, (t)u(xt)dt = 0.
0

But it follows from (3.3), repeated integration by parts, and assumption
(ii) that

1 1 1
/ @, (t)t* dt = —/ o (T dt = (2 + 1)/ ®, 1 (t)t* dt
0 0 0

1
(3.10) :---:(z+1)"/0 Bt dt Rez > 0.
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So condition (J) remains valid if ®(¢) is replaced by ®,(t). Hence
we can apply the assertion (b) for n = 0, which has been established
already, to conclude that u = 0.

To show the surjectivity of Jg, let us consider the equation

1 d n
(3.11) / &, (t)u(wt) dt = (%x> f@), fecrii).
0
It is easy to see from assumption (ii) that &, (t) satisfies
|@n (1)), [t (8)] < M=

Moreover ®,,(t) satisfies condition (% ). Hence, in view of assertion (b)
for n = 0, equation (3.11) admits a solution u € C°(I). Put

n—1

Ulz) = /0 o (t)ulat) di — <%m> (@).

Then (3.4) yields

%{IU(;C)} - /01 B, (t)u(wt) dt — (%x)nf(x) = 0.

Therefore U (z) = C, where C is a constant. But assumption (ii) and
f € C* (1) imply U(z) € C°(I), forcing C = 0. Hence the solution u
of (3.11) satisfies the equation

/0 "o (tyulet)dt = <%m) .

By repeating this procedure we conclude that u satisfies the equation
Jeu = f. The proof of Theorem A is complete. i

Remark 3.5. An inspection of the proof shows that

(1) — (e — i&)K[®](€)
Alt) =K ( (e — i&)K[®](€) >
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Remark 3.6. By the argument in the proof of Theorem A, see (3.4),
solving the integral equation (1.1) under assumptions (i) and (ii) is
reduced to that of

@, (1)u(z) + /0 1<I>n+1(t)u(xt) dt = (dixyﬂ f(x).

T

This equation can be rewritten as
(3.12) (I+A)u=y,

where

(3.13) ;

ofe) = #a(1) (1) " @),

Since g varies in C°(I) as f varies in C""!(I), we conclude that solving
(1.1) is equivalent to showing that (3.12) has a unique solution u in
CO(I) for each g € C°(I).

4. Use of the Neumann series. By Remark 3.6 the operator Jg is
an isomorphism of C°(I) onto C**1(1) if and only if the operator I+ A,
defined by (3.12) is an isomorphism in C°(I). In view of Theorem A (b)
the former condition is equivalent to (%), while a sufficient condition
for the latter is given by

(4.1) [An] <1,

where ||A,| is the operator norm of A, in CY(I). Indeed, if (4.1) is
satisfied then the Neumann series I — A,, + A2 — ... converges and
gives the inverse of I + A,, Hence (4.1) gives a sufficient condition
for (%). This observation naturally leads us to the question: to what
extent does (4.1) cover the necessary and sufficient condition (%) for
the unique solvability of (1.1) ? If (4.1) were completely equivalent
to (%), then the equation (1.1) could always be solved by means of
the Neumann series. However, there actually exists a gap between
these two conditions. To make this point transparent, we shall first



482 K. IWASAKI AND Y. KAMIMURA

obtain a necessary and sufficient condition for (4.1) in terms of ®(t),
see Theorem 4.1, and then apply it to Example 1.4 to illustrate this
gap clearly.

Theorem 4.1. Let ®(t) be defined by (3.3). Then a necessary and
sufficient condition for (4.1) is given by

(4.2), / (B (6)] dt < (20 (1)),

Proof. Let Q(t) € C[0, 1] and consider the operator B : C°(I) — C°(I)
defined by

(Bu)(z) = /0 Q(t)u(at) dt.

To establish the theorem it suffices to prove that the operator norm
||B|| of B in C°(I) is expressed as

(4.3) 18| = / Q)] .

since the theorem follows immediately by applying (4.3) to Q(t) =
®,(1) 1®,,(t). Since C°(I) is dense in L>°(I), the operator norm of
B : C%(I) — C°(I) is equal to that of B : L>(I) — L*°(I). So we shall
calculate the latter norm instead of the former.

First we have for u(z) € L*>°(I),

1 1
(Bu)(@)] < / 12(0)] [t dt < |[ul| / Q)| dt, el
which yields
1
|Bullz~ < |lull / Q)] dt.

Hence,

1
1B g/o (2)] dt.



CONVOLUTION CALCULUS 483

It is therefore enough to establish the reverse inequality. For any
u(z) € L*>(I), the function Bu is rewritten as

(Bu)(z) = 2~ /0 " Q(t/z)u(t) dt.

It follows from the assumption §2(¢) € C[0,1] and Lebesgue’s con-
vergence theorem that the function Bu is continuous at each point
y € I'\ {0}. Hence we have

(44)  |(Bu)()| < [|Bull= < ||B]||lullz=, y € I\{0}.

Let y € I'\ {0} be fixed and let u(z) be a function in L>°(I) defined by

u(z) = {Sgnﬂ@/y) 0 < (sguy)z < |y,

0 otherwise,
where
1 x>0,
sgnz:=<¢ 0 z =0,
-1, z<0.

Then clearly ||u||L~ = 1 and u(yt) = sgnQ(t) for 0 <t < 1. Therefore,

(Bu)(y) = /0 Qt)ulyt) dt = /0 () sgn Q(t) dt — /0 ()] dt.

Substituting this into (4.4), we obtain fol |Q(t)| dt < ||B||, as required.
The proof is complete. O

The rest of this section is devoted to a thorough investigation of
Example 1.4, where ®(t) is given by

(4.5) ®(t) =1+pt+qt>, (p,q) €R.
We shall examine how Theorems A and 4.1 can be applied to the

equation (1.7) in the example. The discussion will clearly illustrate
the gap between the conditions (%) and (4.2), in these theorems.
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We begin with Theorem A. For the function ®(¢) in (4.5), assumption
(ii) in Theorem A is satisfied for each nonnegative integer n. Moreover
;. (t) in (3.3) is computed as

1+ pt + qt? k=0,

(4.6) Py (t) = { (—l)kt(p + 2kqt) k=1,2,3,...,

which in particular leads to

l+p+q k=0,
4. ®r(1) =
(4.7) k(1) {(—l)k(p—i—qu), k=1,2,3,....

Therefore we easily observe that assumption (i) in Theorem A is
satisfied if and only if

(4.8)o ptq+1#0 for n=0,
(4.8)1 p+q+1=0, (p,q) #(-2,1) for n=1,
(4.8)2 (p,q) = (=2,1) for n=2,

respectively. For n > 3 the assumption is not satisfied for any
(p,q) € R2%. As for condition (%), a calculation shows that

! P az’ +bz+c
/0 O dt = T 1 3)

where we set
a=p+q+1, b=4p+3q+5, c=3p+2¢+6.

Accordingly (%) is equivalent to the condition that the quadratic
equation az?+bz+c = 0 has no roots with nonnegative real parts. This
condition is satisfied if and only if one of the following three conditions
holds:

(0) a,b,c >0 or a,b,c<0;

(1) a =0, bc > 0;

(2)a=b=0,c#0,

which are rewritten as

p+q+1>0,3p+2¢+6>0, 4p+3¢+5>0

(4.9)0
or p+q+1<0,3p+2¢+6<0;
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(4.9)1 p+q+1=0,p< -4 or p+q+1=0, p> —2;

(4.9)2 (p,q) = (=2,1),

respectively. For each n = 0,1,2, (4.9), gives a necessary and suffi-
cient condition for (%) in the case (4.8),; thereby the conclusion in
Example 1.4 follows.

We proceed to Theorem 4.1. For each n = 0, 1, 2, we shall determine
those parameters (p, ¢) which satisfy condition (4.2),, in the case (4.8),.
For n = 0, by using (4.6) and (4.7), condition (4.2), is expressed as

1
(4.10) / tp+ 2qt|dt < Ip+q +1].
0

If the function p+ 2¢t does not change its sign in the interval 0 <t < 1,
that is, if either p > 0,p+2g > 0 or p < 0,p+2¢ < 0 holds, then (4.10)
is equivalent to

(4.10)01 |3p + 4q| < 6]p+q + 1]

If p+2qt changes its sign in 0 < ¢ < 1, that is, if either p > 0,p+2q < 0
or p < 0,p+ 2g > 0 holds, then (4.10) is equivalent to

(4.10)02 pI* + (p+ 29)°|p — 44| < 24¢°|p + g + 1.
By checking conditions (4.10)o; and (4.10)¢2 in more detail separately

and then by summarizing the results, it follows that (4.2)p holds if and
only if (p, ¢) lies in the following region:

9+(p) (r < —(3/2)),
(4.11)o g> 4 —(9/10)p—(3/5) (=(3/2) <p <0),
f-(p) (p >0),
> 1) (b < -3),

g<{ —(3/2)p—3 (-3<p<0),
g-(p) (p=0),
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where f;(p) and f_(p) are defined to be the maximal and minimal real
roots of the cubic equation:

F(p,q) :=20¢° + 18pg® + 12¢* — p® =0,
9+(p) and g_(p) being defined in the same manner from the equation:
G(p,q) := 4¢° + 6pg® + 12¢* + p* = 0.

Here we wish to point out that the polynomials F(p,q) and G(p, q) are
obtained by choosing suitable signs in (4.10)gz.

Secondly, for n = 1, condition (4.2); is rewritten as

1
(4.10), / t|p + 4qt| dt < |p + 2q|.
0

If the function p+ 4qt does not change its sign in the interval 0 <t < 1,
that is, if either p > 0,p+4g > 0 or p < 0,p+4q < 0 holds, then (4.10);
is equivalent to

(4.10)11 |3p + 8¢| < 6[p + 2¢].

If p+4qt changes its sign in 0 < ¢ < 1, that is, if either p > 0,p+4g < 0
or p < 0,p+ 4q > 0 holds, then (4.10); is equivalent to

(4.10)12 P+ (p + 49)|p — 84| < 96¢°|p + 2q|.

A thorough check of these conditions, upon taking (4.8); into account,
shows that (4.2); holds if and only if (p, q) lies on the half lines:

(4.11); p+q+1=0,p<pr or p+q+1=0, p>po,
where p; = —4.97403.. .. is the (unique) real root of the cubic equation
F(p) :=Tp> +48p> + 72p+32 =0,

and po = —1.70484 ... is the minimal real root of

G(p) := 89p® + 336p® + 408p + 160 = 0.
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Here the polynomials F'(p) and G(p) are obtained by choosing suitable
signs in (4.10)12.

Finally, for n = 2, condition (4.2), is expressed as

1
(4.10)9 / tlp + 8qt| dt < |p + 4q|.
0

Since we are considering the case (4.8)2, we have only to verify this
condition for (p,q) = (—2,1), which can easily be done by a direct
computation. It follows that condition (4.2)2 becomes

(4.11), (p,q) = (=2,1).

In conclusion, for each n = 0,1,2, we have shown that in the
case (4.8), conditions (%) and (4.2), become (4.9), and (4.11),,
respectively. Let X,, and Y;, be the set of parameters (p, q) satisfying
conditions (4.9),, and (4.11),, respectively. Then Xy = Y3 for n = 2,
while Y, is a proper subset of X,, for n = 0,1. For n = 0, the gap
between Xy and Yj is clearly indicated in Figure 1, where Yy and X\ Yy
are given by the thinly and thickly dotted regions, respectively.

5. Proof of Theorem B. In this section we shall prove Theorem B.
Let I = [a,b] be a bounded interval containing 0 and let C*(I),
0 < a <1, denote the function space defined in (1.9).

Assertion (a) of Theorem B follows immediately from the following;:

Lemma 5.1. Let 0<§<1,0<a<1-4, let ®(t) € C'(0,1) and
assume that

D(t)], |t(1 — )@ (t)] < Mt)‘—l(l _ t)6—1

with some constants M, )\ > 0. Then Jg is a bounded linear operator
from C*(I) to C*+o(I).

Proof. Let u € C*(I), and set f := Jpu. For the proof it is enough
to show that the absolute value |y**? f(y) — 229 f(z)| is bounded by
M||ul|a|y — x|*% with some constant M. We only consider the case
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3p+2¢+6=0
(7879)
p+qg+1

7=g-(p) (p2>0)

FIGURE 1.

0 < z < y, because the remaining cases can be treated similarly. A
calculation shows that

v ) - ) =y [ " & (s /y)uls) ds

—a:o‘+6_1/ D(s/z)u(s)ds
0
=1+ I+ Is,

where

Iy = yoto-t /y D(s/y)(u(s) — u(x)) ds;
e /oz{ya”*@(s/y) — 271 (s/2)}uls) - u()) ds;

1
Iy := (yo+o — zo+9) u(x)/o D(t) dt.
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By definition (1.9) we easily deduce |u(z)| < ||u||o for any = € [0, 1].
It is easily seen from this estimate that the term I3 is bounded by
M||u||aly — 2|+ with some constant M. Moreover for 0 < z < y, we
have from (1.9)

z® %
u(y) —u(z)| = u(y) — —wu(z) - u(w)(l - —a>
Y Y
ma
< = lvuly) — 2%u(@)] + Ju(z)|[1 - —
< _||U(|x\a ly — 2| + C'||ul|a|1 — ud
Y
gch—f,
()

where C' is a constant independent of x,y. Hence, by the substitution
s=xz+n(y — ), we have

1
1] < CIIUHa/D {n+ (@/y)X =)} o™ (1 — )’ tdnly —x)**°

< Mllullaly — z[**°,

with some constant M > 0. Changing the variables via the substitu-
tions r = z/y, s = xt, and t = o/(1 — n(1 — o)), we obtain

|I2] < MH“Ha/O ly* 1B (s/y) — 2> (s /)| (1 — (s/x))* ds
1
_ M|\u||ay°‘+5r/ B(rt) — 1B ()| (1— 1) dt
0
1
= Mlullayr |
0

1
< M|\u||ayo‘+5r/ (1) dt
1]

/Tl %{@(nt) - n“+51<b(t)} dn‘(l _ ) dt

[ @]+ (- o= e an

1
< M|\u||ay°‘+5r/ A1 — 1) dt
0
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1 1
/ 77’\_2(1—nt)6_2dn+M\|u||ay“+5r/ P1(1 = )21 gy
r 0

1 1
n o2 dn < MHUIIay“”r/ 2 dn

r

(L =) (1= pt)° " dt + MJullay® ™ (r2F0 — 1)

'
g
1
= Mlallayor [ )
1 A—1 «
o 1—0
/ ( a—i)-5+)\—1 do
y T ni=o)

ot _p
(1 —r)ots

- MJulla(y — 2)*0r
) ! )
< Mljullay*r / 21— )Ly
1
[ ot = o)+ My - 2)
0

where we have used the assumption o + ¢ < 1. Since there exists a
constant C' independent of » € [0, 1] such that

1
P [ Ty < O ),

the term Iy can be estimated as |I| < M||ul||y — 2|*T?. The proof is
complete. ]

Let C1*(I) be the function space defined in (1.12). Then we have:

Lemma 5.2. Under the same assumption as in Lemma 5.1, Jo D, =
D.Jg as operators from C1%(I) to CoT(I).

Proof. The same argument as in the proof of Lemma 5.1 implies that
Jg is a bounded linear operator from C%*(I) to C1**9(I). This fact,
together with Lemmas 5.1, 2.3, and 2.1 (b), shows that

JoD, = D.Jye-1J3 D, = D JpJy-1 D, = D Jp.
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The proof is complete. a

The following result gives sufficient conditions for the correspondence
f + w in (1.10) to be a bounded linear operator from C**9(I) to C*(I).

Lemma 5.3. Let0<d<1land0<a<1-4.
(a) If ¥(t) belongs to C1(0,1) and satisfies
(5-1) [T, |61 =)' ()] < ME*~H(1 - 1)~°
with some constants M > 0, u € (0,1), then D.Jy is a bounded linear
operator from CoH9(I) to C*(I).
(b) If ¥(t) belongs to C1(0,1] and satisfies
(5.2) (), t¥'(t) € L']0,1],
then D.Jy is a bounded linear operator from C+9(I) to C*(I).

Proof. We shall prove only assertion (a) because the proof of (b) is
easier. It easily follows from definition (1.11) that D, is a bounded
linear operator from C'*(I) to C%(I). Hence it suffices to show that
Jy is an operator from C*T(I) to CH*(I). Let f € C**9(I) and set
U = Jyf. By the definition of C®*9(I) we have

(5.3)  |f(m) = Ft)| < ClIfllars(1=1)*T, nel, 0<t<1,

with some constant C' > 0. By (5.1) and (5.3) we can use integration
by parts to obtain for a fixed xy # 0,

1
U(z) = /0 tW(t)(@ - @) dt + U(zy)

- / ”’(t)%{ / M () f(n))dn} dt + U o)

= [y [ oo - ) dn-+ Uteo)

Zo

From this equality it follows that U(z) is a differentiable function with
the derivative

1
U'(e) =2 ! / (FU ()Y (f(x) — flat)) dr.
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Hence Lebesgue’s convergence theorem, together with (5.1), (5.3) and
a > 0, implies that zU'(z) € B(I \ {0}). Moreover we have for
0<z<y,

YU (y) — 2P (2) = 4 / (BT (0)(f(y) — f(ut)) dt
e / (EU () (F(z) — f(at)) dt
=y / () ()~ )
e / () ()~ St
z/y
+ / () (5 Fy) — o f(2)) di

z/y
(5.4) - / BV () (v° F (yt) — 2 F (at)) dt.

Using (5.1) and (5.3) we obtain

1
v [ oy - f(yt))dt‘
z/y

1
< MI|fllassv® / (1 - 0 d
z/y

1 1
= Ml fllossly — )" | {1 T(l . §>} a1y

1
< M||fllagsly — 2)° / P ety
0

< M| fllats(y — ),

with some constant M. The second term in the right side of (5.4) can
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be estimated in a similar manner. It follows from (1.9) that

[y fy) — 2 f(z)| = yi(;(y“”f(y) — 2" f(x)) — 2°(1 ~ (2/y)°) f ()

1 [e% o X
< |\f||a+5ﬁ(y—x) N o |f||a+5(]— _ §>

)
< Ol fllessly w)“(l - 5) ,

with some constant C, which leads to

‘ /OZ/y(t‘I’(t))'(y“f(y) — z%f(z)) dt‘

xT § raly
< Mlflaraty -2 (1-2) [Tt ot a
0
S M|‘f||a+5(y — m)o‘,
where we have used the fact that Supogr<1(1 _,r,)g for p-1(1 —t)_5—1 it

< oo. The last term in the right side of (5.4) can be estimated in a
similar manner. The proof is complete. ]

The following is a core of the proof of Theorem B.

Proposition 5.4. Let 0 < § < 1 and 0 < o < 1 — 6. Let
®(t) € C'(0,1) and assume that

(t)], |1 —t)®'(¢)| < Mt)‘_l(l _ t)6—1

with some constants M, X\ > 0. Suppose that there exists a function
U(t) satisfying the following conditions:

(1) ¥(t) can be decomposed as
W (t) = Ui(t) + Wa(t),

where ¥q(t) € C'(0,1) and V(t) € C'(0,1] satisfy (5.1) and (5.2),
respectively.
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(ii) There exists a constant € > 0 such that for almost every t € [0, 1],

(@ *W)(t) =t L.

Then Jg is an isomorphism of C*(I) onto C**9(I). The inverse of Jg
s given by ng =D.Jg.

Proof. 1t follows from Lemmas 5.1 and 5.3 that Jg and Jg are
bounded linear operators from C%(I) to C**°(I) and from C**°(I) to
ChHe(I), respectively. By assumption (ii) and Lemma 2.1 (b), we obtain
JoJy = Jie—1. This, together with Lemmas 5.2 and 2.3, shows that

JoD.Jg = D.JpJy = D.Jyer = 079

where 1t9 denotes the identity operator on C**°(I). On the other
hand, by Lemma 2.3, we obtain

DEJ\IIJ@ == DEJtsfl == Ia,

where I® denotes the identity operator on C*(I). The proof is complete.
[}

In view of Proposition 5.4, the proof of Theorem B is reduced to
finding a function ¥(t) € L[0, 1] satisfying the conditions (i) and (ii)
of the proposition. Let ®( be the function defined by (1.21). Then, as
was computed in (1.22),

1
(€ — i§)K[20](£)

where U (¢) is given by (1.23). Observing that the condition (ii) of the
proposition can be rewritten as

(5.5) — KI%o)(¢),

1
MO = iorme
1
(5.6) " (e — i&)(K[®0](€) + K[R](€))
= K[¥o)(&) -

1+ (K[R](£))/ (K[®o](£))”
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we first seek a function S(t) € L0, 1] such that

(5.7) % = K[S](€), Imz >0.
This can be carried out by defining
(5.8) S(t) = —ta%(tlﬂ(% « R)(1)).

In fact, integrating by parts, noting that t(VoxR)(t)|t=0 = (YoxR)(1) =
0 follows from Lemma 2.2, and by (5.5), we have for Im z > 0,

KIS)(€) = — / (0 (B = R) (1)1 dt

(5.9) = (¢ — iE)K[ T * R|()
_ KIRI®)
Kl®o](€)

Since ¥y (t), t=(t' °R(t))’ € L'[0,1], Lemma 2.1 (a) implies that S(¢) €
Lo, 1].
In what follows we assume 0 < p < 1 because if p > 1 we may change

p so that 0 < p < 1. Then we have:

Lemma 5.5. There exist M, > 0 such that for j =2,3,...,
j times
— .
(S - S)(t)] < MtH—1(1 —¢)~FE—DA=9)
j times

- .
|(S % --- % 8)(t)| < MtF=2(1 — ¢)~0+-1DA=9)-1,

Proof. We have
cd e ! ds
S(t)=—t E{tl /t R(t/s)\Ilo(s)?}

1 ds
— (e D0k x RO+ ROTo(t) — [ R(0/5)(t/3)00(5)
= R(1)Wy(t) — Wg * (t°(t'~° R(t))").
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By assumption (ii) in Theorem B, there exists a constant M > 0 such
that
(' R())'] < MtTH(1 - t)"7,

[{t=(t'"R(®))'Y| < Mt"">(1 - )P
Let v; be a number such that 0 < vy < min{e + 86, v}. Then Lemma
2.2 yields

[Wo * (t°(t°R(1))")| < Mt" ~H(1 — )",
|(To + (£°(¢*=R(1))))'| < M 21— )P0,

which lead to
|S(t)| < MY (1 —t)7%, |8'(t)] < Mt"*2(1 —¢) 0L

Letting p be a number such that 0 < g < v; and using Lemma 2.2
repeatedly, we complete the proof of Lemma 5.5. ]

By Lemma 5.5 we have:

Lemma 5.6. Let N be an integer such that N —2 > §(1—3)"t. Then
there ezists a function A € C1(0,1]NL[0, 1] such that tA'(t) € L]0, 1],
A(1) =0, and

K[S|&)~

(5.10) 1+ K[SIE)

= K[A]l(€), €€R.

Proof. Let A(t) be the function defined by

A(t) = —tE% <t1_5(%)(t)>.

By the condition for N and Lemma 5.5 it follows that A(t) € L[0,1]
N—1 times

—_——~—
and that (S*---%.5)(1) = 0. Hence, in the same manner as in (5.9),
we have for Im z > 0,

N—1 times

——
(511)  K[AJ(§) = (e — KIS * -+ 5] = (= —i€)K[SI()" .
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In view of K[®¢](1+K[S]) = K[®] and condition (%), 1+K[S](§) #0
for Im z > 0. Therefore, in view of Lemma 2.5, there exists a function
B(t) € L'[0,1] such that

(5.12) H[Kig(é’?) — K[B](€), ¢€R.

By Lemma 2.1 (a) we have A x B € L'[0,1]. So we can define, for
0<t<l,

ds

SE

(5.13) A(t) == tffl/t (Ax B)(s)—

Since

1 1 1 dr

/ \A(t)|dt§/ tg’ldt/ |(A * B)(r)|—

0 0 re
/ |(A* B)(r |—/ t*= 1 dt < oo,

the function A(t) belongs to L'[0, 1]. Moreover, from (5.11) and (5.12),
we obtain for £ € R,

KiaYe = [ e a / 4+ B
_/1(,4*3)( )i:/ et
_ ﬁmw](o
— 2 KlAI(E) + KIB©)
_ KSIOY
L+ K[S](€)

By definition (5.13) it is evident that tA’(t) € L'[0,1], A(1) = 0. The
proof of Lemma 5.6 is complete. ]
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Observing that (5.6) can be rewritten as

K9] = K[Vl g

= K[\I/o]{l —K[S]+ -+ (DN SN+ ()N 1’2[%[5] }

= K[@ol{1 = K[S] + -+ + (=) K[V + (-1)VK[A]},

we now define

(5.14)

N—1 times
N-1 ‘ )
U =0y — VoS +TpxSxS—---+(-1) g xS *---%3,
Ty = (—1)N g x A;
\IIZ:\I’]_—F\IIQ.

From Lemmas 5.5 and 2.2 it follows that
Wy (8)] < Mt M1 =)0, |[Wh(0)] < Mt (1 —t) ",

with some positive constant M, in other words, that U,(¢) satisfies
condition (5.1). Moreover, in view of A(1) = 0, we obtain

1
w0 = 170 ([ A9 L) = 0¥ ea' ) «ve

This shows that U5(¢) satisfies (5.2). Thus ¥(t) satisfies the assumption
(i) of Proposition 5.4.

Finally, from (5.14), (5.10), (5.7), (5.5), we get

K[¥] = K[®o]{1 = K[S] + -+ + (=) KS]V " + (-1)VK[A]},

B 1= (VKIS v KISV
"C[‘I’O]{ S 1+IC[S]}
1
=M Ry
1

~ (e—iHK[e]
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This shows that U(t) satisfies assumption (ii) of Proposition 5.4. In
view of Proposition 5.4 the proof of Theorem B is complete. O

Remark 5.6. From the above proof, we obtain
1
¥ =k [—] .
(e —i§)K[®](£)
In practical applications this formula often enables us to compute ¥ (%)
explicitly. For instance we refer to [3, Section 5].
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