
JOURNAL OF INTEGRAL EQUATIONS
AND APPLICATIONS
Volume 11, Number 3, Fall 1999

EXISTENCE OF SOLUTIONS FOR A CLASS
OF INTEGRODIFFERENTIAL EQUATIONS

IN BANACH SPACES

FANGQI CHEN

ABSTRACT. An existence theorem of solutions for a class
of nonlinear integrodifferential equations in Banach spaces is
established. This is achieved by means of the Mönch fixed
point theorem and an integration inequality for the measure
of noncompactness.

1. Introduction. Let E be a real Banach space, R+ = {t ∈ R1 :
t ≥ 0}. Consider the IVP of nonlinear integrodifferential equations on
the infinite interval R+ in Banach space E,

(1) x′(t) = F

(
t, x(t),

∫ t

0

K(t, s, x(s)) ds

)
, x(0) = 0, t ∈ R+

where F ∈ C[R+×E×E, E], K ∈ C[R+×R+×E, E]. In the case that
IVP (1) is a scalar integrodifferential equation, the existence theorem of
solutions has been obtained by means of the topological transversality
arguments in [1]. But it is easy to see that the method used in [1]
is not successful in the Banach space case. In this paper we shall use
the Mönch fixed point theorem and an integration inequality for the
measure of noncompactness to investigate the existence of solutions of
IVP (1). An existence theorem is obtained.

2. Preliminaries. Throughout this paper, for T > 0, C[[0, T ], E]
denotes the Banach space with supremum norm. For D ⊂ C[[0, T ], E],
we write D(t) = {x(t) : x ∈ D} ⊂ E, t ∈ [0, T ]. α denotes the
Kuratowski measure of noncompactness.
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Lemma 1 [5]. Let D ⊂ C[[0, T ], E] be bounded, and suppose that the
elements of D are equicontinuous on [0, T ]. Then

α(D) = sup
t∈[0,T ]

α(D(t)).

Lemma 2 [4]. Let countable set D = {xn} ⊂ L1([0, T ], E), and let
there exist g ∈ L1([0, T ], R+) such that, for any xn ∈ D, ‖xn(t)‖ ≤ g(t)
almost everywhere t ∈ [0, T ]. Then

α

({ ∫ t

0

xn(s) ds

})
≤ 2

∫ t

0

α(D(s)) ds, ∀ t ∈ [0, T ].

Lemma 3 [6] (Mönch fixed point theorem). Let E be a Banach
space, D ⊂ E closed convex, and F : D → D continuous with the
further property that, for some x ∈ D, we have

C ⊂ D countable, C = co({x} ∪ F (C))

imply that C is a relatively compact set. Then F has a fixed point in
D.

3. Main theorem. We are now in a position to prove our existence
result. It is clear that x ∈ C1[R+, E] is a solution of the IVP (1) if and
only if x ∈ C[R+, E] is a solution of the following integral equation

(2) x(t) =
∫ t

0

F

(
s, x(s),

∫ s

0

K(s, τ, x(τ )) dτ

)
ds.

Consider the operator A defined by

(3) Ax(t) =
∫ t

0

F

(
s, x(s),

∫ s

0

K(s, τ, x(τ )) dτ

)
ds.

Let us list some conditions for convenience:

(H1) F is uniformly continuous on any bounded subset of R+×E×E,
so is K on any bounded subset of R+ × R+ × E.
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(H2) There exist f, g, h ∈ C[R+, R+] and Hi(t, s) ∈ C[R+×R+, R+],
i = 1, 2, such that

‖F (t, x, y)‖ ≤ f(t)‖x‖ + g(t)‖y‖ + h(t), (t, x, y) ∈ R+ × E × E,
(4)

and

‖K(t, s, x)‖ ≤ H1(t, s)‖x‖ + H2(t, s), (t, s, x) ∈ R+ × R+ × E.
(5)

(H3) There exist Gi(t) ∈ C[R+, R+], i = 1, 2, and L(t, s) ∈ C[R+ ×
R+, R+] such that

(6)
α(F (t, D1, D2)) ≤ G1(t)α(D1) + G2(t)α(D2), t ∈ R+,

bounded Di ⊂ E, i = 1, 2,

and
(7)

α(K(t, s, D)) ≤ L(t, s)α(D), (t, s) ∈ R+ × R+, bounded D ⊂ E.

Theorem. Let conditions (H1) (H3) be satisfied. Then IVP (1) has
a solution in C1[R+, E].

Proof. Our proof is divided into two parts.

(1) In this part, we prove that IVP (1) has a solution defined on [0, 1].
Evidently, we need only to prove that operator A has a fixed point in
C[[0, 1], E]. Our proof is based on the Mönch fixed point theorem and
is divided into three steps again.

Step 1. It is easy to see by (3) and the hypotheses of the theorem
that operator A maps C[[0, 1], E] into C[[0, 1], E]. It is not difficult
to verify that the uniform continuity of F on any bounded subset of
R+ × E × E and that of K on any bounded subset of R+ × R+ × E
imply the continuity of operator A, i.e., A is a continuous operator from
C[[0, 1], E] into C[[0, 1], E].
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Step 2. Let

M1 = max
{

max
t∈[0,1]

f(t), max
t∈[0,1]

g(t), max
t∈[0,1]

h(t),

max
(t,s)∈[0,1]×[0,1]

Hi(t, s), i = 1, 2
}

and

M2 = max
{

max
t∈[0,1]

G1(t), max
t∈[0,1]

G2(t), max
(t,s)∈[0,1]×[0,1]

L(t, s)}.

Take constant N > 0 sufficiently large such that

β ≡ M1

N
+

M2
1

N2
< 1(8)

and

γ ≡ 2M2

N
+

4M2
2

N2
< 1.(9)

For any x ∈ C[[0, 1], E], let

‖x‖0 = max
0≤t≤1

{e−Nt‖x(t)‖}.

Clearly, C[[0, 1], E] is a Banach space with norm ‖ · ‖0 and two norms
‖ · ‖ and ‖ · ‖0 are equivalent. Therefore, operator A is also continuous
with respect to norm ‖ · ‖0.

In this step we shall prove that there exists a constant R > 0
sufficiently large such that A : BR → BR (where BR = {x ∈
C[[0, 1], E] : ‖x‖0 ≤ R}).

In fact, set

(10) R ≥ M1(M1 + 1)
1 − β

.
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By virtue of (3) (5), for any x ∈ BR, t ∈ [0, 1], we have

‖Ax(t)‖ ≤
∫ t

0

∥∥∥∥F

(
s, x(s),

∫ s

0

K(s, τ, x(τ )) dτ

)∥∥∥∥ ds

≤
∫ t

0

[
f(s)‖x(s)‖ + g(s)

∫ s

0

‖K(s, τ, x(τ ))‖ dτ + h(s)
]

ds

≤
∫ t

0

[
M1‖x(s)‖ + M1

( ∫ s

0

M1‖x(τ )‖ dτ + M1

)
+ M1

]
ds

≤ M1

∫ t

0

eNs‖x‖0 ds + M2
1

∫ t

0

∫ s

0

eNτ‖x‖0 dτ ds + M2
1 + M1

≤
[(

M1

N
+

M2
1

N2

)
‖x‖0 + (M2

1 + M1)
]
eNt,

and so,

‖Ax(t)e−Nt‖ ≤ β‖x‖0 + (M2
1 + M1)

≤ βR + (1 − β)R = R,

∀ t ∈ [0, 1].

Consequently, we get that ‖Ax‖0 ≤ R, for any x ∈ BR, i.e., A : BR →
BR.

Step 3. Let D = {xn} ⊂ BR countable such that D = co({x}∪A(D))
for some x ∈ BR. It is not difficult to prove that the elements of A(D)
are equicontinuous on [0, 1], and so we have, by Lemma 1,

(11) α∗(A(D)) = sup
t∈[0,1]

α∗((A(D))(t)),

where α∗ denotes the Kuratowski measure of noncompactness in
C[[0, 1], E] with norm ‖ · ‖0.
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Using (6), (7) and Lemma 2, for any t ∈ [0, 1], we find

α((A(D))(t)) = α

({∫ t

0

F (s, x(s),
∫ s

0

K(s, τ, x(τ )) dτ ) ds : x ∈ D

})

≤ 2
∫ t

0

[
G1(s)α(D(s))+2G2(s)

∫ s

0

α(K(s, τ, D(τ ))) dτ

]
ds

≤ 2M2

∫ t

0

[
α(D(s)) + 2

∫ s

0

L(s, τ)α(D(τ )) dτ

]
ds

≤ 2M2

∫ t

0

α(D(s)) ds + 4M2
2

∫ t

0

∫ s

0

α(D(τ )) dτ ds

= 2M2

∫ t

0

eNsα(e−NsD(s)) ds

+ 4M2
2

∫ t

0

∫ s

0

eNτα(e−NτD(τ )) dτ ds

≤ 2M2

N
eNtα∗(D) +

4M2
2

N2
eNtα∗(D),

and so,

(12) α(e−Nt(A(D))(t)) ≤
(

2M2

N
+

4M2
2

N2

)
α∗(D).

Finally, (11) and (12) imply

α∗(A(D)) ≤ γα∗(D).

Therefore we deduce

α∗(D) = α∗(co({x} ∪ A(D))) = α∗(A(D)) ≤ γα∗(D),

which, by 0 ≤ γ < 1, implies α∗(D) = 0, i.e., D is a relatively compact
set in BR. Hence, the Mönch fixed point theorem implies that A has
a fixed point x∗ in BR. Consequently, IVP (1) has a solution x∗ in
C[[0, 1], E].

(2) Let

(13) x∗
1 = lim

t→1−
x∗(t) = x∗(1).
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We consider the following IVP of integrodifferential equation

(14)

y′(t) = F

(
t + 1, y(t) + x∗

1,

∫ 1

0

K(t + 1, s, x∗(s)) ds

+
∫ t

0

K(t + 1, s + 1, y(s) + x∗
1) ds

)
,

0 ≤ t ≤ 1, y(0) = 0.

Clearly we have that conditions similar to (H1) (H3) hold for the
problem (14) so that a repetition of the above method yields a solution
y(t) of (14) on [0, 1].

We define a continuation of x∗(t) on [0, 2] by

x∗(t) =
{

x∗(t), 0 ≤ t ≤ 1,
y(t − 1) + x∗

1, 1 ≤ t ≤ 2,

and, by (13) (14), we get that x∗ is a solution to IVP (1) on [0, 2].
Continuing in this way, we obtain a solution of IVP (1) on R+. The
proof is complete.

Remark 1. If we consider IVP (1) with initial condition x(0) = x0, we
can avoid the apparent difficulty caused by the fact that x0 might be
different from the zero element by performing a transformation similar
to the one made in the last part of the proof of our theorem.

Remark 2. We know that a class of nonlinear integral equations
occurring in the mathematical theory of the infiltration of a fluid from
a cylindrical reservoir into an isotropic homogeneous porous medium
can be transformed into IVP (1) (in one-dimension form, see [1, 7]).
Therefore, it seems to make sense to study IVP (1) in Banach spaces.
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