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STABILITY OF APPROXIMATION METHODS
ON LOCALLY NON-EQUIDISTANT MESHES
FOR SINGULAR INTEGRAL EQUATIONS

V.D. DIDENKO AND B. SILBERMANN

ABSTRACT. A number of numerical methods for singu-
lar integral operators with continuous coefficients on curves
with corners are studied. Necessary and sufficient conditions
for stability of the methods under consideration are given.
These conditions are formulated in terms of invertibility of
some model operators. It is shown that the model operators
belong to a well-known operator algebra, and their Fredholm
properties are investigated. It is proved that the indices of the
operators mentioned are equal to zero.

Let Γ be a simple closed counter-clockwise oriented curve in the
complex plane C. Up to now a variety of approximation methods have
been proposed and investigated, see [1, 2, 4, 7, 12 23] for solving
singular integral equations of Cauchy type

(0.1)
(Ax)(τ ) : = a(τ )x(τ ) +

b(τ )
πi

∫
Γ

x(t)dt
t− τ

+
∫

Γ

k(t, τ )x(t) dt

= f(τ ), t ∈ Γ.

As a rule, the meshes for the underlying numerical schemes were
supposed to be regular. But if the solution of the original equation
has a singularity at some point t0 ∈ Γ then sometimes one uses meshes
which are concentrated at the point t0. The usual way to do this is to
use a continuously differentiable transformation. The original equation
is transformed into a more complicated equation but one which has
the advantage that it can be solved by using regular meshes. Some
general discussion of this topic can be found in [12, Section 6.3], see
also [4, 7, 8, 13, 14, 16, 17, 23]. But there exist sequences of meshes
which cannot be described by such transformations. They appear, for
instance, in adaptive algorithms and require a separate investigation.
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To be more precise, we consider the following characteristic of parti-
tions. Let {Pn}n∈N be the sequence of the meshes which are employed
to construct a numerical method, and let t∗ be an arbitrary fixed point
of Γ. By {t(n)

k }, t(n)
k ∈ Γ, we denote the ordered set of all points defin-

ing the mesh Pn and by t(n)
k0

the nearest point of the mesh Pn lying on
the left side with respect to the point t∗. Let rn(t∗), n ∈ N, refer to
the quotient

rn(t∗) =
|t(n)
k0+2

− t
(n)
k0+1

|

|t(n)
k0

− t
(n)
k0−1

|
.

If t∗ coincides with some point of Pn, then, for definiteness, we put
t
(n)
k0

:= t∗, and rn(t∗) is defined as

rn(t∗) =
|t(n)
k0+1

− t
(n)
k0

|

|t(n)
k0

− t
(n)
k0−1

|
.

Notice that all meshes which are obtained by continuously differentiable
transformations turns out to be locally equidistant. That is,

(0.2) lim
n→∞ rn(t∗) = 1 ∀ t∗ ∈ Γ.

Here a more general approach to nonregular partitions is proposed.
Namely, we consider meshes which appear by using noncontinuously
differentiable functions. However, it is still supposed that the partition
sequence preserves some regularity in the sense that

(0.3) lim
n→∞ rn(t∗) = p(t∗) ∀ t∗ ∈ Γ,

and only for a finite number of points, say t1, . . . , tm, the limit is not
equal to one:

(0.4) p(t∗) =
{

1 if t∗ /∈ {t1, t2, . . . , tm}
pk if t∗ = tk, k = 1, 2, . . . ,m,

and pk ∈ (0,+∞), pk �= 1 for all k = 1, 2, . . . ,m.

In the sequel, partitions with the properties (0.3) (0.4) are called
locally non-equidistant.
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The problems of the stability of methods based on locally non-
equidistant meshes as well as effects arising at the break points of
the partitions were almost not considered earlier. We know only one
reference, namely [12, Sections 5.2.4 5.26, Section 5.5.1], where such
questions are mentioned for some spline Galerkin methods. The aim
of this paper is to make the underyling ideas more explicit and to
extend them to other numerical methods. Thereby, we explain how
these considerations can be used to investigate the stability of adaptive
algorithms.

In the present paper we start with analyzing the situation when a
singular integral equation is considered on the angle Γ = Γω, 0 < ω <
2π, the underlying meshes are equidistant on each of the arcs of Γω,
and the coefficients a and b of the initial equation are supposed to
be constant. Thus, limit (0.3) can be not equal to one only at the
point 0. Under the above assumptions the stability of a quadrature
method is studied. It should be noted that this problem is crucial
for all the further considerations because it represents a so-called local
model for the general problem, and because the stability conditions
of the corresponding quadrature method for the equation (0.1) can
be formulated by means of the characteristics of some operators, say
Aτ , τ ∈ Γ, which are immediately connected with the local models
mentioned, see Section 3. In particular, we show that all the operators
Aτ belong to the smallest closed subalgebra of the Banach algebra
L(l2ρ) of all linear operators acting in the space l2ρ, which contains all
Toeplitz operators with piecewise continuous generating functions. In
addition, we compute the symbols of these operators and study their
Fredholmness. An interesting fact to be noted here also is that the
Fredholm properties of Aτ , τ ∈ Γ, do not depend on the change of the
partition parameters.

Note that the proofs of these results essentially use methods which
were proposed by Prößdorf and Rathsfeld in [14, 15]. Alternatively,
the considerations can also be based on the approach suggested in [12],
see Remark 3. However, we prefer here the methods of Prößdorf and
Rathsfeld because they seem to be more elementary in the case at hand.

Section 2 is devoted to analogous problems for ε-collocation and
qualocation methods for singular integral equations.

The results of Sections 1 2 are then used to settle the general situation
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in Section 3. This will be made by help of local method.

Finally, by use of the quadrature method it will be demonstrated in
Section 4 how the stability analysis can be carried out for some adaptive
methods.

It should also be noted that a special collocation method as well as
some associated Galerkin method based on non-equidistant partitions
were considered in [1]. But the meshes used in [1] do not have the
property (0.3) (0.4). Therefore, the underlying stability analysis re-
quires some special assumptions concerning the initial singular integral
equations and is quite different from the methods presented in this
paper.

1. Quadrature methods for non-equidistant partitions. Ap-
proximation operators and their symbols. Let Γω, 0 < ω < 2π,
be an angle,

Γω := R+ ∪ R+eiω,

where R+eiω is directed to 0 and R+ is directed away from 0. Given
ρ ∈ (−1/2, 1/2), let L2

ρ := L2
ρ(Γω) denote the Lebesgue space of all

measurable functions x on the angle Γω with the norm

‖x‖ :=
(∫

Γω

|x(t)|2|t|2ρ dt
)1/2

< +∞.

In this section our main aim is the study of quadrature methods for
the singular integral equation

(1.1) (Ax)(τ ) := (aI + bSΓω)x(τ ) = f(τ ), τ ∈ Γω,

where the element x is in L2
ρ, the operator SΓω

is given by

(SΓω
x)(τ ) =

1
πi

∫
Γω

x(t)dt
t− τ

, x ∈ L2
ρ,

and the coefficients a and b are supposed to be constant. It will be
seen later on that equation (1.1) and the corresponding quadrature
method constitute a so-called local model, which is of great importance
in studying the general situation. Namely, the stability conditions
of numerical methods for singular integral equations with continuous
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coefficients on piecewise Lyapunov contours will be formulated in terms
of the mentioned local models. Let R+ and R+eiω, 0 < ω < 2π, be the
arcs of the angle Γω. In all that follows we assume that the arcs R+

and R+eiω are equipped with equidistant meshes Pn and P(1)
n , n ∈ N,

respectively. Moreover, by pn and p
(1)
n , we denote the corresponding

partition sizes.

Suppose that
pn

p
(1)
n

= p ∀n ∈ N.

Without loss of generality we can assume that p(1)
n = 1. Then the

parameter p, more precisely, the pair (1, p), can be viewed as the
pressure coefficient of the mesh at the point t = 0. The topic of this
section is to study the behavior of some numerical methods which are
constructed by means of such meshes. According to the choice of the
pressure coefficient p, we will give a parametrization of the angle Γω in
the following way

(1.2) t := γ(s) =
{
ps if s ≥ 0
−seiω if s < 0.

Let n ∈ N. We choose real numbers ε, δ, 0 < ε �= δ < 1, and define
points t(n)

k and τ (n)
k , k ∈ Z, as follows

t
(n)
k :=

{
p(k + δ)/n if k ≥ 0

−((k + δ)/n)eiω if k < 0;
(1.3)

τ
(n)
k :=

{
p(k + ε)/n if k ≥ 0

−((k + ε)/n)eiω if k < 0.
(1.4)

In the following we make the assumption that the function f occurring
in (1.1) belongs to the classR2

ρ(Γω) of Riemann integrable functions on
Γω. This class consists of all functions which are Riemann integrable
on each finite subarc of Γω and for which the norm

‖f‖R2
ρ(Γω) = ‖f‖L2

ρ(Γω) +
( ∞∑
k=0

sup
t∈[k,k+1)

|f(t)|2
)1/2

+
( ∞∑
k=0

sup
t∈eiω [k,k+1)

|f(t)|2
)1/2
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is finite.

To determine approximate values ξ(n)
j , j ∈ Z, of the exact solution

x = x(t) at the points t(n)
j , j ∈ Z, we will solve the following system of

linear algebraic equations

(1.5)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(a− ib cot(π(ε− δ)))ξ(n)
k

+
b

πi

∑
j∈Z

Δt(n)
j

t
(n)
j − τ

(n)
k

ξ
(n)
j = f(τ (n)

k ),

k ∈ Z

where

(1.6) Δt(n)
j :=

{
(p/n) if j ≥ 0
−(eiω/n) if j < 0.

If ϕ(n)
k (t), k ∈ Z, denote the functions

(1.7) ϕ
(n)
k (t) :=

⎧⎪⎪⎨
⎪⎪⎩

{
1 if t ∈ p[(k/n), ((k + 1)/n))

0 otherwise
if k ≥ 0{

1 if t ∈ −eiω[((k + 1)/n), (k/n))

0 otherwise
if k < 0

then the approximate solution of (1.1) is given by

(1.8) xn(t) =
∑
k∈Z

ξ
(n)
k ϕ

(n)
k (t).

Let Ln stand for the orthogonal projection onto the subspace of L2
ρ(Γω)

generated by all the elements of (1.8). Then the approximation method
(1.5) (1.8) can be rewritten as an operator equation

(1.9) Ănxn = fn, xn, fn ∈ imLn,

with some operator Ăn : imLn → imLn. In this section we will
deal with investigating the properties of the operators Ăn. However,
before it will be done we are going to illustrate in more detail how the
approximate method (1.5) arises.
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Rewriting the equation (1.1) in the form

(1.10) ax(γ(s)) +
b

πi

∫ +∞

−∞

x(γ(σ))
σ − s

dσ

+
b

πi

∫ +∞

−∞

(
γ′(σ)

γ(σ) − γ(s)
− 1
σ − s

)
x(γ(σ)) ds = f(γ(s)),

we see that the integral∫ +∞

−∞

(
γ′(σ)

γ(σ) − γ(s)
− 1
σ − s

)
x(γ(σ)) dσ,

has only fixed singularities. We approximate the integral
∫ +∞
−∞ x(σ) dσ

by the quadrature rule∫ +∞

−∞
x(σ) dσ ∼

∑
j∈Z

x(σ(n)
j )

1
n
, σ

(n)
j =

j + δ

n
, j ∈ Z.

Applying this formula to the values of the regularized singular integral
at the points s(n)

k = (k + ε)/n, see [12, 14, 17], we observe that

(1.11)
1
πi

∫ +∞

−∞

x(γ(σ))dσ

σ − s
(n)
k

=
1
πi

∫ +∞

−∞

x(γ(σ)) − x(γ(s(n)
k ))

σ − s
(n)
k

dσ

∼ 1
πi

∑
j∈Z

x(γ(σ(n)
j ))

σ
(n)
j − s

(n)
k

· 1
n
− x(γ(s(n)

k ))i cot(π(ε− δ)).

Now one can evaluate both sides of the equation (1.10) at the points
s
(n)
k , k ∈ Z. Approximating (SRx)(s

(n)
k ), k ∈ Z, by (1.11) and

replacing x(γ(s(n)
k )) by x(γ(σ(n)

k )) we obtain the following system of
linear algebraic equations⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a− ib cot(π(ε− δ)))x(σ(n)
k )

+
b

πi

∑
j∈Z

x(γ(σ(n)
j ))

σ
(n)
j − s

(n)
k

1
n

+
b

πi

∑
j∈Z

(
γ′(σ(n)

j )

γ(σ(n)
j ) − γ(s(n)

k )
− 1

σ
(n)
j − s

(n)
k

)

·x(γ(σ(n)
j ))

1
n

= f(γ(s(n)
k )),

k ∈ Z.
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Denoting by ξ
(n)
j , j ∈ Z, the terms x(γ(σ(n)

j )) we see that the latter
system is nothing else than (1.5).

Remark 1. In case ε = δ the points s(n)
j and σ(n)

j coincide. Therefore,

we approximate the values of the singular integral (SRx)(s
(n)
k ) by

1
πi

∫ +∞

−∞

x(γ(σ))dσ

σ − s
(n)
k

∼ 1
πi

∑
j∈Z
j �=k

x(γ(s(n)
j ))

s
(n)
j − s

(n)
k

· 1
n

+
1
n

1
πi
x′(γ(s(n)

k ))

and neglect the small terms x′(γ(s(n)
k ))/(iπn), k ∈ Z. This leads to the

system

(1.12)

⎧⎪⎨
⎪⎩
aξ

(n)
k +

b

πi

∑
j∈Z
j �=k

Δt(n)
j

t
(n)
j − t

(n)
k

ξ
(n)
j = f(t(n)

k )

k ∈ Z,

where t(n)
k , k ∈ Z, are defined by (1.3).

Let l̃2ν , ν ∈ R, stand for the Banach space of all sequences {ξk}k∈Z

of numbers ξk ∈ C, k ∈ Z, endowed with the norm

‖{ξk}k∈Z‖l̃2ν :=
(∑
k∈Z

|ξk|2(|k| + 1)2ν
)1/2

.

In the case ν = 0, we simply write l̃2.

Analogously to [3], one can show that there exists a number m > 0
satisfying

(1.13)

1
m

∥∥∥∥∑
k∈Z

ξ
(n)
k ϕ

(n)
k

∥∥∥∥
L2(Γω,ρ)

≤ n−1/2−ρ‖{ξ(n)
k }k∈Z‖l̃2−ρ

≤ m

∥∥∥∥∑
k∈Z

ξ
(n)
k ϕ

(n)
k

∥∥∥∥
L2(Γω,ρ)

,

where ϕ(n)
k , k ∈ Z, are defined by (1.7).



STABILITY OF APPROXIMATION METHODS 325

Clearly we can now identify the system (1.5), and also (1.12), with
an operator equation of the form
(1.14) Anξn = ηn,

where ξn = {ξ(n)
k }k∈Z, ηk = {f(τ (n)

k )}k∈Z and An ∈ L(l̃2−ρ). Now,
using (1.13), it is easily seen that the operator sequence {An}n∈N is
stable if and only if the same holds for the sequence of the approximate
operators {Ăn}n∈N of (1.9) corresponding to the method (1.5).

Proposition 1. The sequence {An} is stable if and only if the
operator A1 ∈ L(l̃2−ρ) is invertible.

The proof immediately follows from the fact that the matrices An are
independent of n.

It should be noted that the question of invertibility of the operator A1

is a serious problem. Up to now there are no effective methods to solve
such problems in general. However, a first step towards the solution
of the invertibility problem is to find out whether A1 belongs to some
special class of operators and to investigate its Fredholm properties.
To do this, we firstly identify the Hilbert space l̃2−ρ with the direct sum
l2−ρ� l2−ρ of the Hilbert spaces of one-sided sequences and, secondly, we
consider the operators on l̃2−ρ as 2 × 2 matrices the elements of which
are operators acting on l2−ρ. Let T−ρ stand for the smallest closed
subalgebra of the algebra L(l2−ρ) which contains all Toeplitz operators
T (a) with piecewise continuous generating functions a. Then T 2×2

−ρ is
a subalgebra of L(l̃2−ρ) ∼= L(l2−ρ � l2−ρ) ∼= L(l2−ρ)2×2 consisting of all
2 × 2 matrices with entries in T−ρ. Notice that a symbol calculus is
available for the algebra T 2×2

−ρ , see [10]. By means of this, the Fredholm
properties of our operator can be studied completely.

Proposition 2. Let ρ ∈ (−1/2, 1/2). Then the operator A1 = Aρ,p,ω1

defined in (1.5) and (1.14) belongs to the algebra T 2×2
−ρ and its symbol

smbA1(t, μ), μ ∈ [0, 1], t ∈ T, T := {t ∈ C : |t| = 1}, can be written
in the following form
(1.15) (smbA1)(t, μ)

=
(
a+ bf (ε−δ)(t) 0

0 a− bf (δ−ε)(t)

)
, t �= 1, μ ∈ [0, 1],
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(1.16)

(smbA1)(1, μ)

=
(

a− ib cot(πθ) ib(e−i(π−ω)θp−θ/ sin(πθ))
−ib(e−i(ω−π)θpθ/ sin(πθ)) a+ ib cot(πθ)

)
,

μ ∈ [0, 1],

where

f (α)(t) = f (α)(ei2πs) = 2
sin(−παs)
sin(−πα)

e−iπα(s−1) − 1, s ∈ [0, 1],

and
θ = θ(μ) =

1
2
− ρ+

i

2π
ln

μ

1 − μ
.

Proof. First suppose that ρ = 0 and rewrite the operator A1 as the
matrix operator

(1.17) A1 =
(
A11

1 A12
1

A21
1 A22

1

)
,

where Aij1 ∈ L(l2), i, j = 1, 2. Let us show that each of the operators
Aij1 , i, j = 1, 2, belongs to T := T0. Indeed, the operators Aij1 ,
i, j = 1, 2, have the form

(1.18) A11
1 = (a− ib cot(π(ε− δ)))I +

b

πi

(
1

−(k − j) − (ε− δ)

)+∞

k,j=0

,

(1.19) A12
1 = − b

πi

(
1

(j + 1 − δ) − p(k + ε)ei(2π−ω)

)+∞

k,j=0

,

(1.20) A21
1 =

b

πi

(
1

(j + δ) + p−1(−k − 1 + ε)eiω

)+∞

k,j=0

,

(1.21) A22
1 = (a+ ib cot(π(δ − ε)))I +

b

πi

(
1

(k − j) + (δ − ε)

)+∞

k,j=0

.
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It is well known [14, 17] that A11
1 and A22

1 are Toeplitz operators. More
precisely,

(1.22) A11
1 = T (a+ bf (ε−δ)), A22

1 = T (a− bf (δ−ε)).

Now let us show that A21
1 ∈ T . To this end we set y := p−1x in the

well-known formula [9]

1
πi

1
1 − yeiω

=
1

2πi

∫
Re z=1/2

y−z
{
− i

e−i(ω−π)z

sin(πz)

}
dz.

Then

(1.23)
1
πi

1
1 − p−1xeiω

=
1

2πi

∫
Re z=1/4

(p−1x)−z
{
− i

e−i(ω−π)z

sin(πz)

}
dz.

From (1.23) and from the residue theorem, one can conclude that

(1.24)
1
πi

p−1x

1 − p−1xeiω

=
1
πi
e−iω +

e−iω

2πi

∫
Re z=1/4

(p−1x)−z
{
− i

e−i(ω−π)z

sin(πz)

}
dz.

Combining (1.23) with (1.24) we obtain

(1.25)
1 − x

1 − p−1xeiω

= −pe−iω +
1 − pe−iω

2

∫
Re z=1/4

x−z
{
− i

e−i(ω−π)zpz

sin(πz)

}
dz.

The latter relation enables us to present the operator A21
1 in the form

A21
1 =

(
1 − (k + 1 − ε)/(j + δ)

1−p−1((k + 1 − ε)/(j + δ))eiω
1
πi

1
(j + δ) − (k + 1 − ε)

)∞

k,j=0

= −bpe−iω
(

1
(j + δ) − (k + 1 − ε)

)∞

k,j=0
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+ b

(
1 − pe−iω

2

∫
Re z=1/4

{
− i

e−i(ω−π)zpz

sin(πz)

}

· (k + 1 − ε)/(j + δ)−z

(j + δ) − (k + 1 − ε)
dz

)+∞

k,j=0

= K − bpe−iωT (f (1−ε−δ)) − b
1 − pe−iω

2

·
∫

Re z=1/4

{
− i

e−i(ω−π)zpz

sin(πz)

}
((k + 1 − ε)−zδkj)+∞

k,j=0

· T (f (1−ε−δ))((j + δ)zδkj)+∞
k,j=0 dz,

where K is a compact operator.

Given a number z ∈ C, Re z ∈ (−1, 1), we define Λz := ((k +
1)−zδkj)+∞

k,j=0, and, similar to [14, 17], we denote the operator
Λ−zT (f (1−ε−δ))Λz by Az. Now it follows immediately that there exists
a compact operator K1 such that

(1.26) A21
1 = b

1 − pe−iω

2

∫
Re z=1/4

{
− i

e−i(ω−π)zpz

sin(πz)

}
Az dz

− bpe−iωT (f (1−ε−δ)) +K1.

Since Az ∈ T , [14, 17] and all compact operators belong to T , the
equality (1.26) gives A21

1 ∈ T and

smbA21
1 = b

1 − pe−iω

2

∫
Re z=1/4

{
− i

e−i(ω−π)zpz

sin(πz)

}
smbAz dz

− bpe−iωsmbA0.

Extending the function z → smbAz to a 1-periodic analytic function
we can rewrite the latter expression as

smbA21
1 =

b

2

{∫
Re z=1/4

{
− i

e−i(ω−π)zpz

sin(πz)

}
smbAz dz

−
∫

Re z=5/4

{
− i

e−i(ω−π)zpz

sin(πz)

}
smbAz dz

}

− bpe−iωsmbA0.
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Applying the residue theorem again and remembering that the func-
tion z → (smbAz)(t, μ) is constant in the strip Re z ∈ (1/4, 5/4), if
t �= 1 and has the simple pole at z0 = 1/2+ (i/2π) lnμ/(1−μ) if t = 1,
we get

(1.27) (smbA21
1 )(t, μ)

=

⎧⎪⎪⎨
⎪⎪⎩

0 if t �= 1

b(−i)e
−i(ω−π)(

1
2+

i
2π ln

μ
1−μ )

p
(
1
2+

i
2π ln

μ
1−μ )

sin(π( 1
2 + i

2π ln μ
1−μ ))

otherwise.

The same arguments can also be applied to A12
1 . It turns out that A12

1

is in T , too, and

(1.28) (smbA12
1 )(t, μ)

=

⎧⎪⎪⎨
⎪⎪⎩

0 if t �= 1

−b(−i)e
−i(π−ω)(

1
2+

i
2π ln

μ
1−μ )

p
−(

1
2+

i
2π ln

μ
1−μ )

sin(π( 1
2 + i

2π ln μ
1−μ ))

otherwise.

Thus, for ρ = 0 the relations (1.15) and (1.16) follow from (1.27), (1.28),
(1.22) and from corresponding results of [10] for Toeplitz operators.
We now turn to the case ρ �= 0. Let us introduce the operator
Λρσ = ((k + σ)ρδkj)+∞

k,j=0, where σ is a fixed real number. Since, for
each σ ∈ (0, 1), the operators Λρσ : l2 → l2−ρ and Λ−ρ

σ : l2−ρ → l2 are
continuously invertible, the operator A21 ∈ L(l2−ρ) is Fredholm if and
only if the operator B21 = Λ−ρ

δ A21Λρ1−ε ∈ L(l2) is so. Let ψ be some
positive number such that ψ±ρ ∈ (−1/2, 1/2). Then immediately from
(1.25) we obtain

1 − x

1 − p−1xeiω
x−ρ = −pe−iωx−ρ +

1 − pe−iω

2

·
∫

Re z=ψ

x−(z+ρ)

{
− i

e−i(ω−π)zpz

sin(πz)

}
dz.

Using this formula we can represent the operator B21,

B21
1 = b

(
1 − (k+1−ε)/(j+δ)

1 − p−1((k+1−ε)/(j+δ))eiω
1
πi

((k+1−ε)/(j+δ))−ρ
(j+δ) − (k+1−ε)

)∞

k,j=0
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in the form

B21
1 = b

1 − pe−iω

2

∫
Re z=ψ

{
− i

e−i(ω−π)zpz

sin(πz)

}
Az+ρ dz

− bpe−iωAρ +K2

with K2 being some compact operator. Further considerations literally
repeat corresponding ones for the case ρ = 0. The only difference
is that the function z → (smbAz+ρ)(1, μ) has the simple pole z0 =
1/2 − ρ+ (i/2π) lnμ/(1 − μ) in the strip Re z ∈ (ψ, ψ + 1). Thus, the
proof of our proposition is finished.

Corollary 1. For all parameters ρ ∈ (−1/2, 1/2), ρ ∈ (0,∞) and
ω ∈ (0, 2π) the operators A1 = Aρ,p,ω1 are simultaneously Fredholm or
not. When these operators are Fredholm their indices vanish.

Proof. Since for t �= 1 the symbol smbAρ,p,ω1 (t, μ) of the operator
Aρ,p,ω1 is independent of the parameters ρ, p and ω, it remains to
consider smbAρ,p,ω1 (1, μ). Straightforward computations give us the
following relation

det{smbAρ,p,ω1 (1, μ)} = a2 − b2.

This completes the proof of the first assertion. To show the second
part of the claim we can suppose ρ = 0, p = 1 and ω = π because
det{smbAρ,p,ω1 (t, μ)} is independent of these parameters. But in this
case the operator

A0,1,π
1 = aI + b(fε−δk−j )k,j∈Z ∈ L(l̃2)

is a convolution operator which is Fredholm if and only if

(1.29) a+ bf (ε−δ)(t) �= 0 for any t ∈ T,

and its index always vanishes.

Corollary 2. The operators Aρ,p,ω1 , ρ ∈ (−1/2, 1/2), p ∈ (0,∞),
ω ∈ (0, 2π) are Fredholm if and only if

(1.30) (a+ b)(a− b)−1 /∈ Γε,δ,
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where
Γε,δ := {−te−iπ(ε−δ), t ∈ [0,+∞)}.

In view of Corollary 1 we can again suppose p = 1, ρ = 0, ω = π and
employ the equivalence of conditions (1.29) and (1.30), see [14, 17].

Thus the preceding corollaries show that partition change does not
influence the Fredholm properties of the approximation operators. But
such a step can lead to the change of their invertibility properties.

Remark 2. The approximation method (1.12) can be treated in the
same manner. The results obtained are similar to those for method
(1.5). More precisely, the symbol of the approximation operator Â1

for method (1.12) has the form (1.15), (1.16). However, the function
f (α)(t) in (1.15) should be replaced by the function

f̂(t) = f(ei2πs) = 2s− 1, 0 ≤ s < 1.

Remark 3. The proof of Proposition 2 can also be done by the
methods of [12] because the operator A ∈ L(L2(Γω, ρ)) in (1.10) is
isometrically isomorphic to the matrix operator(

A11 A12

A11 A22

)
,

where Ajk ∈ L(L2(R+, ρ)), j, k = 1, 2,

A11 = aI + bSR+ , A22 = aI − bSR+ .

Moreover, A12 and A21 are Mellin convolution operators

(Mx)(s) =
∫
R+

k

(
s

u

)
x(u)

du

u

with the kernels

k12(t) =
b

πi

1
1 − p−1eiωt

, k21(t) = − b

πi

1
1 − pei(2π−ω)t

,
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respectively.

2. Collocation and qualocation methods for non-equidistant
partitions. Fix n ∈ N , and let ϕ(n)

k = ϕ
(n)
k (t), k ∈ Z, be the functions

introduced in (1.7). An approximate solution xn(t) of (1.1) is sought
in the form (1.8) but here the coefficients ξ(n)

k , k ∈ Z, of (1.8) are
determined by solving the following system

(2.1) Axn(τ
(n)
k ) = f(τ (n)

k ), k ∈ Z,

where the τ (n)
k , k ∈ Z are defined in (1.4). Introduce the interpolation

operator Kn,ε by

(Kn,εf)(t) =
∑
k∈Z

f(τ (n)
k )ϕ(n)

k (t).

Then one can write the system (2.1) in the form Ãn,εxn = fn, where

Ãn,ε := Kn,εA|ImLn
∈ L(ImLn), fn = Knf,

and where Ln, n ∈ N, denote the orthogonal projections onto the
subspaces span {ϕ(n)

k , k ∈ Z}. It should also be noted that the matrices
Ãn,ε are independent of n.

Proposition 3. Let ρ∈(−1/2, 1/2). Then the operator Ã1,ε=Ã
ρ,p,ω
1,ε

of (2.1) belongs to the algebra T 2×2
−ρ , and its symbol smb Ã1,ε(t, μ),

t ∈ T, μ ∈ [0, 1], can be written in the form

(2.2) (smb Ãρ,p,ω1,ε )(t, μ)

=
(
a+ b

∫ 1

0
f (ε−δ)(t) dδ 0
0 a− b

∫ 1

0
f (δ−ε)(t) dδ

)

for t ∈ T\{1}, μ ∈ [0, 1], and

(2.3) (smb Ãρ,p,ω1,ε )(1, μ) = (smbAρ,p,ω1 )(1, μ), μ ∈ [0, 1].



STABILITY OF APPROXIMATION METHODS 333

Proof. Let us consider the matrix representation for the operator
Ã1,ε = Ãρ,p,ω1,ε , which is

(2.4) Ã1,ε = aI + b

(
1
πi

∫
Γω

ϕ
(1)
j (t)dt

t− τ
(1)
k

)
k,j∈Z

.

Denote by tδk, k ∈ Z, δ ∈ (0, 1), the points

tδk =
{
p(k + δ) if k ≥ 0
−(k + δ)eiω if k < 0.

Then straightforward computations lead to

(2.5)
1
πi

∫
Γω

ϕ
(1)
j dt

t− τ
(1)
k

=
1
πi

∫ 1/2

0

( 2εΔt(1)j
t2εδj − τ

(1)
k

−
2(1 − ε)Δt(1)j

t
1+2(ε−1)δ
j − τ

(1)
k

)
dδ,

where

(2.6) Δt(1)j =
{
p if j ≥ 0
−eiω if j < 0.

Now setting

Bδε = (a− ib cot(π(ε− δ)))I + b

(
1
πi

Δt(1)j
tδj − τ

(1)
k

)
k,j∈Z

and using (2.4) and (2.5), we represent the initial operator Ãρ,p,ω1,ε in
the form

(2.7) Ãρ,p,ω1,ε =
∫ 1/2

0

(2εB2εδ
ε + 2(ε− 1)B1+2(ε−1)δ

ε ) dδ.

Let us consider the operator-function R(δ) = 2εB2εδ
ε + 2(ε − 1)

B
1+2(ε−1)δ
ε , δ ∈ [0, 1/2]. By Proposition 2, the operators B2δε

ε and
B

1+2(1−ε)δ
ε belong to T 2×2

−ρ . In addition, the function R : [0, 1/2] →
T 2×2
−ρ is continuous, because

2ε

t2εδj − τ
(1)
k

− 2(1 − ε)

t
1+2(1−ε)δ
j − τ

(1)
k

= 0, if k = j,



334 V.D. DIDENKO AND B. SILBERMANN

and ∣∣∣∣ 1

t2εδ1j − τ
(1)
k

− 1

t2εδ2j − τ
(1)
k

∣∣∣∣ ≤ c1|δ1 − δ2|
|j − k|2 , if k �= j,

with some constant c1 dependent on p, ε and ω only. Therefore,
the operator Ãρ,p,ω1,ε also belongs to the algebra T 2×2

−ρ and its symbol
(smb Ãρ,p,ω1,ε )(t, μ), t ∈ T, μ ∈ [0, 1], has the form

(2.8) (smb Ãρ,p,ω1,ε )(t, μ) =
∫ 1/2

0

(2ε(smbB2εδ
ε )(t, μ)

+ 2(ε− 1)(smbB1+2(ε−1)δ
ε )(t, μ)) dδ.

Remembering (1.15) and (1.16), we obtain (2.2) and (2.3).

Corollary 3. For all parameters ρ ∈ (−1/2, 1/2), p ∈ (0,∞) and
ω ∈ (0, 2π), the operators Ãρ,p,ω1,ε are simultaneously Fredholm or not.
When these operators are Fredholm their indices vanish.

Now let Γε be the curve

Γε := {(ψε(s) − 1)/ψε(s), s ∈ [0, 1]},

where ψε(s) is

ψε(s) =
∫ 1

0

e−π(ε−δ)(s−1) sin(−π(ε− δ)μ)
(−π(ε− δ))

dδ.

Corollary 4. The operators Ãρ,p,ω1,ε are Fredholm if and only if
(a+ b)(a− b)−1 ∈ Γε.

Note that the proofs of Corollaries 3 and 4 literally repeat the
argumentation of the proofs of Corollaries 1 and 2.

Now we would like to apply the above results to the study of the
qualocation method for the equation (1.1).

Let 0 < ε1 < ε2 < · · · < εm−1 and wr ∈ (0, 1), r = 1, 2, . . . ,m − 1,
be real numbers such that

∑m−1
r=1 wr = 1, and let Qn designate the
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quadrature rule on Γω:

(2.9) Qn(g) =
∑
k∈Z

Δt(n)
k

n

m−1∑
r=0

wrg(τ
n,εr

k ),

where

τn,εr

k =
{
p(k + εr)/n if k ≥ 0
−((k + εr)/n)eiω if k < 0,

and Δt(n)
k are defined by (1.6).

The approximate solution xn(t) of (1.1) is again sought in the form
(1.8) but according to the qualocation method [12, 21, 22] the co-
efficients ξ(n)

k , k ∈ Z, are defined by solving the following operator
equation

Qn(ϕ(n)
j Axn) = Qn(ϕ(n)

j f), j ∈ Z.

The latter equation is equivalent to the following system of linear
algebraic equations

(2.10)
m−1∑
r=0

wrAxn(τ
n,εr

k ) =
m−1∑
r=0

wrf(τn,εr

k ), k ∈ Z.

By An,Q we denote the operator which corresponds to (2.10).

Proposition 4. Let ρ ∈ (−1/2, 1/2). Then

(i) the matrices of the operator An;Q, n ∈ N, are independent of n;

(ii) the operator AQ = Aρ,p,ω1,Q belongs to the algebra T 2×2
−ρ , and its

symbol smbAQ(t, μ), t ∈ T, μ ∈ [0, 1], can be written in the form

(2.11) (smbAρ,p,ωQ )(t, μ)

=

(
a+b

∑m−1
r=0 ωr

∫ 1

0
f (εr−δ)(t) dδ 0

0 a−b
∑m−1
r=0 ωr

∫ 1

0
f (δ−εr)(t) dδ

)

for t ∈ T\{1}, μ ∈ [0, 1], and

(2.12) (smbAρ,p,ωQ )(1, μ) = (smb Ãρ,p,ω1,ε )(1, μ)

= (smbAρ,p,ω1 )(1, μ), μ ∈ [0, 1].
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(iii) The operator Aρ,p,ωQ is Fredholm if and only if (a+ b)(a− b)−1 /∈
ΓQ, where

ΓQ :=
{(m−1∑

r=0

wrψεr
(s) − 1

)/m−1∑
r=0

wrψεr
(s), s ∈ [0, 1]

}

and ψεr
, r = 1, 2, . . . ,m− 1, are as above.

The proof of Proposition 4 follows immediately from Proposition 3
because

AQ =
m−1∑
r=0

wrÃ1,εr
.

3. Approximation methods with non-equidistant partitions
on curves with corners. Let Γ be a simple closed piecewise smooth
curve in the complex plane C, and let γ̃ : R → Γ be some 1-
periodic continuous parametrization of Γ. By C we denote the set
{t̃0, t̃1, . . . , t̃m̃0} of all corner points of Γ, and let s̃j , j = 1, 2, . . . , m̃0,
be real numbers such that 0 < s̃1 < s̃2 < · · · < s̃m̃0 < 1 and

γ̃(s̃j) = t̃j , j = 1, 2, . . . , m̃0.

From now on, we make the following assumptions concerning the
function γ̃:

(i) γ̃ is twice continuously differentiable on each open interval
(s̃j , s̃j+1), j = 1, 2, . . . , m̃0, where s̃m̃0+1 := s̃1 + 1.

(ii) There exist finite one-sided limits γ̃′(s̃j ± 0) and γ̃′′(s̃j ± 0) for
all j = 1, 2, . . . , m̃0.

In this section we restrict our attention to the study of a quadrature
method for the equation (0.1), which is based on non-equidistant
meshes on Γ. To this end, we choose some finite set B of points
t∗1, t

∗
2, . . . , t

∗
m∗

0
on Γ, which will be viewed as the break points of the

mesh sequence. Now the sequence of meshes will be constructed in
such a way that

lim
n→∞ rn(t∗k) = p∗k, k = 1, 2, . . . ,m∗

0,
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where p∗k, k = 1, 2, . . . ,m∗
0 are some fixed numbers and p∗k �= 1 for any

k = 1, 2, . . . ,m∗
0. Note that an algorithm of construction of the meshes

with prescribed properties will be given in Section 4.

By M we denote the union of the sets C and B, i.e.,

M := C ∪ B,

M = {t1, t2, . . . , tm0} and let sj , j = 1, 2, . . . ,m0, be the real numbers
such that 0 < s1 < s2 < · · · < sm0 < 1 and

γ̃(sj) = tj , j = 1, 2, . . . ,m0.

Due to the assumptions (i) and (ii) we can choose a 1-periodic
parametrization γ : R → Γ of the curve Γ such that:

(i) tj = γ(j/m0), j = 1, 2, . . . ,m0;

(ii) the parametrization γ is twice continuously differentiable on each
interval (j/m0, (j + 1)/m0), j = 1, 2, . . . ,m0;

(iii) there exist finite one-sided limits γ′(j/m0 ± 0) and γ′′(j/m0 ± 0)
for any j = 1, 2, . . . ,m0;

(iv) |γ′(j/m0 + 0)| = pj |γ′(j/m0 − 0)|, j = 1, 2, . . . ,m0, where

pj =
{
p∗k if γ(j/m0) = t∗k, t

∗
k ∈ B

1 if γ(j/m0) /∈ B.

Thus the point t0 = γ(s0) of Γ belongs to the set M if and only if at
least one of the following two conditions is fulfilled:

(i) arg γ′(s0 + 0) �= arg γ′(s0 − 0);

(ii) |γ′(s0 + 0)| �= |γ′(s0 − 0)|.
Let us define the function ν := ν(t) by the relation

ν(t) :=
m0∏
j=1

|t− tj |ρj , t ∈ Γ,

where ρj ∈ (−1/2, 1/2), j = 1, 2, . . . ,m0. In the following the operator
A defined by (0.1) will be considered as an operator acting in the space
L2
ν := L2

ν(Γ) of all Lebesgue measurable functions x such that

‖x‖L2
ν(Γ) :=

(∫
Γ

|x(t)|2ν2(t)|dt|
)1/2

.
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Let n = lm0, l ∈ N, and let ε, δ ∈ (0, 1) be real numbers such that
ε �= δ. For each k = 1, 2, . . . , n− 1, we put

t
(n)
k = γ

(
k + δ

n

)
, τ

(n)
k = γ

(
k + ε

n

)
.

Then, due to the choice of the parameterization γ, the sequence of
meshes {Pn}n∈N , where Pn := {t(n)

0 , t
(n)
1 , . . . , t

(n)
n−1}, has the property

that

lim
n→∞ rn(t) =

{
p∗k if t = t∗ ∈ B
1 if t /∈ B.

We will determine the approximate values ξ(n)
k , k = 0, 1, . . . , n − 1,

for the exact solution of the equation (0.1) at the points t(n)
k , k =

0, 1, . . . , n− 1, by solving the following discrete system:

(3.1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a(τ (n)
k ) − b(τ (n)

k )i cot(π(ε− δ)))ξ(n)
k

+
1
πi

∑n−1
j=0

b(τ (n)
k )Δt(n)

j

t
(n)
j − τ

(n)
k

ξ
(n)
j

+
∑n−1
j=0 k(τ

(n)
k , t

(n)
j )Δt(n)

j ξ
(n)
j = g(τ (n)

k ),

k = 0, 1, . . . , n− 1,

where Δt(n)
j = γ((j+1)/n)−γ(j/n). If χ(n)

j stands for the characteristic
function of the arc joining γ(j/n) to γ((j+1)/n), then the approximate
solution of (0.1) is given by

(3.2) xn(t) =
n−1∑
j=0

ξ
(n)
j
χ(n)
j (t).

The stability conditions for the quadrature method (3.1) (3.2) can
be obtained with the help of localizing techniques for approximate
methods, cf. [12]. Roughly speaking, it means that we assign a family
of simpler problems to the original problem. Namely, with each point
τ ∈ Γ, we connect a quadrature method (local model) of the form (1.5).
The parameters of this one reflect the local behavior of the original
problem at the point τ . More precisely, let τ ∈ Γ, and let sτ ∈ [0, 1)
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be chosen in such a way that τ = γ(sτ ). By ωτ , pτ and ρτ we denote
the following real numbers

ωτ = arg(−γ′(sτ − 0)/γ′(sτ + 0)), ωτ ∈ (0, 2π),
pτ = |γ′(sτ + 0)/γ′(sτ − 0)|,

ρτ =
{
ρj if τ = tj , j = 1, 2, . . . ,m0,

0 if τ /∈ M.

Further, we consider the approximate method (1.5) (1.8) with the
underlying operator

Aτ = a(τ )I + b(τ )SΓωτ
,

which can be viewed as an operator acting in the space L2(Γωτ
, ρτ ).

Let Aτ stand for the associated operator of the form (1.17) (1.21),
where a, b, p and ω are equal to a(τ ), b(τ ), pτ and ωτ , respectively, and
let R = R(Γ) be the set of all Riemann integrable functions on Γ. The
remainder of this section will be devoted to the proof of the following
result.

Theorem 1. Let a, b ∈ C(Γ) and k ∈ C(Γ × Γ). Then

(i) the approximate method (3.1) is stable if and only if the operator
A ∈ L(L2

ν(Γ)) and the corresponding operators Aτ ∈ L(l2−ρτ
), τ ∈ M,

are invertible;

(ii) the systems (3.1) are uniquely solvable for n sufficiently large,
and the approximate solutions (3.2) converge to the exact solution of
the equation (0.1) in the norm of L2

ν(Γ) under the assumption that the
method (3.1) is stable and f ∈ R(Γ).

As was said before, the proof of this theorem can be done by using
localization methods. For the convenience of the reader, we recall
some results. However, from now on, all operators under consideration
are supposed to act in spaces without weight. Note that the general
situation can again be translated to this one, see, for example, Section 1.

Let Ln ∈ L(L2(Γ)) be the orthogonal projection onto the subspace
(3.2). It is well known, see, e.g., [12, 17], that Ln converges strongly
to the identity operator as n → ∞. By A we refer to the set of all
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sequences {An} of all continuous operators An : imLn → imLn such
that there exists an operator A ∈ L(L2(Γ)) for which AnLn → A and
A∗
nL

∗
n → A∗ strongly as n → ∞. In addition, let J be the collection

of all sequences having the form {LnKLn + Gn} where K belongs to
the set K(L2) of all compact operators, and where Gn : imLn → imLn
and ‖Gn‖ → 0 as n → ∞. Then it is easily seen that A becomes a
Banach algebra if it is provided with the natural operations of a linear
space and with the norm

‖{An}‖ = sup
n

‖AnLn‖.

The set J is a closed ideal of A. The next result gives us a powerful
tool for proving stability of many numerical methods we know, cf. [12].

Theorem 2. Let {An} ∈ A and AnLn → A strongly. The sequence
{An} is stable if and only if the operator A is invertible in L(L2(Γ))
and if the coset {An}0 := {An}+J is invertible in the quotient-algebra
A/J .

From now on, we denote by {An} the sequence of operators An :
imLn → imLn corresponding to numerical method (3.1) and start with
proving the sufficiency part of Theorem 1. As the sequence {An} ∈ A
(what immediately follows from [12, 14]), then in view of Theorem 2 we
have to show the invertibility of {An}0 in A/J . It can be done by means
of the local principle of Gohberg and Krupnik. For the convenience of
the reader, we recall some facts concerning this subject, for details see
[11].

Suppose that U is a Banach algebra with identity e. A subset Mτ ⊂ U
is said to be a localizing class if 0 /∈ Mτ and if, for any u1, u2 ∈ Mτ

there exists an element u ∈Mτ such that ulu = uul, l = 1, 2. A system
{Mτ}τ∈T is called covering if, for each collection {uτ}τ∈T , uτ ∈ Mτ ,
there is a finite subset of elements uτ the sum of which is invertible.

An element x ∈ U is said to be Mτ -invertible if there are elements
z1, z2 ∈ U and u1, u2 ∈Mτ such that

u1xz1 = u1, u2xz2 = u2,

and two elements x, y ∈ U are called Mτ -equivalent if

inf
u∈Mτ

‖u(x− y)‖ = inf
u∈Mτ

‖(x− y)u‖ = 0.
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Theorem 3 [11]. Let {Mτ}τ∈T be a covering system of localizing
classes and let, for all τ ∈ T , the element x ∈ U be Mτ -equivalent
to xτ ∈ U . If x commutes with all elements in ∪τ∈TMτ , then x is
invertible in U if and only if the elements xτ are Mτ -invertible for all
τ ∈ U .

Now we can return to the proof of Theorem 1. First of all, we have to
find a covering system of localizing classes in A. To do this, we consider
the interpolation projection Kε

n which sends each Riemann integrable
function f on Γ into the function

Kε
nf(t) =

n−1∑
j=0

f(τ (n)
j )χ(n)

j (t)

where χ(n)
j , j = 0, 1, . . . , n − 1, are the characteristic functions of the

arcs [γ(j/n), γ((j + 1)/n)). Let τ ∈ Γ, and let Lτ be the set of all
real-valued Lipschitz functions h on Γ taking values between 0 and 1
and such that h(t) = 1 in some neighborhood of τ . By hn we denote
the operator Kε

nfLn.

Lemma 1. The set {Mτ}τ∈Γ, Mτ := {{hn}0, h ∈ Lτ} is a covering
system of localizing classes in A/J , and the elements of ∪τ∈ΓMτ

commute with the coset {An}0 in A/J .

The proof of the first assertion of this lemma immediately follows
from the definition of the operators hn, h ∈ Lτ . To prove the second
assertion of Lemma 1 we can use the methods presented in [15, 17],
see, for example, [17, p. 407] or, alternatively, quote the assertion (a)
of Proposition 5.12 from [12].

Let Pn ∈ L(l̃2) stand for the projection Pn : (xk)k∈Z → (yk)k∈Z with

yk =
{
xk if −n/2 < k ≤ n/2
0 otherwise.

For fixed τ ∈ Γ and n ∈ Z+ we introduce the operator W τ
n ∈

L(imPn, imLn) in the following way: first we define the number
j(τ, n) ∈ {0, 1, . . . , n − 1} as that index for which τ ∈ (γ(j(τ, n)/n),
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γ((j(τ, n) + 1)/n)]. Then we set

W τ
n (δjk)k∈Z = χ(n)

j+j(τ,n).

It is evident that W τ
n : imPn → imLn is a one-to-one mapping and

applying (1.13) we conclude that

(3.3) ‖W τ
n‖ ‖W τ

−n‖ < +∞,

where W τ
−n is the inverse operator to W τ

n . Let us now consider the
sequences {W τ

−nAnW
τ
n} and {(W τ

−nAnW
τ
n )∗}. Calculating the strong

limits of both of them we find that

(3.4) s− limW τ
−nAnW

τ
n = Aτ , s− lim(W τ

−nAnW
τ
n )∗ = A∗

τ ,

where Aτ is defined above.

Let T be the unit circle, T := {t ∈ C : |t| = 1}. By C1(T) we denote
the set of all functions f of C(T)\{1} which have finite limits as t
tends to 1±0. Given a function f ∈ C1(T) with the Fourier coefficient
sequence {fk}, we let T 0(f) denote the operator

T 0(f) := (fj−k)j,k∈Z.

Then alg (T 0(f), P ) refers to the smallest closed subalgebra of L(l̃2)
which contains all operators T 0(f) with f ∈ C1(T) and the projection
P : l̃2 → l̃2,

P (xk) =
{
xk if k ≥ 0
0 if k < 0.

Now we are going to show that all the operators Aτ , τ ∈ Γ, belong to
alg2×2(T 0(f), P ). Actually, let Gi, i = 1, 2, stand for the operators

Gi =
(∫ m+1

m

∫ n+1

n

ki

(
t

s

)
ds

s
dt

)+∞

m,n=0

,

with the kernels k1, k2 being defined as follows

k1(x) =
b

πi

1
1 − p−1eiωx

, k2(x) =
b

πi

1
1 − pei(2π−ω)x

.



STABILITY OF APPROXIMATION METHODS 343

Using Corollary 2.1 of [12] we represent the operators (1.19) (1.20) in
the form

A12
1 = G1 +K1, A21

1 = G2 +K2,

with some compact operators K1,K2. Since the algebra alg (T 0(f), P )
contains the operators G1, G2, see [12, Proposition 2.11], as well as all
compact operators we get that the operator

Aτ =
(
T (a+ bf (ε−δ)) G1 +K1

G2 +K2 T (a− bf (δ−ε))

)

is in alg2×2(T 0(f), P ).

Suppose now that the operator Aτ is invertible. Taking into account
the inverse closedness of alg (T 0(f), P ) in L(l̃2) we obtain that A−1

τ

is in alg 2×2(T 0(f), P ) as well. Therefore, both of the sequences
{W τ

nAτW
τ
−n}, {W τ

nA
−1
τ W τ

−n} ∈ A, [14, 15]. In addition, one can
write

(3.5) W τ
nAτW

τ
−n ·W τ

nA
−1
τ W τ

−n = Ln+W τ
nAτ (I−W τ

−nW
τ
n )A−1

τ W τ
−n.

Let us consider the term W τ
nAτ (I−W τ

−nW
τ
n )A−1

τ W τ
−n. It follows from

Lemma 11.10 of [17] that, for each ε > 0, there exists a function
hτ ∈ Lτ such that

(3.6) ‖(Knh
τLn)W τ

nAτ (I −W τ
−nW

τ
n )A−1

τ W τ
−n‖ < ε.

Hence, the operator

Ln + (Knh
τLn)W τ

nAτ (I −W τ
−nW

τ
n )A−1

τ W τ
−n

is invertible if hτ is chosen in a suitable way. A little thought shows
that {Bn} = {(Ln + (Knh

τLn)W τ
nAτ (I −W τ

−nW
τ
n )A−1

τ W τ
−n)−1} is in

A, too. Multiplying (3.5) by (Knh
τLn) from the left side and by Bn

from the right, we obtain that {W τ
nAτW

τ
−n} is Mτ -invertible from the

right. Analogous considerations are used to prove Mτ -invertibility of
{W τ

nAτW
τ
−n} from the right. Thus, if all operators Aτ , τ ∈ Γ, are

invertible, then all cosets {W τ
nAτW

τ
−n}0 are Mτ -invertible in A/J .

We are left to show that {An}0 and {W τ
nAτW

τ
−n}0 are Mτ -equivalent

for each τ ∈ Γ, i.e., we have to prove that the following term

(3.7) r(h, n) = ‖hn(An −W τ
nAτW

τ
−n)‖A/J
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can be made sufficiently small by appropriate choice of the function
h ∈ Lτ . Evidently, we can prove this only for operators A generating
the initial algebra. Let, for instance, A = SΓ. If τ /∈ M, then one
may refer to the corresponding results of [12, 14, 17]. Let τ ∈ M.
Without loss of generality, we can suppose that τ = γ(0). Now choose
a neighborhood Uτ of τ such that Uτ contains only one point of M,
namely, the point τ , and define a mapping ψτ : Uτ → Γτ by

ψτ (γ(s)) =
{
pτs if s ≥ 0
−eiωτ s if s < 0,

with s ∈ R satisfying condition γ(s) ∈ Uτ . We also let Vτ = ψτ (Uτ ).
Then the operator ψτSUτ

ψ−1
τ
χVτ

I − SVτ is compact, see, e.g., [12].
Due to this property the term r(h, n) from (3.7) can be made smaller
than any prescribed ε > 0 if h is chosen in such a way that supph ⊂ Uτ
and Uτ is sufficiently small, and using Theorem 3 completes the proof
of Theorem 1. Note that SUτ

and SVτ
are Cauchy singular integral

operators over Uτ and Vτ , respectively.

Thus, the cosets {An}0 and {W τ
nAτW

τ
−n}0 are Mτ -equivalent and

applying Theorem 3 finishes the proof of the sufficiency part of The-
orem 1. The necessity part immediately follows from the existence of
the strong limits (3.4).

Remark 4. Both the collocation method and the qualocation one for
equation (0.1) which are based on locally non-equidistant meshes of Γ
can be handled in the same way.

4. Stability of the adaptive quadrature method. In this section
it is shown that the methods which were developed for investigating
numerical methods on locally non-equidistant meshes can also be used
to study the stability problem of so-called adaptive algorithms for
singular integral equations. Let us shortly recall the matter of the
problem.

We consider the sequence of the meshes {Pn}n∈N which are employed
to construct a numerical method. The meshes Pn, n ∈ N, are defined
by the collections of the points {t(n)

k }. To get more precise information
about the solution of the initial problem in a neighborhood of some
point t∗ the meshes Pn, n ∈ N, are modified in the following way.
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Firstly, an arc l0(t∗) of Γ is chosen such that t∗ ∈ l0(t∗) and, secondly,
to the points t(n)

k ∈ l0(t∗)∩Pn are added new points of l0(t∗). It leads to
a reduction of the mesh size on l0(t∗). On the other part Γ\l0(t∗) of Γ
the points of the meshes Pn are retained. As a result, a new sequence of
the meshes {P ′

n} appears. This one is used now to construct a modified
approximation method. If we get insufficient information by using the
meshes sequence {P ′

n} we choose a new arc l1(t∗) ⊂ l0(t∗) and the mesh
on l1(t∗) is refined again. This process can be repeated many times.
Thus, we get a sequence of arcs

lm(t∗) ⊂ lm−1(t∗) ⊂ · · · ⊂ l0(t∗).

These arcs have the property that, for each k = 1, 2, . . . ,m, the
density of the mesh on lk(t∗) is greater than on lk−1(t∗)\lk(t∗). In
connection with this, such arcs lk(t∗), k = 1, 2, . . . ,m, are said to
be the condensation arcs of the meshes. It is well known that such
methods often reduce the computing costs which are needed to get a
given accuracy. We show that stability of these numerical methods can
be investigated similarly to the above considerations.

Let γ = γ(s), s ∈ R, be some 1-periodic parametrization of the simple
closed curve Γ. For simplicity, we assume that γ is twice continuously
differentiable on R. We consider the following sequence of the meshes
{Pn}n∈N, Pn := {t(n)

0 , t
(n)
1 , . . . , t

(n)
n−1},

(4.1) t
(n)
j := γ

(
j

n

)
, j = 1, 2, . . . , n− 1.

For the point t∗ of Γ we choose the first condensation arc l0(t∗) such
that its end points coincide with some points t(n)

j0
and t(n)

j1
of the mesh

(4.1). Let s0, s1 ∈ (0, 1] be such that

γ(s0) = t
(n)
j0
, γ(s1) = t

(n)
j1
.

Without loss of generality we can assume s1 = 1. Otherwise, we
use the parametrization γ1(s) = γ(s + s1). Further, since s0 ∈
{1/n, 2/n, . . . , (n − 1)/n} there exist the relatively prime numbers k0

and m0 such that s0 = k0/m0. In the sequel we will consider only
the subsequence {Plm0}l≥l0 of {Pn}n∈N, where l0 = n/m0. Now



346 V.D. DIDENKO AND B. SILBERMANN

we put n = lm0, l ≥ l0. Then, on the arcs [γ(0), γ(s0)) ⊂ Γ and
[γ(s0), γ(1)) ⊂ Γ there are situated pn and qn points of Pn, respectively.
It is clear that p+ q = 1, and the numbers p and q are independent of
n. We extend the number of points on the arc [γ(s0), γ(1)) r+ 1 times
with r such that rq + 1 is a natural number. For given n = lm0 the
mesh on the arc [γ(0), γ(s0)) is retained.

Now we need a suitable parametrization of Γ which would reflect the
changes we made. Such a parametrization can be given, for example,
by the following relations

(4.2) γ̃(s) =

⎧⎨
⎩
γ((rq + 1)s) if s ∈ [0, s0/(rq + 1))

γ

(
(rq + 1)
r + 1

s+
r(1 − q)
r + 1

)
if s ∈ [s0/(rq + 1), 1].

Since the function γ is 1-periodic we can extend the function γ̃ to a 1-
periodic continuous function on R which is continuously differentiable
on R except at the points k, k + s0, with k ∈ Z.

We construct a new sequence of meshes {P(1)
Nn

}. This one has the

property that the meshes P(1)
Nn

and Pn coincide on the arc [γ(0), γ(s0)).

However, on the arc [γ(s0), γ(1)) the mesh P(1)
Nn

has r+1 times as many
points as the mesh Pn has. We put

(4.3) Nn = (rq + 1)n

and

(4.4) t̃
(Nn)
j := γ̃

(
j

(rq + 1)n

)
, j = 1, 2, . . . , Nn − 1.

Then the mesh P(1)
Nn

consists of (rq + 1)n points and

t̃
(Nn)
j = t

(n)
j ∈ [γ(0), γ(s0))

if j/n < s0. All other points of P(1)
Nn

belong to the arc [γ(s0), γ(1)).

Now we are in a position to formulate the main result about the
stability of the adaptive quadrature method. Note that a numerical
method is said to be an adaptive one if the meshes defined in (4.3) (4.4)
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are used instead of the original ones. It should be mentioned, however,
that the concept of adaptivity includes some rules on how to select the
meshes in order to get any improvement of the convergence rate. But
such problems are not studied in this paper.

Let Aρ,p,ω1 (α, β) refer to the operator (1.17) (1.22) with a = α and
b = β, and let ν = ν(t) = |t− γ(s0)|p0 |t− γ(1)|ρ1 , ρ0, ρ1 ∈ (−1/2, 1/2).

Theorem 4. Let a, b ∈ C(Γ) and k ∈ C(Γ × Γ). The adaptive
quadrature method (3.1) based on meshes (4.3) (4.4) is stable if and only
if the operators A ∈ L(L2

ν(Γ)), Aρ,r+1,π
1 (a(γ(s0)), b(γ(s0))) ∈ L(l̃2−ρ0)

and Aρ,1/(r+1),π
1 (a(γ(1)), b(γ(1))) ∈ L(l̃2−ρ1) are invertible.

Proof. Since the sequence of operators {ANn
} which corresponds

to the quadrature method under consideration is a subsequence of
the sequence {An} from Section 3, then the sufficiency follows from
Theorem 1. To prove the necessity, we use Theorem 1 and the fractal
property of the sequence {An}, see [19].

Concluding remarks. The reader of this paper could get the im-
pression that the results presented above are of no practical interest.
Actually, some conditions of the stability for the methods under con-
sideration are formulated in terms which cannot be effectively verified
at present. However, we believe that such a categorical statement is
far from being true. In reality, our related investigations, see, e.g.,
[12, 17 and references therein], show that objects arising in numeri-
cal treatment of singular integral equations have a highly complicated
structure in order to be handled in a simple manner. In addition, we
are sure that the previous investigations build a foundation for further
progress and give us some hints on how to construct more practicable
methods. One of the possible strategies consists in using the cut-off
techniques, cf. [12, 18]. The second one is based on special regular-
ization of the approximation operators. This technique appeared quite
recently and it has the advantage of requiring that the corresponding
operators Aτ have to be Fredholm only. However, in order to make
such ideas transparent and applicable, there is still much to do.
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12. R. Hagen, S. Roch and B. Silbermann, Spectral theory of approximation
methods for convolution equations, Oper. Theory. Adv. Appl. 74, Birkhäuser-
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