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A-POSTERIORI ESTIMATES AND ADAPTIVE
SCHEMES FOR TRANSMISSION PROBLEMS

REINHARD HOCHMUTH

ABSTRACT. The results presented here are directed to
Galerkin schemes with respect to stable multiscale bases dis-
cretizations for boundary integral equations which describe
transmission problems. We derive a posteriori estimates which
are reliable and efficient with respect to any desirable toler-
ance. Moreover, the convergence of an adaptive scheme is in-
vestigated. The underlying ideas are applicable to a wide class
of elliptic problems, cf. [14]. Here further details concerning
decay estimates and appropriate index-sets for a system of
boundary integral equations are presented.

1. Introduction. In [14] a posteriori estimates for a general class
of elliptic problems were introduced, and their reliability and efficiency
was shown. Moreover, convergence could be concluded for essentially
symmetric problems, i.e., for problems which give bilinear forms that
are, except for a sufficiently small perturbation, symmetric and elliptic.
Here we apply and concretize this approach to a system of boundary
integral equations.

To be more precise we consider transmission problems for the
Helmholtz and Laplace equations where the transmission coefficient
μ and the wave numbers k1, k2 are constant complex numbers. Scat-
tering problems are included. Costabel and Stephan derived in [12] a
system of boundary integral equations, such that the Cauchy data of
the solutions of the transmission problems can be determined by the
solutions of that system. An application of the representation formula
yields solutions in the whole space. They prove a G̊arding inequal-
ity and find conditions on μ and k1, k2 such that there exist unique
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solutions. The G̊arding inequality and uniqueness imply for conform-
ing Galerkin methods asymptotic quasi-optimal error estimates and for
sufficiently fine discretization stability. We restrict our presentation to
the polygonal plane case because of two reasons. First, there is no
proof for a G̊arding inequality for higher dimensional piecewise smooth
geometries except for the case of Laplacians, where results by Costabel
[11] can be applied. Second, the extension of the presented approach
to higher dimensions would essentially apply the same ideas.

Generally, the understanding of a posteriori error estimates and adap-
tive schemes for boundary element methods appears to be far less devel-
oped than for finite element methods for partial differential operators,
cf. [1, 2, 3, 5, 22, 28]. A discussion of rather general algorithms
for boundary integral equations could be found in [25]. Some of the
first rigorous results on a posteriori estimates for boundary element
methods for strongly elliptic pseudodifferential operators on smooth
boundaries were given by Wendland and Yu in [30]. They introduce
a so-called influence index with respect to the underlying set of ba-
sis functions, which reflects in some sense the pseudo-local property of
strongly elliptic pseudodifferential operators. Their adaptive method is
most efficient if the influence index is much smaller than the number of
basis functions. The involved local error indicators are solutions of lo-
cal problems. They transfer their results also to those nodal collocation
methods which can be interpreted as modified Galerkin methods. Faer-
mann introduced in [20] the approach of local functionals developed by
Bank and Rheinboldt for finite element methods. In this way she gen-
eralizes the results in [30] to some extent. Furthermore, we mention
[31] where it is shown that the local error can be bounded by a sum
of a local residual and some global terms. These results are improved
in [27] where Saranen and Wendland considered pseudodifferential op-
erators of general integer order on smooth closed Jordan curves in the
plane. Recently Carstensen and Stephan presented in [8, 9] a posteri-
ori estimates within another framework. Their approach leads to upper
bounds for the global error consisting of terms which can be evaluated
locally. Although they have no proof for the efficiency of their a pos-
teriori estimates in general or the convergence of adaptive algorithms,
their numerical examples show the desired behavior. For quasi-uniform
meshes the efficiency of an a posteriori estimate is investigated in [7].

The objective of this note is to consider a posteriori estimates and
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adaptive schemes in the context of multiscale bases oriented methods.
Multiscale bases seem to be an appropriate tool for taking systematic
advantage of the pseudo-local property of boundary integral equations.
Problems like preconditioning, compression and local a posteriori esti-
mation can be handled in a nearly unified way, cf. [16, 17, 14]. Thus
the multiscale approach offers a unified framework within which several
problems can be handled. It differs from usual finite element techniques
in that direct use of bases is made which span complements of succes-
sive trial spaces. Here we pose a posteriori error estimates which are
reliable and efficient with respect to any prescribed accuracy and prove
the convergence of an adaptive scheme induced by those a posteriori
estimates at least for smooth boundaries.

The present investigations offer a variety of possibilities to fulfill as-
sumptions made in [14] for obtaining an efficient and reliable a pos-
teriori estimator. The estimates in [14] are based on representations
of certain decay properties which allow proving the principal facts.
Here we study those problem exemplarily in greater detail. We pre-
pare moduli for deriving decay estimates and suitable index sets which
are applicable for general integral equation problems. The presented
results show a variety of possibilities for finally obtaining the desired es-
timates and shed light upon interdependencies of appearing constants.
Especially, the results are in some sense preparatory for forthcoming
numerical experiments. An analytic approach to the question of the
asymptotic complexity has to be investigated in further notes. There
the problem could be split into two parts: (i) The problem of adaptive
approximation of the residual by biorthogonal multiscale bases; (ii) A
compression step, taking into account the analytic properties of the
underlying operators.

This note is organized as follows. In Section 2 we summarize known
facts about the transmission problem. Galerkin schemes for the trans-
mission problem with respect to multiscale bases discretizations are
introduced in Section 3. There we also describe those properties of
multiscale bases which seem important in considering a posteriori es-
timates. The a posteriori estimates are investigated in Section 4. The
crucial idea is to use decay estimates for the definition of a posteriori
estimators which are efficient and reliable up to a chosen tolerance. The
same idea can also be used to obtain a posteriori estimates for a more
general class of elliptic problems, cf. [14]. For the special case of a sec-
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ond order two point boundary value problem, this idea was introduced
by Bertoluzza in [4]. Section 5 contains a result about the convergence
of an adaptive scheme based on the a posteriori estimates.

For further comments about the underlying concept in a more general
setting, we refer the reader to [14]. Finally we remark that the relation
a � b expresses that a can be bounded by some constant times b
uniformly in the parameters on which a and b may depend. The symbol
a ∼ b means that a � b and b � a hold.

2. A direct boundary integral equation for transmission
problems.

2.1. Formulation of the problem. Let Ω1 ⊂ R2 be a bounded simply
connected polygonal domain and Ω2 = R2\Ω1 its complement with the
common boundary Γ := ∂Ω1 = ∂Ω2. The normal derivative ∂/∂n on
Γ is defined with respect to the normal pointing from Ω1 to Ω2.

For given functions u0 ∈ H1/2(Γ), v0 ∈ H−1/2(Γ) and k1, k2, μ ∈ C
we seek solutions (u1, u2) of the transmission problem

(2.1) (Δ + k2
j )uj = 0 in Ωj , j = 1, 2,{

u1 − u2 = u0,

μ(∂u1/∂n) − (∂u2/∂n) = v0 on Γ,

that satisfy certain conditions at infinity. For k2 �= 0 one has

u2(x) = O(|x|−1/2), |x| → ∞,

and
∂u2(x)
∂|x| − ik2u2(x) = o(|x|−1/2), |x| → ∞,

which is Sommerfeld’s radiation condition. For k2 = 0 there is a
constant b such that

u2(x) =
b

2π
log |x| + o(1), |x| → ∞.

To formulate the so-called direct boundary integral equation problem
which is studied in detail by Costabel and Stephan in [12], we introduce
the fundamental solutions

gj(x, y) :=

{
1/2π log |x− y|, kj = 0,

−i/4H(1)
0 (kj |x− y|), kj �= 0,
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where H(1)
0 is the modified Bessel function of the first kind satisfying

the radiation conditions. For j = 1, 2 and ϕ ∈ C∞(Γ) we define on Γ
the integral operators

Vjϕ(x) := −2
∫

Γ

ϕ(y)gj(x, y) dsy,

Kjϕ(x) := −2
∫

Γ

ϕ(y)
∂

∂ny
gj(x, y) dsy,

K ′
jϕ(x) := −2

∫
Γ

ϕ(y)
∂

∂nx
gj(x, y) dsy,

Djϕ(x) := − ∂

∂nx
KΩj

ϕ(x),

with KΩj
ϕ(x) := −2

∫
Γ
ϕ(y)(∂/∂ny)gj(x, y) dsy for x ∈ Ωj .

These integral operators can be extended to continuous operators

Vj : H−1/2+s(Γ) −→ H1/2+s(Γ),

Kj : H1/2+s(Γ) −→ H1/2+s(Γ),

K ′
j : H−1/2+s(Γ) −→ H−1/2+s(Γ),

Dj : H1/2+s(Γ) −→ H−1/2+s(Γ),

for s ∈ [−1/2, 1/2], cf. [11], where

Hs(Γ) := {u|Γ | u ∈ Hs+1/2(R2)}, s > 0,
H0(Γ) := L2(Γ),
Hs(Γ) := (H−s(Γ))′, (dual spaces), s < 0.

The norms in Hs(Γ) are denoted by ‖ · ‖s, s ∈ R. On the product
spaces Hs(Γ) ×Ht(Γ), s, t ∈ R, we introduce∥∥∥∥

(
u
v

)∥∥∥∥
s,t

:= (‖u‖2
s + ‖v‖2

t )
1/2,

(
u
v

)
∈ Hs(Γ) ×Ht(Γ).

If we consider restrictions of functions to subsets of Γ we note those
subsets as additional indices.

The integral operators satisfy symmetry relations, i.e., one has

(2.2)
〈Vjv, z〉 = 〈v, Vjz〉,
〈Kju, z〉 = 〈u,K ′

jz〉,
〈Dju,w〉 = 〈u,Djw〉,



6 R. HOCHMUTH

for u,w ∈ H1/2(Γ), v, z ∈ H−1/2(Γ) where 〈·, ·〉 denotes the duality
between H−s(Γ) and Hs(Γ) such that 〈f, g〉 =

∫
Γ
f(x)g(x) dx for

sufficiently smooth functions f and g.

WithD := 1/2(D1+1/μD2), K := 1/2(K1+K2), K ′ := 1/2(K ′
1+K

′
2)

and V := 1/2(V1 + μV2) we define the matrix operator

(2.3) H :=
(

D K ′

−K V

)
.

Furthermore, we set

Aj :=
(−Kj Vj

Dj K ′
j

)
and M :=

(
1 0
0 μ

)
.

Then the direct integral equation formulation of the transmission
problem reads

(2.4) H

(
u
v

)
=
(
g1
g2

)

with (
g2
g1

)
:= 1/2M−1(I +A2)

(
u0

v0

)
.

If
(
u
v

) ∈ H1/2(Γ) × H−1/2(Γ) denotes a solution of (2.4), then
(
uj

vj

)
,

j = 1, 2, defined by

(
u1

v1

)
:= 1/2(I +A1)

(
u
v

)

and (
u2

v2

)
:= 1/2(I −A2)

[
M

(
u
v

)
−
(
u0

v0

)]

are the Cauchy data of the solution of (2.1). They give, by the usual
representation formulas, the solution u of (2.1) in R2, i.e., we have

u(x) = (−1)j1/2(KΩj
uj(x) − VΩj

vj(x)), x ∈ Ωj ,

where VΩj
vj(x) := −2

∫
Γ
gj(x, y)vj(y) dsy.
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The transmission problem also includes scattering problems. Let an
incident field uI on R2 be given with (Δ + k2

2)uI = 0 in Ω1, and let
u0, v0 represent the body trace of the field uI , i.e.,

u0 = uI

∣∣∣
Γ

and v0 =
∂uI

∂n

∣∣∣∣
Γ

.

Then the solution (u1, u2) of the corresponding transmission problem
(2.4) yields the total field u. In Ω1 one has u|Ω1 = u1 and in Ω2 one
has u|Ω2 = u2 + uI . The transmission conditions on Γ are

u1 = u and μ
∂u1

∂n
=
∂u

∂n
.

Clearly the scattered field in the exterior domain Ω2 is nothing else
than u2. Further, the right side of equation (2.4) can be simplified
since

(I −A2)
(
u0

v0

)
= 0,

which leads to

H

(
u
v

)
=
(

v0
μ−1u0

)
.

Therefore convergence properties derived for the transmission problem
also apply in an effective way on the scattering problem and its
approximate solutions.

2.2. Existence and uniqueness results. Existence and uniqueness
results are based on the observation that the operator H satisfies a
G̊arding inequality. For its formulation we introduce the notion〈(

u
v

)
,

(
w
z

)〉
Γ

:= 〈u,w〉 + 〈v, z〉

for
(
u
v

) ∈ Hs(Γ) ×H−s(Γ),
(
w
z

) ∈ H−s(Γ) ×Hs(Γ), s ∈ R.

Theorem 2.1. If Re (1 + 1/μ) > 0 and Re (1 + μ) > 0 there exists a
compact operator C : H1/2(Γ) ×H−1/2(Γ) → H−1/2(Γ) ×H1/2(Γ) and
a constant γ > 0 such that

(2.5) Re
〈

(H + C)
(
u
v

)
,

(
ū
v̄

)〉
Γ

≥ γ(‖u‖2
1/2 + ‖v‖2

−1/2)
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for
(
u
v

) ∈ H1/2(Γ) ×H−1/2(Γ).

For a proof, cf. [12]. If k1 = k2 = 0, i.e., for Laplacians in Ω1 and Ω2

one can give a simpler proof by using results from [11] which also apply
to general Lipschitz domains in arbitrary dimensions: Let us denote the
integral operators with respect to k1 = k2 = 0 by V0,K0,K

′
0 and D0.

Taking into account that the kernel functions of the operators K0 and
K ′

0 are real, we get

(2.6)

〈
H

(
u
v

)
,

(
ū
v̄

)〉
Γ

= 1/2(1 + 1/μ)〈D0u, ū〉

+ 1/2(1 + μ)〈V0v, v̄〉 + 2iIm 〈v,K0ū〉.
With respect to D0 and V0 there are compact operators CD0 :
H1/2(Γ) → H−1/2(Γ), CV0 : H−1/2(Γ) → H1/2(Γ) and constants
c1, c2 > 0 such that

〈(D0 + CD0)u, ū〉 ≥ c1‖u‖2
1/2, u ∈ H1/2(Γ),(2.7)

〈(V0 + CV0)v, v̄〉 ≥ c2‖v‖2
−1/2, v ∈ H−1/2(Γ),(2.8)

cf. [11]. Because of the symmetry relations (2.2), the quantities
〈D0u, ū〉 and 〈V0v, v̄〉 are real. Thus we get, by (2.6) (2.8),

Re
〈(

H +
(

1/2(1 + 1/μ)CD0 0
0 1/2(1 + μ)CV0

))(
u
v

)
,

(
ū
v̄

)〉
≥ c1Re ((1 + 1/μ)/2)‖u‖2

1/2 + c2Re ((1 + μ)/2)‖v‖2
−1/2).

The G̊arding inequality (2.5) implies Fredholm’s alternative for the
transmission problem (2.4), i.e., there are unique solutions

(
u
v

) ∈
H1/2(Γ)×H−1/2(Γ) for arbitrary

(
u0
v0

) ∈ H1/2(Γ)×H−1/2(Γ) if the op-
eratorH is injective. In [12], several sufficient conditions for uniqueness
are given. Generally, uniqueness does not hold, cf. [10] for a counterex-
ample.

Corollary 2.2. If the matrix operator H is injective, then problem
(2.4) is uniquely solvable and H is continuously invertible, i.e., there
are constants c1, c2 > 0 such that
(2.9)

c1

∥∥∥∥H
(
u
v

)∥∥∥∥
−1/2,1/2

≤
∥∥∥∥
(
u
v

)∥∥∥∥
1/2,−1/2

≤ c2

∥∥∥∥H
(
u
v

)∥∥∥∥
−1/2,1/2

.
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Investigating Galerkin approximations with respect to weaker norms
than ‖ · ‖1/2,−1/2 by the Aubin-Nitsche trick uses the adjoint problem,
which reads as follows: Find for given f ∈ H−1/2(Γ) × H1/2(Γ)
functions w ∈ H1/2(Γ) ×H−1/2(Γ) such that

〈v,H ′w〉Γ = 〈v, f〉Γ, v ∈ H1/2(Γ) ×H−1/2(Γ),

where

H ′ :=
(
D −K ′

K V

)
.

The adjoint operator H ′ has the same continuity properties as H and
also holds a G̊arding inequality. In particular, if uniqueness holds, we
have that

(2.10) H,H ′ : Hs(Γ) ×Hs−1(Γ) −→ Hs−1(Γ) ×Hs(Γ)

are continuous invertible operators for s ∈ [1/2, s̃) with s̃ ∈ (1, 3/2]
determined by

(2.11) s̃ := min
{

3/2, 1/2 + min
{

Reα | Reα > 0,

(
sin(π − wj)α

sin πα

)2

=
(
μ+ 1
μ− 1

)2}}
,

where ωj denote the angles in the corners of the polygon Γ, cf. [12]. For
s ≥ s̃ one has to consider singularity functions which can be obtained
by Mellin-transform techniques. Then one gets continuity properties
for so-called augmented function spaces. Those singularity functions
can be used for establishing Galerkin methods with higher convergence
orders and lead to the so-called Fix-Strang method. An aim in applying
adaptive methods which are controlled by a posteriori estimates is
to overcome the explicit use of those singularity functions. One is
interested in discretization spaces reflecting the lack in the regularity
of the solution automatically.

3. Galerkin methods based on multiscale bases.

3.1. Multiscale bases. The goal of this note is to investigate Galerkin
schemes with respect to multiscale bases discretizations of (2.4). In this
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subsection we formulate facts and assumptions about multiscale bases
which seem appropriate for the underlying boundary integral equation
problem (2.4). Instead of reproducing ideas and constructions made,
e.g., in [18], we only pose those properties of multiscale bases upon
which our results are based.

To this end, let the polygonal boundary Γ ⊂ R2 be given by

Γ =
N⋃

i=1

Γi, Γi = γi(0, 1), i = 1, . . . , N,

where γi : R → R2 are affine functions with γi(1) = γi+1(0) for
i = 1, . . . , N . We set γN+1 := γ1. The corners of the polygonal Γ are
denoted by ci := Γi+1 ∩ Γi. Obviously, the mappings γ : (−1, 1) → R2

defined by

γ(t) :=
{
γi(t+ 1) t ∈ (−1, 0),
γi+1(t) t ∈ [0, 1),

i = 1, . . . , N , are Lipschitz continuous in (−1, 1).

Generally the starting point for the construction of multiscale bases
are sequences of closed nested subspaces S = {Sj}∞j=j0

of L2(Γ) whose
union is dense in L2(Γ), i.e.,

(3.12) Sj0 ⊂ Sj0+1 ⊂ · · · ⊂ L2(Γ), closL2

( ∞⋃
j=j0

Sj

)
= L2(Γ).

We assume that Sj are spanned by Φj = {φj,k : k ∈ Ij} where these
bases are uniformly stable, i.e.,

(3.13) ‖c‖l2(Ij) ∼
∥∥∥∥∑

k∈Ij

ckφj,k

∥∥∥∥
0

uniformly in j ≥ j0 with ‖c‖l2(Ij) = (
∑

k∈Ij
|ck|2)1/2.

Successively updating a current approximation in Sj−1 to a better
one in Sj can be facilitated if stable bases

Ψj = {ψj,k | k ∈ Jj}
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for complements Wj of Sj−1 in Sj are available. Defining for conve-
nience Ψj0 := Φj0 , Wj0 := Sj0 , any vn =

∑
k∈In

ckφn,k ∈ Sn has an
alternative multiscale representation

vn =
n∑

j=j0

∑
k∈Jj

dj,kψj,k,

which corresponds to the direct sum decomposition

Sn =
n⊕

j=j0

Wj .

The transformation that takes the coefficients dj,k in the multiscale
representation of vn into the coefficients ck of the single scale represen-
tation is well-conditioned if and only if Ψ = ∪j≥j0Ψj forms a Riesz-basis
of L2(Γ). This means that every v ∈ L2(Γ) has a unique expansion

v =
∞∑

j=j0

∑
k∈Jj

〈v, ψ̃j,k〉ψj,k

such that

‖v‖0 ∼
( ∞∑

j=j0

∑
k∈Jj

|〈v, ψ̃j,k〉|2
)1/2

, v ∈ L2(Γ),

where Ψ̃ = {ψ̃j,k | k ∈ Jj , j ≥ j0} forms a biorthogonal system,
S̃n = span {ψ̃j,k | k ∈ Jj , j0 ≤ j ≤ n},

〈ψj,k, ψ̃j′,k′〉 = δj,j′δk,k′ , j, j′ ≥ j0, k ∈ Jj , k
′ ∈ Jj′

and is in fact also a Riesz-basis for L2(Γ), cf. [15].

Moreover, we introduce projectors Qn : L2(Γ) → Sn and Q′
n :

L2(Γ) → S̃n by

Qnv :=
n∑

j=j0

∑
k∈Jj

〈v, ψ̃j,k〉ψj,k
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and

Q′
nv :=

n∑
j=j0

∑
k∈Jj

〈v, ψj,k〉ψ̃j,k.

For our applications it will be important to work with local bases, i.e.,
we will always assume that

diam (suppψj,k) ∼ 2−j , j ≥ j0.

Furthermore, it is desirable that the biorthogonal system has the same
property.

We shall call Ψ a multiscale basis of type Mγ
d , γ = (γ1, γ2) ∈ R2,

γ1 < 0 < γ2, d ∈ N, if the following additional requirements are
fulfilled:

1. There hold norm-equivalences, i.e., for s ∈ (γ1, γ2), one has

(3.14) ‖v‖s ∼
( ∞∑

j=j0

∑
k∈Jj

22sj |〈v, ψ̃j,k〉|2
)1/2

, v ∈ Hs(Γ),

and for s ∈ (−γ2,−γ1) one has

(3.15) ‖v‖s ∼
( ∞∑

j=j0

∑
k∈Jj

22sj |〈v, ψj,k〉|2
)1/2

, v ∈ Hs(Γ).

2. The basis functions ψj,k, j > j0, have vanishing moments of order
d, i.e., for k ∈ Jj and i ∈ {1, . . . , N} one has

(3.16)
∫ 1

0

p(s)ψj,k

∣∣∣
Γi

◦ γi(s) ds = 0, p ∈ Πd−1(0, 1),

where Πd−1(0, 1) denotes the space of polynomials with order smaller
than or equal to d− 1 on (0, 1).

3. The basis functions ψj,k are essentially piecewise polynomials, i.e.,
there is a d′ ∈ N, d′ ≤ d, such that for j ≥ j0, k ∈ Jj , i ∈ {1, . . . , N}

(3.17) ψj,k

∣∣∣
Γi

◦ γi ∈ Πd′−1,pw(0, 1).
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Furthermore, we suppose that if ci ∈ suppψj,k, k ∈ Jj , j ≥ j0, then
ci ∈ sing suppψj,k. Because of our assumptions d′ does not appear
explicitly in any of the following considerations of our estimates. But
remember that the order d′ is crucial, e.g., for establishing Jackson
type estimates which are, besides Bernstein inequalities, the essential
properties of a multi-resolution analysis implying norm-equivalences
like (3.14). For the existence of bases for appropriate parameters γ and
d, we refer to [18]. We remark that for multiscale bases functions with
different properties most of the proofs in this note can be adjusted to
provide results which are similar to the presented ones. Additionally,
we refer to [15] for more information about the functionalanalytic
background.

As mentioned before, Jackson and Bernstein estimates seem to be the
key points for establishing norm equivalences. Otherwise, it is possible
to derive Jackson and Bernstein estimates from norm equivalences, cf.
[15].

Proposition 3.1. Let Ψ be an Mγ
d -basis. Then one has, for

γ1 < s ≤ t < γ2 and n ≥ j0,

(3.18) ‖v −Qnv‖s � 2−n(t−s)‖v‖t, v ∈ Ht(Γ),

and

(3.19) ‖vn‖t � 2n(t−s)‖vn‖s, vn ∈ Sn.

Clearly, (3.18) holds typically not only for the described parameters
s and t, but also for −d ≤ s < γ2, s ≤ t, γ1 < t ≤ d′, cf. [16, 26].

For the discretization of the transmission problem (2.4), we have to
take two multi-scale bases Ψ1 and Ψ2. Here the Mγ1

d1 -basis Ψ1 is related

to H1/2(Γ), hence 1/2 < γ1
2 and the Mγ2

d2 -basis Ψ2 to H−1/2(Γ), hence
γ1
1 < −1/2. We set Ψ := Ψ1 × Ψ2, J := J1 × J2, Wj := span {ψ1

j1,k |
k ∈ J1

j1
} × span {ψ2

j2,k | k ∈ J2
j2
} for j = (j1, j2) ∈ N2

0, ji ≥ ji

and Sn := Sn1 × Sn2 = ∪j≤nWj for n = (n1, n2) ∈ N2
0, where we

write j ≤ n if and only if ji ≤ ni for i = 1, 2. Associated projectors
Qn : L2(Γ) × L2(Γ) → Sn and Q′

n : L2(Γ) × L2(Γ) → S̃n := S̃n1 × S̃n2
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are defined by

(3.20)
Qnv :=

(
Qn1v

1

Qn2v
2

)
and Q′

nv :=
(
Q′

n1
v1

Q′
n2
v2

)
,

v = (v1, v2).

Obviously, Q′
n are the adjoints of the projectors Qn since Q′

ni
are the

adjoints of Qni
.

As an immediate consequence from Proposition 3.1, we obtain Jack-
son and Bernstein estimates for the product spaces.

Proposition 3.2. Let Ψ1 be an Mγ1

d1 - and Ψ2 an Mγ2

d2 -basis. Then
one has, for γi

1 < si ≤ ti < γi
2,

‖v −Qnv‖s1,s2 � 2−n1(t1−s1)‖v1‖t1 + 2−n2(t2−s2)‖v2‖t2 ,

v =
(
v1

v2

) ∈ Ht1(Γ) ×Ht2(Γ), and

‖vn‖t1,t2 � 2n1(t1−s1)‖v1
n1
‖s1 + 2n2(t2−s2)‖v2

n2
‖s2 ,

vn =
(v1

n1
v2

n2

) ∈ Sn1 × Sn2 .

Analogously, one gets norm equivalences in the following manner. For
an Mγ1

d1 -basis Ψ1 and an Mγ2

d2 -basis Ψ2, follow with γ1
1 < s1 < γ1

2 and
γ2
1 < s2 < γ2

2 ,

‖v‖s1,s2 ∼
( ∞∑

j=j1

∑
k∈J1

j

22s1j |〈v1, ψ̃1
j,k〉|2

)1/2

+
( ∞∑

j=j2

∑
k∈J2

j

22s2j |〈v2, ψ̃2
j,k〉|2

)1/2

,

and with −γ1
2 < s1 < −γ1

1 , −γ2
2 < s2 < −γ2

1 ,

‖v‖s1,s2 ∼
( ∞∑

j=j1

∑
k∈J1

j

22s1j |〈v1, ψ1
j,k〉|2

)1/2

+
( ∞∑

j=j2

∑
k∈J2

j

22s2j |〈v2, ψ2
j,k〉|2

)1/2
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for v =
(
v1

v2

) ∈ Hs1(Γ) ×Hs2(Γ).

3.2. The Galerkin scheme. We return to the transmission problem
and assume in the following that the wave numbers k1 and k2 and the
transmission coefficient μ are chosen in such a way that H is injective,
i.e., Corollary 2.2 can be applied and (2.9) holds.

The standard Galerkin procedure requires that we find un ∈ Sn with

(3.21) 〈Hun, vn〉Γ = 〈g, vn〉Γ, vn ∈ Sn,

which is equivalent to

(3.22) Q′
nHun = Q′

ng

or, respectively,(
Q′

n1
Du1

n1
+Q′

n1
K ′u2

n2−Q′
n2
Ku1

n1
+Q′

n2
V u2

n2

)
=
(
Q′

n1
g1

Q′
n2
g2

)

for un =
(u1

n1
u2

n2

)
.

Theorem 2.1 and Corollary 2.2 give by standard results the quasi-
optimal approximation property for the Galerkin scheme, cf. [21]. Since
γ1
2 > 1/2 and γ2

2 > 0 Proposition 3.2 gives convergence rates related to
γ1
2 and γ2

2 . Moreover, the Galerkin scheme is stable, cf. [21], i.e., there
exists m = (m1,m2) such that, for n ≥ m,

(3.23) ‖Q′
nHvn‖−1/2,1/2 � ‖vn‖1/2,−1/2, vn ∈ Sn,

i.e., with vn = (v1
n1
, v2

n2
) ∈ Sn1 × Sn2

‖Q′
n1
Dv1

n1
+Q′

n1
K ′v2

n2
‖2
−1/2 + ‖ −Q′

n2
Kv1

n1
+Q′

n2
V v2

n2
‖2
1/2

� ‖v1
n1
‖2
1/2 + ‖v2

n2
‖2
−1/2.

In most cases, Jackson and Bernstein inequalities and the Aubin-
Nitsche trick lead to stability estimates and stronger convergence re-
sults with respect to weaker norms. Following standard lines, cf. [16],
one can show that these ideas also apply to the transmission problem.
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Theorem 3.3. For 1 − min(s̃, γ1
2) < s ≤ τ < min(s̃, γ1

2), s > −γ2
2 ,

τ < 1+γ2
2 and sufficiently great n = (m,m), the convergence estimates

(3.24) ‖u− un‖s,s−1 � 2−m(τ−s)‖u‖τ,τ−1

hold, and for 1−min(s̃, γ1
2) < s ≤ 1/2, s > −γ2

2 , the stability estimates

(3.25) ‖Q′
nHvn‖s−1,s � ‖vn‖s,s−1, vn ∈ Sn

hold.

Clearly, considering the remark after Proposition 3.1, the estimates
(3.24) and (3.25) can be generalized to τ < min(s̃, d′ +1), etc. But this
fact does not matter to our investigations of a posteriori estimates and
adaptive schemes.

For further considerations it will be convenient to introduce the
following notions. For λ = (λ1, λ2) = ((j1, k1), (j2, k2)) ∈ J1 × J2

define |λ1| := j1, |λ2| := j2, ψλ := (ψ1
λ1
, ψ2

λ2
), and for n = (m,m), let

Hn :=

(
(〈Dψ1

λ′
1
, ψ1

λ1
〉)|λ1|,|λ′

1|≤m (〈K ′ψ2
λ′

2
, ψ1

λ1
〉)|λ1|,|λ′

2|≤m

(−〈Kψ1
λ′

1
, ψ2

λ2
〉)|λ2|,|λ′

1|≤m (〈V ψ2
λ′

2
, ψ2

λ2
〉)|λ2|,|λ′

2|≤m

)
,

Gn :=
(

(〈g1, ψ1
λ1
〉)|λ1|≤m

(〈g2, ψ2
λ2
〉)|λ2|≤m

)
,

so that (3.21) and (3.22) are equivalent to the linear system of equations

HnU = Gn.

Moreover, introducing the diagonal matrix Dn defined by
(3.26)

Dn :=
(

(2−|λ1|/2δλ′
1,λ1)|λ1|,|λ′

1|≤m 0
0 (2|λ2|/2δλ′

2,λ2)|λ2|,|λ′
2|≤m

)
,

one can show that
cond2(DnHnDn) ∼ 1.

Notice that the usual pCG is not applicable because H is not sym-
metric. But at least for smooth boundaries Γ one can strictly justify
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the application of, e.g., GMRES. To be more precise, the splitting
of H described later in the convergence proof of the adaptive scheme
in Section 5 is just appropriate to apply the considerations made in
[32]. It follows that the diagonal preconditioner (3.26) can also be
used efficiently in the transmission problem if a certain correction on
the coarsest level is taken into account.

Hn is by definition fully populated but can be approximated very well
by sparse matrices using the estimates in the next section. In this way
one gets compressed systems where the accuracy of the corresponding
solutions is still asymptotically optimal, cf. [16, 17, 26].

Until now, we applied spaces Sn which correspond to uniform refine-
ments. However, in the present note our main concern is not to find
possibly sparse representations of the operator H relative to a priori
fixed trial spaces but to find possibly economical trial spaces leading to
as small linear systems as possible. More precisely, we wish to deter-
mine step-by-step possibly small subspaces of the full spaces Sn which
recover the solution as well as possible. To this end, we set for any
nonempty index set Λ = Λ1 × Λ2 ⊂ J1 × J2 = J ,

(3.27) SΛ := span {ψ1
λ1

| λ1 ∈ Λ1} × span {ψ2
λ2

| λ2 ∈ Λ2},

(3.28) QΛv := QΛ

(
v1

v2

)
:=
(∑

λ1∈Λ1〈v1, ψ̃1
λ1
〉ψ1

λ1∑
λ2∈Λ2〈v2, ψ̃2

λ2
〉ψ2

λ2

)

and
(3.29)

HΛ :=

(
(〈Dψ1

λ′
1
, ψ1

λ1
〉)λ1,λ′

1∈Λ1 (〈K ′ψ2
λ′

2
, ψ1

λ1
〉)λ1∈Λ1,λ′

2∈Λ2

(−〈Kψ1
λ′

1
, ψ2

λ2
〉)λ2∈Λ2,λ′

1∈Λ1 (〈V ψ2
λ′

2
, ψ2

λ2
〉)λ2,λ′

2∈Λ2

)
.

We assume that

(3.30) ‖Q′
ΛHQΛvΛ‖−1/2,1/2 ∼ ‖vΛ‖1/2,−1/2, vΛ ∈ SΛ,

especially that

(3.31) Q′
ΛHuΛ = Q′

Λg

possess unique solutions uΛ ∈ SΛ. By arguments which are analogous
to [14], it follows from (3.30) that

(3.32) cond2(DΛHΛDΛ) ∼ 1,
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where

DΛ :=
(

(2−|λ1|/2δλ′
1,λ1)λ1,λ′

1∈Λ1 0
0 (2|λ2|/2δλ′

2,λ2)λ2,λ′
2∈Λ2

)
.

In fact, defining for s = (s1, s2) ∈ R2,

Σsv :=
(∑∞

n1=j1 2n1s1(Q1
n1

−Q1
n1−1)v1∑∞

n2=j2 2n2s2(Q2
n2

−Q2
n2−1)v2

)
,

the norm equivalences imply for wΛ := Σ(1/2,−1/2)vΛ, vΛ ∈ SΛ,

‖wΛ‖0 ∼ ‖vΛ‖1/2,−1/2 ∼ ‖Q′
ΛHvΛ‖−1/2,1/2

∼ ‖Σ′
(−1/2,1/2)Q

′
ΛHΣ(−1/2,1/2)wΛ‖0,

which means that the operators Σ′
(−1/2,1/2)Q

′
ΛHΣ(−1/2,1/2) and their

inverses are uniformly bounded on L2(Γ). Moreover, it is easy to see
thatDΛHΛDΛ is the matrix representation of Σ′

(−1/2,1/2)Q
′
ΛHΣ(−1/2,1/2)

which confirms (3.32). The above remark about GMRES applies anal-
ogously.

4. A posteriori estimates.

4.1. A posteriori estimates by infinite series. Once a Galerkin
approximation uΛ ∈ SΛ for the solution u ∈ H1/2(Γ) × H−1/2(Γ) of
(2.4) has been calculated one can evaluate the residual

(4.1) rΛ := (r1Λ, r
2
Λ) := HuΛ − g = H(uΛ − u).

On account of Corollary 2.2, there are constants c1, c2 ∈ R+ such that

(4.2) c1‖rΛ‖−1/2,1/2 ≤ ‖u− uΛ‖1/2,−1/2 ≤ c2‖rΛ‖−1/2,1/2.

Making essential use of the norm equivalences (3.15), we get an estimate
for ‖rΛ‖−1/2,1/2 by a weighted sequence norm of multiscale basis
coefficients, i.e., we get

(4.3) ‖u− uΛ‖1/2,−1/2 ∼
( ∑

λ1∈J1\Λ1

2−|λ1||〈r1Λ, ψ1
λ1
〉|2

+
∑

λ2∈J2\Λ2

2|λ2||〈r2Λ, ψ2
λ2
〉|2
)1/2

.
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This is a consequence of

rΛ =
( ∑

λ1∈J1

〈r1Λ, ψ1
λ1
〉ψ̃1

λ1
,
∑

λ2∈J2

〈r2Λ, ψ2
λ2
〉ψ̃2

λ2

)

=
( ∑

λ1∈J1\Λ1

〈r1Λ, ψ1
λ1
〉ψ̃1

λ1
,
∑

λ2∈J2\Λ2

〈r2Λ, ψ2
λ2
〉ψ̃2

λ2

)
,

where we used that uΛ is the Galerkin solution with respect to SΛ =
SΛ1 × SΛ2 .

Let us abbreviate

(4.4)
δ1λ1

:= 2−|λ1|/2|〈r1Λ, ψ1
λ1
〉|,

δ2λ2
:= 2|λ2|/2|〈r2Λ, ψ2

λ2
〉|

and note that inserting the representation

(4.5) uΛ = (u1
Λ, u

2
Λ) =

( ∑
λ′

1∈Λ1

u1
λ′

1
ψ1

λ′
1
,
∑

λ′
2∈Λ2

u2
λ′

2
ψ2

λ′
2

)

yields the expressions

δ1λ1
= 2−|λ1|/2

∣∣∣∣g1
λ1

−
∑

λ′
1∈Λ1

〈Dψ1
λ′

1
, ψ1

λ1
〉u1

λ′
1
−
∑

λ′
2∈Λ2

〈K ′ψ2
λ′

2
, ψ1

λ1
〉u2

λ′
2

∣∣∣∣,
δ2λ2

= 2|λ2|/2

∣∣∣∣g2
λ2

+
∑

λ′
1∈Λ1

〈Kψ1
λ′

1
, ψ2

λ2
〉u1

λ′
1
−
∑

λ′
2∈Λ2

〈V ψ2
λ′

2
, ψ2

λ2
〉u2

λ′
2

∣∣∣∣,
with g1

λ1
:= 〈g1, ψ1

λ1
〉 and g2

λ2
:= 〈g2, ψ2

λ2
〉. Moreover, (4.3) gives

constants c3, c4 ∈ R+, which reflect the norm equivalences, such that

(4.6) c1c3

( ∑
λ1∈J1\Λ1

δ2λ1
+

∑
λ2∈J2\Λ2

δ2λ2

)1/2

≤ ‖u− uΛ‖1/2,−1/2

≤ c2c4

( ∑
λ1∈J1\Λ1

δ2λ1
+

∑
λ2∈J2\Λ2

δ2λ2

)1/2

.
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Obviously, the estimates (4.6) provide an efficient and reliable error
bound. Further estimates for the error with respect to other norms
can be received in the same way if H is, with respect to those norms,
bounded and boundedly invertible, and the multi-scale bases yield norm
equivalences.

However, the estimates (4.6) seem practically useless since they
involve infinitely many terms, and the question arises as to how to
get finite sums. Replacing the magnitudes δλ := (δλ1 , δλ2) by finitely
many ones requires some information about the given data and about
the behavior of the entities 〈Dψ1

λ′
1
, ψ1

λ1
〉, 〈K ′ψ1

λ′
2
, ψ1

λ1
〉, 〈Kψ1

λ′
1
, ψ2

λ2
〉 and

〈V ψ2
λ′

2
, ψ2

λ2
〉. We shall show that, for almost all λ1 ∈ J1\Λ1 the terms

〈Dψ1
λ′

1
, ψ1

λ1
〉, 〈K ′ψ2

λ′
2
, λ1

λ1
〉 and for almost all λ2 ∈ J2\Λ2 the terms

(Kψ1
λ′

1
, ψ2

λ2
〉 and 〈V ψ2

λ′
2
, ψ2

λ2
〉 can actually be neglected.

To this end, we prove in Section 4.2 decay estimates for those terms
using ideas from [16, 17, 24, 26]. Also some estimates which seem to
be new will be derived.

4.2. Decay estimates. We split the investigation of the decay esti-
mates into two parts. Lemma 4.1 presents estimates which essentially
require properties of the involved kernel functions whereas the results
in Lemmas 4.3 4.6 also make use of mapping properties of the inte-
gral operators involved in H. To formulate the decay estimates we
introduce, for ψi

λi
, λi ∈ J i, i = 1, 2, the notions Ωi

λi
:= suppψi

λi
and

Ωi,s
λi

:= sing suppψi
λi

.

Lemma 4.1. Let Ψ1 = (ψ1
λ1

)λ1∈J1 be an Mλ1

d1 -basis and Ψ2 =

(ψ2
λ2

)λ2∈J2 an Mγ2

d2 -basis. Then, for an integral operator

Au(x) =
∫

Γ

a(x, y)u(y) dsy, x ∈ Γ,

with a kernel function a ∈ C∞(R2×R2\{(x, y) | x = y}), that satisfies
for a fixed ρ ∈ [−1, 1] with ρ/2 ∈ (γ1

1 , γ
1
2), −ρ/2 ∈ (γ2

1 , γ
2
2), and

arbitrary α, β ∈ N0 with 1 + ρ+ α+ β > 0

(4.7)
|∂β

y ∂
α
x a(x, y)| � |x− y|−1−ρ−α−β,

(x, y) ∈ R2 × R2\{(x, y) | x = y},
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one has for dist (Ω1
λ1
,Ω2

λ2
) > 0 and |λ2| > j2

(4.8) |〈Aψ1
λ1
, ψ2

λ2
〉|

�

⎧⎨
⎩

dist (Ω1
λ1
,Ω2

λ2
)−1−ρ−d2

2−j1/22−(d2+1/2)|λ2|, |λ1| = j1,

dist (Ω1
λ1
,Ω2

λ2
)−1−ρ−d1−d2

2−(d1+1/2)|λ1|−(d2+1/2)|λ2|, |λ1| > j1.

If dist (Ω1
λ1
,Ω2

λ2
) = 0, one has for |λ2| > j2,

(4.9) |〈Aψ1
λ1
, ψ2

λ2
〉|

�

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dist (Ω1,s
λ1
,Ω2

λ2
)−ρ−d2

2−d2|λ2|,

|λ1| = j1, dist (Ω1,s
λ1
,Ω2

λ2
) > 0,

dist (Ω1
λ1
,Ω2,s

λ2
)−ρ−d1

2−(d1+1/2)|λ1|2|λ2|/2,

|λ1| > j1, dist (Ω1
λ1
,Ω2,s

λ2
) > 0.

Proof. For |λ1| ≥ j1 and dist (Ω1
λ1
,Ω2

λ2
) > 0, the estimates follow

essentially by Taylor formula arguments, cf. [16, 18, 26].

Let |λ1| = j1 but dist (Ω1
λ1
,Ω2

λ2
) = 0 and dist (Ω1,s

λ1
,Ω2

λ2
) > 0. These

assumptions imply Ω2
λ2

⊂ Ω1
λ1

and the existence of a Γi, i ∈ {1, . . . , n}
with Ω2

λ2
⊂ Γi. We introduce a smooth cut-off function χ with

0 ≤ χ ≤ 1, χ ◦ γi ∈ C∞
0 (0, 1),

‖χ ◦ γi‖d2+ρ;(0,1) � dist (Ω1,s
λ1
,Ω2

λ2
)−d2−ρ

and

χ(y) =
{

1 y ∈ Uε(Ω2
λ2

),
0 y ∈ Γi\U2ε(Ω2

λ2
),

where Uε(Ω2
λ2

) ⊂ Γi denotes an ε-neighborhood and, respectively,
U2ε(Ω2

λ2
) ⊂ Γi a 2ε-neighborhood of Ω2

λ2
with respect to ε :=

dist (Ω1,s
λ1
,Ω2

λ2
)/3. With

I1(x) :=
∫

Γi

a(x, y)χ(y)ψ1
λ1

(y) dsy
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and
I2(x) :=

∫
Γ

a(x, y)(1 − χ(y))ψ1
λ1

(y) dsy

we get

(4.10) |〈Aψ1
λ1
, ψ2

λ2
〉| ≤ |〈I1, ψ2

λ2
〉| + |〈I2, ψ2

λ2
〉|.

The first term in (4.10) gives

(4.11)

|〈I1, ψ2
λ2
〉| = inf p∈Πd2−1(0,1)|〈I1 − p ◦ γ−1

i , ψ2
λ2
〉|

� inf p∈Πd2−1(0,1)‖I1 − p ◦ γ−1
i ‖0;Ω2

λ2

� 2−d2|λ2|‖I1‖d2;Ω2
λ2

� 2−d2|λ2|‖χψ1
λ1
‖d2+ρ;Γi

� dist (Ω1,s
λ1
,Ω2

λ2
)−d2−ρ2−d2|λ2|,

where we used a Whitney-type estimate and the fact that the kernel
function generates an operator which acts with respect to the involved
functions as a pseudodifferential operator, i.e., in particular, one has

‖I1‖d2;Ω2
λ2

� ‖χψ1
λ1
‖d2+ρ;Γi

.

On the other hand, we have

(4.12)
dd2

I2 ◦ γi(s)
dsd2 =

∫
Γ

dd2

dsd2 a(γi(s), y)(1 − χ(y))ψ1
λ1

(y) dsy

for s ∈ γ−1
i (Ω2

λ2
), which gives by (4.7),

∣∣∣∣dd2
I2 ◦ γi(s)
dsd2

∣∣∣∣ ≤
∫

Γ

|γi(s) − y|−1−d2−ρ(1 − χ(y))ψ1
λ1

(y) dsy,

hence

∣∣∣∣dd2
I2 ◦ γi(s)
dsd2

∣∣∣∣
2

� dist (γi(s), supp ((1 − χ)ψ1
λ1

))−1−2(d2−ρ).
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Integration yields

‖I2‖d2;Ω2
λ2

� dist (Ω2
λ2
, supp (1 − χ)ψ1

λ1
)−d2−ρ,

hence

(4.13) ‖I2‖d2;Ω2
λ2

� dist (Ω1,s
λ1
,Ω2

λ2
)−d2−ρ.

By (4.13), we obtain

(4.14)

|〈I2, ψ2
λ2
〉| = inf p∈Πd2−1(0,1)|〈I2 − p ◦ γ−1

i , ψ2
λ2
〉|

� inf p∈Πd2−1(0,1)‖I2 − p ◦ γ−1
i ‖0;Ω2

λ2

� 2−d2|λ2|‖I2‖d2;Ω2
λ2

� dist (Ω1,s
λ1
,Ω2

λ2
)−d2−ρ2−d2|λ2|.

Combining (4.11) and (4.14) gives

|〈Aψ1
λ1
, ψ2

λ2
〉| � dist (Ω1,s

λ1
,Ω2

λ2
)−d2−ρ2−d2|λ2|.

Now let j1 < |λ1|, dist (Ω1
λ1
,Ω2

λ2
) = 0 and dist (Ω1

λ1
,Ω2,s

λ2
) > 0.

Moreover, let Ω2
λ2

⊂ Γi for some i ∈ {1, . . . , N}, i.e., especially
Ω1

λ1
⊂ Ω2

λ2
. The following arguments are essentially due to [26].

Because the functions ψ2
λ2
◦γi are piecewise polynomials on (0, 1), there

are subintervals Σ1, . . . ,Σm of Σ := γ−1
i (Ω2

λ2
) ⊂ [0, 1], Σ = ∪m

l=1Σl,
such that

ψ2
λ2

◦ γi|Σl
(t) = 2|λ2|/2

∑
k≤d2−1

cl,k[2|λ2|(t− tl)]k,

t ∈ Σl, l = 1, . . . ,m,

with uniformly bounded coefficients cl,k ∈ C and tl ∈ Σl. Since
dist (Ω1

λ1
,Ω2,s

λ2
) > 0 there is a unique subinterval Σs, s ∈ {1, . . . ,m},

with γ−1
i (Ω1

λ1
) ⊂ Σs. Denoting by Pd2−1 the L2(Σ)-orthogonal projec-

tion on polynomials of degree smaller than d2, one obtains
∫ 1

0

ψ2
λ2

(γi(t))Pd2−1Aψ
1
λ1

(γi(t))|γ′i(t)| dt = 0,
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because ψ2
λ2

(γi(t)) has vanishing moments of order d2 and γi is an affine
function; hence |γ′i(t)| is constant on (0, 1). Therefore, it follows that

|〈Aψ1
λ1
, ψ2

λ2
〉| =

∣∣∣∣
∫ 1

0

ψ2
λ2

(γi(t))Aψ1
λ1

(γi(t))|γ′i(t)|dt
∣∣∣∣

=
∣∣∣∣
∫ 1

0

ψ2
λ2

(γi(t))(Id− Pd2−1)Aψ1
λ1

(γi(t))|γ′i(t)|dt
∣∣∣∣

=
∣∣∣∣

m∑
l=1

∫
Σl

2|λ2|/2
∑

k≤d2−1

cl,k[2|λ2|(t− tl)]k

· (Id− Pd2−1)Aψ1
λ1

(γi(t))|γ′i(t)|dt
∣∣∣∣

�
∣∣∣∣
∫

Σ\Σs

2|λ2|/2
∑

k≤d2−1

cs,k[2|λ2|(t− ts)]k

· (Id− Pd2−1)Aψ1
λ1

(γi(t))|γ′i(t)|dt
∣∣∣∣

+
∣∣∣∣

m∑
l=1
l �=s

2|λ2|/2

∫
Σl

∑
k≤d2−1

cl,k[2|λ2|(t− tl)]k

· (Id− Pd2−1)Aψ1
λ1

(γi(t))|γ′i(t)|dt
∣∣∣∣,

since∫
Σ

2|λ2|/2
∑

k≤d2−1

cs,k[2|λ2|(t−ts)]k(Id−Pd2−1)Aψ1
λ1

(γi(t))|γ′i(t)| dt = 0.

Next we estimate for l �= s the term (Id − Pd2−1)Aψ1
λ1

(γi(t)) on Σl.
Because dist (Σl, γ

−1
i (Ω1

λ1
)) > 0 the function (Id − Pd2−1)Aψ1

λ1
(γi(·))

can be expressed with respect to a smooth Schwarz kernel k(·, ·) related
to the operator (Id − Pd2−1)A, cf. [26]. Then a Taylor expansion
argument gives, for t ∈ Σl,
(4.15)

|(Id− Pd2−1)Aψ1
λ1

(γi(t))| =
∣∣∣∣
∫
R

k(s, t)ψ1
λ1

(γi(s)) ds
∣∣∣∣

� dist (Ω1
λ1
, γi(t))−1−ρ−d1

2−(d1+1/2)|λ1|.
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Inserting (4.15), we obtain for l �= s,

(4.16)
2|λ2|/2

∫
Σl

cl,k[2|λ2||t− tl|]k|(Id− Pd2−1)Aψ1
λ1

(γi(t))||γ′i(t)| dt

≤ 2|λ2|/22−(d1+1/2)|λ1|dist (Ω1
λ1
,Ω2,s

λ2
)−ρ−d1

and analogously,

2|λ2|/2

∫
Σl

cs,k[2|λ2||t− ts|]k(Id− Pd2−1)Aψ1
λ1

(γi(t))||γ′i(t)| dt

≤ 2|λ2|/22−(d1+1/2)|λ1|dist (Ω1
λ1
,Ω2,s

λ2
)−ρ−d1

,

which give

(4.17) |〈Aψ1
λ1
, ψ2

λ2
〉| � 2|λ2|/22−(d1+1/2)|λ1|dist (Ω1

λ1
,Ω2,s

λ2
)−ρ−d1

.

Next, let Ω2
λ2

∩ Γi, Ω2
λ2

∩ Γi+1 �= ∅ and dist (Ω1
λ1
,Ω2,s

λ2
) > 0. We define

γ(t) :=
{
γi(t+ 1) t ∈ (−1, 0],
γi+1(t) t ∈ [0, 1),

Σ := γ−1(Ω2
λ2

) ⊂ (−1, 1),

subintervals Σ1, . . . ,Σm of Σ with Σ = ∪m
l=1Σl and such that ψ2

λ2
◦

γ−1|Σl
are polynomials of degree less than d2; finally Σs and Pd2−1 are

analogous to the above. Then we have

∫ 1

−1

ψ2
λ2

(γ(t))Pd2−1Aψ
1
λ1

(γ(t))|γ′(t)| dt = 0.

Because the distance between Ω1
λ1

and the corners of Γ is positive, there
is again an appropriate Schwartz kernel related to the pseudo differen-
tial operator (Id− Pd2−1)A. Therefore, applying similar arguments as
above gives again (4.17).

Remark 4.2. Decay estimates for the more interesting case dist (Ω1
λ1
,

Ω2
λ2

) = 0 but dist (Ω1,s
λ1
,Ω2

λ2
) > 0 can be immediately derived from the

proved result and the identity |〈Aψ1
λ1
, ψ2

λ2
〉| = |〈ψ1

λ1
, A′ψ2

λ2
〉|. In the

underlying problem the adjoint operators are explicitly given by the
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symmetry relations (2.2). Thus we only have to permute indices for
getting the desired estimates.

After Lemma 4.1 it remains to estimate terms |〈Aψ1
λ1
, ψ2

λ2
〉| with

dist (Ω1
λ1
,Ω2

λ2
) � 1. We handle these terms by proving estimates

for each operator appearing in H separately. We shall use mapping
properties, the fact that |λ2| > j2, i.e., that ψ2

λ2
have vanishing

moments of some order and the validity of inverse estimates. The
derived decay estimates hold generally. Therefore, if distances in the
former estimates become small they give possibly better estimates
especially for low levels |λ2|. This fact will be taken into account in the
subsequent Schur lemma argument.

Generally, let there be given an Mγ1
d1 -basis Ψ1 and an Mγ2

d2 -basis
Ψ2. Besides the vanishing moment property of the basis functions the
validity of inverse estimates plays an important role. We say that Ψi

have inverse estimates up to some si > 0 if, for s ∈ (0, si], the estimates

(4.18) ‖ψi
λi
‖s � 2|λi|s, λi ∈ J i,

hold.

Lemma 4.3. If s1 ∈ (0, 1/2), one has for d2 ≥ 2 and |λ2| > j2,

(4.19) 2(|λ1|+|λ2|)/2|〈V ψ1
λ1
, ψ2

λ2
〉| � 2−(|λ2|−|λ1|)(s1+1/2).

For s1 ≥ 1/2, d2 ≥ s1+1, the estimate (4.19) holds also if Ω1
λ1

contains
no corner ci of Γ with dist (ci,Ω2

λ2
) � 2−|λ1|.

Proof. If V0 denotes the single layer operator with respect to the
Laplacian, i.e., the wave number is set to zero, we get

V = 1/2(1 + μ)V0 + 1/2(V1 − V0 + μ(V2 − V0)).

Results from [12] and [13] show the continuity of the mappings

V0 : Hs(Γ) → Hs+1(Γ), s ∈ (−3/2, 1/2],

as well as

V1 − V0, V2 − V0 : Hs(Γ) → Hs+1(Γ), s ∈ (−3/2, 1/2).
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Hence the operator V : Hs(Γ) → Hs+1(Γ) is continuous for s ∈
(−3/2, 1/2).

Let j2 < |λ2| and suppose that Ω2
λ2

⊂ Γi. Then we get, with
s1 ∈ (0, 1/2) and d2 ≥ 2,

|〈V ψ1
λ1
, ψ2

λ2
〉| = inf p∈Πd2−1(0,1)|〈V ψ1

λ1
− p ◦ γ−1

i , ψ2
λ2
〉|

� 2−|λ2|(s1+1)‖V ψ1
λ1
‖s1+1

� 2|λ1|s1
2−|λ2|(s1+1),

where we used the vanishing moment property of ψ2
λ2

, a Whitney type
estimate and inverse estimates with respect to ψ1

λ1
. Clearly the estimate

also holds if Ω2
λ2

lives on two adjacent straight lines.

Next we assume that either Ω1
λ1

contains no corner of the boundary
Γ or, if Ω1

λ1
contains the corner ci, i ∈ {1, . . . , n}, then one has

dist (Ω2
λ2
, ci) � 2−|λ1|. At first we consider the case where Ω1

λ1
⊂ Γi

for some i ∈ {1, . . . , n}. With respect to Γi the operator V can be
interpreted as a usual pseudodifferential operator of order −1 and we
get

|〈V ψ1
λ1
, ψ2

λ2
〉| ≤ |〈V ψ1

λ1
, ψ2

λ2
|Γi

〉| + |〈V ψ1
λ1
, ψ2

λ2
|Γ\Γi

〉|.
For Ω2

λ2
∩ Γi �= ∅ and s1 ≥ 1/2, d2 ≥ s1 + 1, we estimate the first part

by
|〈V ψ1

λ1
, ψ2

λ2
〉| = inf p∈Πd2−1(0,1)|〈V ψ1

λ1
− p ◦ γ−1

i , ψ2
λ2
〉|

� 2−|λ2|(s1+1)‖V ψ1
λ1
‖s1+1;Ω2

λ2

� 2−|λ2|(s1+1)2|λ1|s1
.

For an estimate of the second part when Ω2
λ2

∩ (Γ\Γi) �= ∅, we use the
fact that dist (Γ\Γi,Ω1

λ1
) � 2−|λ1|. We argue as in the proof of (4.14)

and conclude
‖V ψ1

λ1
‖s1+1;Γ\Γi

� 2|λ1|s1
,

which leads as above to

|〈V ψ1
λ1
, ψ2

λ2
|Γ\Γi

〉| � 2|λ1|s1
2−|λ2|(s1+1).

Summarizing we obtain

|〈V ψ1
λ1
, ψ2

λ2
〉| � 2|λ1|s1

2−|λ2|(s1+1).
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Now let Ω1
λ1

contain the corner ci, but suppose that dist (ci,Ω2
λ2

) �
2−|λ1|. Without restriction we assume that Ω2

λ2
⊂ Γi. Then we

introduce a suitably smooth cut-off function χ, which is 1 in an ε-
neighborhood Uε of ci with ε ∼ 2−|λ1| and dist (Uε,Ω2

λ2
) � 2−|λ1| and

vanishes elsewhere. With that at hand, we obtain

|〈V ψ1
λ1
, ψ2

λ2
〉| ≤ |〈V (χψ1

λ1
), ψ2

λ2
〉| + |〈V ((1 − χ)ψ1

λ1
), ψ2

λ2
〉|.

For the first part we get, since dist (Uε,Ω2
λ2

) � 2−|λ1|,

|〈V (χψ1
λ1

), ψ2
λ2
〉| � 2−|λ2|(s1+1)2|λ1|s1

.

From dist (supp ((1 − χ)ψ1
λ1

) ∩ Γi+1,Ω2
λ2

) � 2−|λ1| follows

|〈V ((1 − χ)ψ1
λ1

)|Γi+1 , ψ
2
λ2
〉| � 2−|λ2|(s1+1)2|λ1|s1

.

Finally again the interpretation of V as a pseudo differential operator
on Γi yields

|〈V ((1 − χ)ψ1
λ1
|Γi

), ψ2
λ2
〉| � 2−|λ2|(s1+1)2|λ1|s1

.

Lemma 4.4. If s1 ∈ (1, 3/2), one has for d2 ≥ 2 and |λ2| > j2,

(4.20) 2(−|λ1|+|λ2|)/2|〈Kψ1
λ1
, ψ2

λ2
〉| � 2−(|λ2|−|λ1|)(s1−1/2).

For s1 ≥ 3/2, d2 ≥ s1, the estimate (4.20) holds also if Ω1
λ1

contains
no corner ci of Γ with dist (ci,Ω2

λ2
) � 2−|λ1|.

Proof. Denoting K0 the double layer operator with respect to the
Laplacian, one has K = K0 + K̃0 with K̃0 = 1/2(K1 − K0) +
1/2(K2 − K0). The operator K̃0 : Hs(Γ) → Hs+2(Γ) is continuous
for s ∈ (−1/2, 1/2), cf. [12]. Thus the continuity properties of K0, cf.
[13], show that K : Hs1

(Γ) → Hs1
(Γ) is continuous for s1 ∈ (1, 3/2).

Hence we obtain for s1 ∈ (1, 3/2) and d2 ≥ 2,

|〈Kψ1
λ1
, ψ2

λ2
〉| � 2−|λ2|s1

2|λ1|s1
.
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If either Ω1
λ1

contains no corner or dist (Ω2
λ2
, ci) � 2−|λ1|, one argues

analogously to Lemma 4.3.

For example, the estimate (4.20) can be sharpened. If either Ω1
λ1

contains no corner or dist (Ω2
λ2
, ci) � 2−|λ1| one argues as follows.

Suppose that Ω2
λ2

⊂ Γi for some i ∈ {1, . . . , n} and dist (Ω1,s
λ1
,Ω2

λ2
) = 0.

Then the introduction of a cut-off function χ with respect to Ω2
λ2

leads
for s1 ∈ (1, 3/2) to

|〈K(χψ1
λ1

), ψ2
λ2
〉| = |〈K̃0(χψ1

λ1
), ψ2

λ2
〉|

= inf p∈Πd2−1(0,1)|〈K̃0(χψ1
λ1

) − p ◦ γ−1
i , ψ2

λ2
〉|

� 2−|λ2|(s1+1)‖K̃0(χψ1
λ1

)‖s1+1;Ω2
λ2

� 2−|λ2|(s1+1)‖χψ1
λ1
‖s1−1;Γi

� 2−|λ2|(s1+1)2|λ1|(s1−1),

where we used the fact that, since supp (χψ1
λ1

), Ω2
λ2

⊂ Γi and Γi is a
straight line, 〈K0(χψ1

λ1
), ψ2

λ2
〉 = 0.

Lemma 4.5. If s1 ∈ (0, 1/2), one has, for d2 ≥ 1 and |λ2| > j2,

(4.21) 2(|λ1|−λ2|)/2|〈K ′ψ1
λ1
, ψ2

λ2
〉| � 2−(|λ2|−|λ1|)(s1+1/2).

For s1 ≥ 1/2, d2 ≥ s1, the estimate (4.21) also holds if Ω1
λ1

contains
no corner ci of Γ with dist (ci,Ω2

λ2
) � 2−|λ1|.

Proof. Again, nearly the same arguments can be applied to K ′. In
particular, we introduce K ′

0 and apply the continuity of

K ′ −K ′
0 : Hs1

(Γ) −→ Hs1+2(Γ), s1 ∈ (0, 1/2),

where Hs1
(Γ) := {u ∈ L2(Γ) | u|Γi

∈ Hs1
(Γi), i = 1, 2, . . . , n}, cf. [12].

Then we get the estimates

|〈K ′ψ1
λ1
, ψ2

λ2
〉| � 2−|λ2|s1

2|λ1|s1
.



30 R. HOCHMUTH

Lemma 4.6. If s1 ∈ (1, 3/2), one has for d2 ≥ 1 and |λ2| > j2,

(4.22) 2−(|λ1|+|λ2|)/2|〈Dψ1
λ1
, ψ2

λ2
〉| � 2−(|λ2|−|λ1|)(s1−1/2).

For s1 ≥ 3/2, d2 ≥ s1−1, the estimate (4.22) also holds if Ω1
λ1

contains
no corner ci of Γ with dist (ci,Ω2

λ2
) � 2−|λ1|.

Proof. For example, if Ω2
λ2

⊂ Γi, we get

|〈Dψ1
λ1
, ψ2

λ2
〉| � inf p∈Πd2−1(0,1)‖Dψ1

λ1
◦ γi − p‖0;Ω2

λ2

� 2−|λ2|(s1−1)‖Dψ1
λ1
‖s1−1;Γ

� 2|λ1|s1
2−|λ2|(s1−1).

Combining Lemma 4.1 and 4.3 4.6 and the symmetry relations (2.2),
we obtain the following corollary.

Corollary 4.7. Suppose that Ψ1 is an Mγ1

d1 -basis with s1 ∈ (1, 3/2),

d1 ≥ 1, and Ψ2 an Mγ2

d2 -basis with s2 ∈ (0, 1/2), d2 ≥ 2. Then we
have, for the operator D and |λ1| > j1,

2−(|λ′
1|+|λ1|)/2|〈Dψ1

λ′
1
, ψ1

λ1
〉|

�

⎧⎨
⎩

dist (Ω1
λ′

1
,Ω1

λ1
)−2−d1

2−j1
2−(d1+1)|λ1|, |λ′1| = j1,

dist (Ω1
λ′

1
,Ω1

λ1
)−2−2d1

2−(d1+1)(|λ′
1|+|λ1|), |λ′1| > j1,

if dist (Ω1
λ1
,Ω1

λ1
) > 0,

2−(|λ′
1|+|λ1|)/2|〈Dψ1

λ′
1
, ψ1

λ1
〉|

�

⎧⎨
⎩

dist (Ω1,s
λ′

1
,Ω1

λ1
)−1−d1

2−(d1+1/2)|λ1|2−1/2j1
, |λ′1| = j1,

dist (Ω1,s
λ′

1
,Ω1

λ1
)−1−d1

2−(d1+1)|λ1|, |λ′1| > j1,

if dist (Ω1
λ′

1
,Ω1

λ1
) = 0 but dist (Ω1,s

λ′
1
,Ω1

λ1
) > 0, and generally

(4.23) 2−(|λ′
1|+|λ1|)/2|〈Dψ1

λ′
1
, ψ1

λ1
〉| � 2−||λ′

1|−|λ1||(s1−1/2).
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For the operator K ′ we have, for |λ1| > j1,

2(|λ′
2|−|λ1|)/2|〈K ′ψ2

λ′
2
, ψ1

λ1
〉|

�

⎧⎨
⎩

dist (Ω2
λ′

2
,Ω1

λ1
)−1−d1

2−(d1+1)|λ1|, |λ′2| = j2,

dist (Ω2
λ′

2
,Ω1

λ1
)−1−d1−d2

2−(d1+1)|λ1|−d2|λ′
2|, |λ′2| > j2,

if dist (Ω2
λ′

2
,Ω1

λ1
) > 0,

2(|λ′
2|−|λ1|)/2|〈K ′ψ2

λ′
2
, ψ1

λ1
〉|

�

⎧⎨
⎩

dist (Ω2,s
λ′

2
,Ω1

λ1
)−d1

2−(d1+1/2)|λ1|21/2j2
, |λ′2| = j2,

dist (Ω2,s
λ′

2
,Ω1

λ1
)−d1

2−(d1+1)|λ1|2|λ
′
2|, |λ′2| > j2,

if dist (Ω2
λ′

2
,Ω1

λ1
) = 0 but dist (Ω2,s

λ′
2
,Ω1

λ1
) > 0, and generally

(4.24)

2(|λ′
2|−|λ1|)/2|〈K ′ψ2

λ′
2
, ψ1

λ1
〉| � 2

−||λ′
2|−|λ1||

{
s2 + 1/2, |λ′2| ≤ |λ1|,
s1 − 1/2, |λ′2| ≥ |λ1|.

For the operator K we have, for |λ2| > j2,

2(−|λ′
1|+|λ2|)/2|〈Kψ1

λ′
1
, ψ2

λ2
〉|

�

⎧⎨
⎩

dist (Ω1
λ′

1
,Ω2

λ2
)−1−d2

2−j1
2−d2|λ2|, |λ′1| = j1,

dist (Ω1
λ′

1
,Ω2

λ2
)−1−d1−d2

2−(d1+1)|λ′
1|−d2|λ2|, |λ′1| > j1,

if dist (Ω1
λ′

1
,Ω2

λ2
) > 0,

2(−|λ′
1|+|λ2|)/2|〈Kψ1

λ′
1
, ψ2

λ2
〉|

�

⎧⎨
⎩

dist (Ω1,s
λ′

1
,Ω2

λ2
)−d2

2(−d2+1/2)|λ2|2−1/2j1
, |λ′1| = j1,

dist (Ω1,s
λ′

1
,Ω2

λ2
)−d2

2−d2|λ2|, |λ′1| > j1,

if dist (Ω1
λ′

1
,Ω2

λ2
) = 0 but dist (Ω1,s

λ′
1
,Ω2

λ2
) > 0, and generally,

(4.25) 2(−|λ′
1|+|λ2|)/2|〈Kψ1

λ′
1
, ψ2

λ2
〉|

� 2
−||λ2|−|λ′

1||

{
s2 + 1/2, |λ2| ≤ |λ′1|,
s1 − 1/2, |λ2| ≥ |λ′1|.
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For the operator V we have

2(|λ′
2|+|λ2|)/2|〈V ψ2

λ′
2
, ψ2

λ2
〉|

�

⎧⎨
⎩

dist (Ω2
λ′

2
,Ω2

λ2
)−d2

2−d2|λ2|, |λ′2| = j2,

dist (Ω2
λ′

2
,Ω2

λ2
)−2d2

2−d2(|λ2|+|λ′
2|), |λ′2| > j2,

if dist (Ω2
λ′

2
,Ω2

λ2
) > 0,

2(|λ′
2|+|λ2|)/2|〈V ψ2

λ′
2
, ψ2

λ2
〉|

�

⎧⎨
⎩

dist (Ω2,s
λ′

2
,Ω2

λ2
)1−d2

2(−d2 + 1/2)|λ2|21/2j2
, |λ′2| = j2,

dist (Ω2,s
λ′

2
,Ω2

λ2
)1−d2

2−d2|λ2|2|λ
′
2|, |λ′2| > j2,

if dist (Ω2
λ′

2
,Ω2

λ2
) = 0 but dist (Ω2,s

λ′
2
,Ω2

λ2
) > 0, and generally

(4.26) 2(|λ′
2|+|λ2|)/2|〈V ψ2

λ′
2
, ψ2

λ2
〉| � 2−||λ2|−|λ′

2||(s2+1/2).

In associated “no-corner cases” the estimates (4.23) (4.26) also hold
for s1 ≥ 3/2, d1 ≥ max(s1 − 1, s2) and s2 ≥ 1/2, d2 ≥ max(s2 + 1, s1).

4.3. The Schur lemma argument. Because of the diversity of derived
decay estimates, it does not seem to be useful to combine all possibilities
for suitable index sets in a single theorem. Instead of that, we shall
use Schur’s lemma to estimate the l2-norm of a typical rectangular
matrix. Given then an infinite rectangular matrix A with a splitting
A =

∑m
k=1Ak, one can estimate the norm of A by the sum of norms

of Ak. For estimates of Ak, we apply Lemma 4.8. In this manner we
obtain index sets such that the magnitudes which are neglected in the
final a posteriori estimate can be controlled in an appropriate way.

To be more precise, we consider matrices with entries weighted by
factors 2δ1|λ1|+δ2|λ2| with δ1, δ2 ∈ {−1, 2, 1/2} and δ1 + δ2 + ρ = 0,
where ρ denotes the order of the involved operator. Apart from that
the entries are given with respect to bases Ψ1 and Ψ2. To simplify
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the presentation, we assume that there are a finite index set Λ1 with
J1

j1 ⊂ Λ1 ⊂ J1 and an infinite index set T 2 ⊂ J2 with |λ1| < |λ2| for
λ1 ∈ Λ1, λ2 ∈ T 2. Further, we suppose that the matrix entries

(4.27) (Aλ1,λ2)λ1∈Λ1,λ2∈T 2 := (2δ1|λ1|+δ2|λ2||〈Aψ1
λ1
, ψ2

λ2
〉|)λ1∈Λ1,λ2∈T 2

satisfy the estimates

(4.28) Aλ1,λ2

�

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dist (Ω1
λ1
,Ω2

λ2
)−1−ρ−d2

2j1(δ1−1/2)2−(d2+1/2−δ2)|λ2|,

|λ1| = j1,

dist (Ω1
λ1
,Ω2

λ2
)−1−ρ−d1−d2

2−(d1+1/2−δ1)|λ1|−(d2+1/2−δ2)|λ2|,

|λ1| > j1,

if dist (Ω1
λ1
,Ω2

λ2
) > 0,

(4.29)

Aλ1,λ2 �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dist (Ω1,s
λ1
,Ω2

λ2
)−ρ−d2

2−(d2−δ2)|λ2|2j1δ1 ,

|λ1| = j1,

dist (Ω1,s
λ1
,Ω2

λ2
)−ρ−d2

2−(d2+1/2−δ2)|λ2|2|λ1|(1/2+δ1),

|λ1| > j1,

if dist (Ω1
λ1
,Ω2

λ2
) = 0 but dist (Ω1,s

λ1
,Ω2

λ2
) > 0, and generally

(4.30) Aλ1,λ2 � 2−||λ2|−|λ1||d

with some d > 1/2. In the proof of Theorem 4.9, we shall use several
times the following simplified version of the well-known Schur lemma,
cf., e.g., [26].

Lemma 4.8. Let A = (ai,j)i∈I,j∈J be a possibly bi-infinite rectan-
gular matrix with countable index sets I, J ⊂ Z. Then there exists a
constant c > 0 such that, for arbitrary u ∈ l2(J),

‖Au‖l2(I)≤c
[
sup
i∈I

∑
j∈J

21/2(i−j)|ai,j |
]1/2[

sup
j∈J

∑
i∈I

21/2(j−i)|ai,j |
]1/2

‖u‖l2(J).



34 R. HOCHMUTH

Theorem 4.9. Set, for λ2 ∈ T 2,

Mλ2;1 := J1
j1 , Mλ2;2 := Λ1\J1

j1

and let ε > 0. Choose constants ai,j ∈ [0, 1], bi,j ∈ [0, 1), small δi,j > 0,
i, j = 1, 2, and ki,j ∈ N, i = 1, 2, j = 1, 2, 3, 4, with d2−δ2−b1,1(ρ+d2+
1) > 0, d2−δ2−1/2−b1,2(ρ+d2) > 0, d2−δ2−b2,1(1+ρ+d1+d2) > 0,
d2−δ2−b2,2(p+d2) > 0, (a2,1+b2,1−1)(ρ+d1+d2)+max(a2,1, b2,1) ≤ 0,
(a2,2 + b2,2 − 1)(d2 + ρ) − b2,2 + 1 ≤ 0, a2,1 + b2,1 − 1 ≤ 0 and
a2,2 + b2,2 − 1 ≤ 0, such that with jΛ1 := max{|λ1||λ1 ∈ Λ1}
(4.31)

δ
2(ρ+d2)
1,1 2[2j1(a1,1+b1,1−1)(ρ+d2)+a1,1+b1,1]2−2k1,1(d

2−δ2−b1,1(ρ+d2+1/2))

+ δ
2(ρ+d2)−1
1,2 2j1[2(a1,2+b1,2−1)(ρ+d2)+1−b1,2]

· 2−2k1,2(d
2−δ2−1/2−b1,2(ρ+d2−1/2))

+ δ−1
1,22

j1(1−a1,2−b1,2)2−k1,3(2d−1+b1,2)

+ δ−1
1,12

j1(1−a1,1−b1,1)2−k1,4(2d−1+b1,1)

< ε2

and
(4.32)

δ
2(ρ+d1+d2)
2,1 2j1[2(a2,1+b2,1−1)(ρ+d1+d2)+a2,1+b2,1]

· 2−2k2,1(d
2−δ2−b2,1(ρ+d1+d2+1/2))

+ δ
2(ρ+d2)−1
2,2 2j1[2(a2,2+b2,2−1)(d2+ρ)−b2,2+1]2−2k2,2(d

2−δ2−b2,2(ρ+d2−1/2))

+ δ−1
2,22

jΛ1(−a2,2−b2,2+1)2−k2,3(2d−1+b2,2)

· δ−1
2,12

jΛ1(−a2,1−b2,1+1)2−k2,4(2d−1+b2,1)

< ε2.
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Then, for the following index sets,

Nλ2;i,1 := {λ1 ∈Mλ2;i | dist (Ω1
λ1
,Ω2

λ2
)

≥ δ−1
i,1 2−|λ1|ai,12−|λ2|bi,1 , |λ2| − |λ1| ≥ ki,1},

Nλ2;i,2 := {λ1 ∈Mλ2;i | Ω2
λ2

⊂ Ω1
λ1
, dist (Ω1,s

λ1
,Ω2

λ2
)

≥ δ−1
i,2 2−|λ1|ai,22−|λ2|bi,2 , |λ2| − |λ1| ≥ ki,2},

Nλ2;i,3 := {λ1 ∈Mλ2,i | Ω2
λ2

⊂ Ω1
λ1
, dist (Ω1,s

λ1
,Ω2

λ2
)

< δ−1
i,2 2−|λ1|ai,22−|λ2|bi,2 , |λ2| − |λ1| ≥ ki,3},

Nλ2;i,4 := {λ1 ∈Mλ2,i | Ω2
λ2

�⊂ Ω1
λ1
, dist (Ω1

λ1
,Ω2

λ2
)

< δ−1
i,1 2−|λ1|ai,12−|λ2|bi,1 , |λ2| − |λ1| ≥ ki,4},

i = 1, 2, and

Nε
λ2

:= Λ1
∖ 2⋃

i=1

4⋃
j=1

Nλ2;i,j ,

λ2 ∈ T 2, there exists a constant β > 0 such that, for

eλ2 :=
∑

λ1∈Λ1\Nε
λ2

〈Aψλ1 , ψλ2〉uλ1 , λ2 ∈ T 2,

one has

(4.33)
( ∑

λ2∈T 2

22δ2|λ2||eλ2 |2
)1/2

≤ βε‖uΛ1‖−δ1 .

Proof. At first we consider Nλ2;1,j for j ∈ {1, 2, 3, 4}. For an arbitrary
but fixed λ1 ∈ Jj1 we sum up λ2 with λ1 ∈ Nλ2;1,1 and get, by (4.28),∑

λ2

2(j1−|λ2|)/2Aλ1,λ2

� 2j1δ1
∑
λ2

2−|λ2|(d2+1−δ2)dist (Ω1
λ1
,Ω2

λ2
)−1−ρ−d2

� δρ+d2

1,1 2j1(δ1+a1,1(1+ρ+d2))
∑

l

2−l(d2−δ2−b1,1(ρ+d2))

� δρ+d2

1,1 2j1[(a1,1+b1,1−1)(ρ+d2)+a1,1]2−k1,1(d
2−δ2−b1,1(ρ+d2)),
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where we used that, with b1,1 ∈ [0, 1),

∑
|λ2|=l

dist (Ω1
λ1
,Ω2

λ2
)−1−ρ−d2 � δ1+ρ+d2

1,1 2j1a1,1(1+ρ+d2)2lb1,1(1+ρ+d2)

+ 2l

∫
x≥δ−1

1,12
−j1a1,12−|λ2|b1,1

x−1−ρ−d2
dx

� δρ+d2

1,1 2j1a1,1(1+ρ+d2)2l(1+b1,1(ρ+d2)).

Analogously, we sum up λ2 with λ1 ∈ Nλ2;1,2 and obtain by (4.29) and
b1,2 ∈ [0, 1),

∑
λ2

2(j1−|λ2|)/2Aλ1,λ2 � δp+d2−1
1,2 2j1[(a1,2+b1,2−1)(ρ+d2−1)+a1,2]

· 2−k1,2(d
2−δ2−1/2−b1,2(ρ+d2−1)).

Then we sum up λ2 with λ1 ∈ Nλ2;1,3 and obtain by (4.30), since
�{|λ2| = l | λ1 ∈ Nλ2;1,3} � δ−1

1,22
−j1a1,22l(1−b1,2),

∑
λ2

2(j1−|λ2|)/2Aλ1,λ2 � 2j1(d+1/2)
∑
λ2

2−|λ2|(d+1/2)

� δ−1
1,22

j1(d+1/2−a1,2)
∑

l

2−l(d−1/2+b1,2)

� δ−1
1,22

j1(1−a1,2−b1,2)2−k1,3(d−1/2+b1,2).

Finally we sum up λ2 with λ1 ∈ Nλ2;1,4 and obtain by (4.30), since
�{|λ2| = l | λ1 ∈ Nλ2;1,4} � δ−1

1,12
−j1a1,12l(1−b1,1),

∑
λ2

2(j1−|λ2|)/2Aλ1,λ2 � δ−1
1,12

j1(1−a1,1−b1,1)2−k1,4(d−1/2+b1,1).

Then we take an arbitrary λ2 with ∪4
j=1Nλ2;1,j �= ∅. At first we sum

up λ1 ∈ Nλ2;1,1 and get with a1,1 ∈ [0, 1] and b1,1 ∈ [0, 1)

∑
λ1

2(|λ2|−j1)/2Aλ1,λ2 � δρ+d2

1,1 2j1[(a1,1+b1,1−1)(ρ+d2)+b1,1]

· 2−k1,1(d
2−δ2−b1,1(ρ+d2+1)).
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Analogously, we sum up λ1 ∈ Nλ2;1,2 and get with a1,2 ∈ [0, 1],∑
λ1

2(|λ2|−j1)/2Aλ1,λ2 � δρ+d2

1,2 2j1(a1,2+b1,2−1)(ρ+d2)

· 2−k1,2(d
2−δ2−1/2−b1,2(ρ+d2)).

Then we sum up λ1 ∈ Nλ2;1,3 and get, because �{|λ1| = l | λ1 ∈
Nλ2;1,3} = O(1),∑

λ1

2(|λ2|−j1)/2Aλ1,λ2 � 2−|λ2|(d−1/2)2j1(d−1/2) � 2−k1,3(d−1/2).

Finally, we sum up λ1 ∈ Nλ2;1,4 and get, because �{|λ1| = l | λ1 ∈
Nλ2;1,4} = O(1),∑

λ1

2(|λ2|−j1)/2Aλ1,λ2 � 2−k1,4(d−1/2).

Multiplying related terms, we get, by the assumption (4.31) and
Lemma 4.8, an estimate like (4.33), cf. [14].

Next we consider Nλ2;2,j , j ∈ {1, 2, 3, 4}. For an arbitrary but fixed
λ1 ∈ Λ1\Jj1 we sum up λ2 with λ1 ∈ Nλ2;2,1 and get by (4.28),
(a2,1 + b2,1 − 1)(ρ+ d1 + d2) + a2,1 ≤ 0 and b2,1 ∈ [0, 1)∑

λ2

2(|λ1|−|λ2|)/2Aλ1,λ2 � δρ+d1+d2

2,1 2j1[(a2,1+b2,1−1)(ρ+d1+d2)+a2,1]

· 2−k2,1(d
2−δ2−b2,1(ρ+d1+d2)).

Analogously we sum up λ2 with λ1 ∈ Nλ2;2,2 and obtain, by (4.29),
b2,2 ∈ [0, 1) and (a2,2 + b2,2 − 1)(d2 + ρ − 1) + a2,2 = (a2,2 + b2,2 −
1)(d2 + ρ) − b2,2 + 1 ≤ 0,∑

λ2

2(|λ1|−|λ2|)/2Aλ1,λ2 � δρ+d2−1
2,2 2j1[(a2,2+b2,2−1)(d2+ρ−1)+a2,2]

· 2−k2,2(d
2−δ2−b2,2(ρ+d2−1)).

Then we sum up λ2 with λ1 ∈ Nλ2;2,3 and obtain by (4.30) and −a2,2−
b2,2 + 1 ≥ 0, since �{|λ2| = l|λ1 ∈ Nλ2;2,3} � δ−1

2,22
l(1−b2,2)2−|λ1|a2,2 ,∑

λ2

2(|λ1|−|λ2|)/2Aλ1,λ2 � δ−1
2,22

jΛ1(−a2,2−b2,2+1)2−k2,3(d−1/2+b2,2).
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Then we sum up λ2 with λ1 ∈ Nλ2;2,4 and obtain by (4.30) and −a2,1−
b2,1 + 1 ≥ 0 since �{|λ2| = l | λ1 ∈ Nλ2;2,4} � δ−1

2,12
l(1−b2,1)2−|λ1|a2,1

∑
λ2

2(|λ1|−|λ2|)/2Aλ1,λ2 � δ−1
2,12

jΛ1(−a2,1−b2,1+1)2−k2,4(d−1/2+b2,1).

Finally we take an arbitrary λ2 with ∪4
j=1Nλ2;2,j �= ∅. At first, we

sum up λ1 ∈ Nλ2;2,1 and get, by (4.28), (a2,1 + b2,1 − 1)(ρ+ d1 + d2) +
b2,1 ≤ 0 and a2,1 ∈ [0, 1],∑

λ1

2(|λ2|−|λ1|)/2Aλ1,λ2 � δρ+d1+d2

2,1 2j1[(a2,1+b2,1−1)(ρ+d1+d2)+b2,1]

· 2−k2,1(d
2−δ2−b2,1(1+ρ+d1+d2)).

Then we sum up λ1 ∈ Nλ2;2,2 and obtain by (4.29) and (a2,2 + b2,2 −
1)(d2 + ρ) ≤ 0,∑

λ1

2(|λ2|−|λ1|)/2Aλ1,λ2 � δρ+d2

2,2 2j1(a2,2+b2,2−1)(d2+ρ)

· 2−k2,2(d
2−δ2−b2,2(ρ+d2)).

Then we sum up λ1 ∈ Nλ2;2,3 and obtain by (4.30), since �{|λ1| = l |
λ1 ∈ Nλ2;2,3} = O(1),∑

λ1

2(|λ2|−|λ1|)/2Aλ1,λ2 � 2−k2,3(d−1/2).

Then we sum up λ1 ∈ Nλ2;2,4 and obtain by (4.30), since �{|λ1| = l |
λ1 ∈ Nλ2;2,4} = O(1),∑

λ1

2(|λ2|−|λ1|)/2Aλ1,λ2 � 2−k2,4(d−1/2).

Thus, we get by (4.32) an estimate like (4.33).

Concealing the δ, 2j1
and 2jΛ1 -terms in generic constants, one obtains

the simplified conditions

2−2k1,1(d
2−δ2−b1,1(ρ+d2+1/2)) + 2−2k1,2(d

2−δ2−1/2−b1,2(ρ+d2−1/2))

+ 2−k1,3(2d−1+b1,2) + 2−k1,4(2d−1+b1,1) < ε2



TRANSMISSION PROBLEMS 39

and

2−2k2,1(d
2−δ2−b2,1(ρ+d1+d2+1/2)) + 2−2k2,2(d

2−δ2−b2,2(ρ+d2−1/2))

2−k2,3(2d−1+b2,2) + 2−k2,4(2d−1+b2,1) < ε2.

Moreover, neglecting the decay estimates with respect to the singular
supports, we get with b1,1 = b1,2 = 0, k1,1 = k1,2 and k1,3 = k1,4

2−2k1,1(d
2−δ2) + 2−2k1,4(d−1/2) < ε2

and, respectively, with b2,1 = b2,2 = 0, k2,1 = k2,2 and k2,3 = k2,4

2−2k2,1(d
2−δ2) + 2−2k2,4(d−1/2) < ε2.

If one chooses, e.g., a2,2, b2,2 such that (a2,2 + b2,2 − 1)(d2 + ρ) > 0,
then the term 2j1[2(a2,2+b2,2−1)(d2+ρ)−b2,2+1] has to be replaced by
2jΛ1 [2(a2,2+b2,2−1)(d2+ρ)−b2,2+1]. If a2,2 + b2,2 − 1 > 0, then one gets
instead of 2jΛ1 (1−a2,2−b2,2) the magnitude 2j1(1−a2,2−b2,2), etc.

Clearly further variants are possible. Especially matrix entries with
respect to associated “no-corner” basis functions can be collected in
sub-matrices with a greater d, which lead to Nε

λ2
with less elements.

4.4. A posteriori estimates by finite sums. We combine Corollary 4.7
and Theorem 4.9 to obtain the following result.

Corollary 4.10. Under the assumptions of Corollary 4.7 there exists
a constant c5 > 0 such that, for arbitrary ε > 0 and εD, εK , εK′ , εV > 0
with εD + εK ≤ ε, εK′ + εV ≤ ε, there are index sets ND,εD

λ1
, NK,εK

λ2
,

N
K′,εK′
λ1

, NV,εV

λ2
with

(ND,εD

λ1
∪NK,εK

λ2
) × (NK′,εK′

λ1
∪NV,εV

λ2
) ⊂ Λ1 × Λ2, (λ1, λ2) ∈ J\Λ,

such that ND
Λ1,εD

:= {λ1 ∈ J1\Λ1 | ND,εD

λ1
�= ∅}, NK

Λ2,εK
:= {λ2 ∈

J2\Λ2 | NK,εK

λ2
�= ∅}, NK′

Λ1,εK′ := {λ1 ∈ J1\Λ1 | NK′,εK′
λ1

�= ∅},
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NV
Λ2,εV

:= {λ2 ∈ J2\Λ2 | NV,εV

λ2
�= ∅} are finite and the magnitudes

dλ1 :=
∑

λ′
1∈Λ1\N

D,εD
λ1

〈Dψ1
λ′

1
, ψ1

λ1
〉u1

λ′
1
,

k′λ1
:=

∑
λ′

2∈Λ2\N
K′,ε

K′
λ1

〈K ′ψ2
λ′

2
, ψ1

λ1
〉u2

λ′
2
,

kλ2 :=
∑

λ′
1∈Λ1\N

K,εK
λ2

〈Kψ1
λ′

1
, ψ2

λ2
〉u1

λ′
1
,

vλ2 :=
∑

λ′
2∈Λ2\N

V,εV
λ2

〈V ψ2
λ′

2
, ψ2

λ2
〉u2

λ′
2
,

give( ∑
λ1∈J1\Λ1

2−|λ1||dλ1 + k′λ1
|2 +

∑
λ2∈J2\Λ2

2|λ2||kλ2 + vλ2 |2
)1/2

≤ c5ε‖uΛ‖1/2,−1/2.

The local a posteriori estimator will be defined by the remaining terms,
i.e.,. we set for λ = (λ1, λ2) ∈ J\Λ,

aλ(Λ, ε) := 2−|λ1|/2

∣∣∣∣ ∑
λ′

1∈N
D,εD
λ1

〈Dψ1
λ′

1
, ψ1

λ1
〉u1

λ′
1
+

∑
λ′

2∈N
K′,ε

K′
λ2

〈K ′ψ2
λ′

2
, ψ1

λ1
〉u2

λ′
2

∣∣∣∣
+ 2|λ2|/2

∣∣∣∣ ∑
λ′

1∈N
K,εK
λ2

〈Kψ1
λ′

1
, ψ2

λ2
〉u1

λ′
1
+

∑
λ′

2∈N
V,εV
λ2

〈V ψ2
λ′

2
, ψ2

λ2
〉u2

λ′
2

∣∣∣∣,
which implies the following estimates, cf. [14].

Corollary 4.11. Under the assumptions of Corollary 4.7, we have

(4.34)

‖u− uΛ‖1/2,−1/2 ≤ c2c4

(( ∑
λ∈J\Λ

a2
λ(Λ, ε)

)1/2

+ c5ε‖uΛ‖1/2,−1/2

+
( ∑

λ∈J\Λ
2−|λ1||g1

λ1
|2 + 2|λ2||g2

λ2
|2
)1/2)

,
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as well as
(4.35)( ∑

λ∈J\Λ
a2

λ(Λ, ε)
)1/2

≤ 1
c1c3

‖u− uΛ‖1/2,−1/2 + c5ε‖uΛ‖1/2,−1/2

+
( ∑

λ∈J\Λ
2−|λ1||g1

λ1
|2 + 2|λ2||g2

λ2
|2
)1/2

.

Moreover, for Λ ⊂ Λ̃ ⊂ J , we have for the Galerkin solutions uΛ and
uΛ̃,
(4.36)( ∑

λ∈Λ̃\Λ
a2

λ(Λ, ε)
)1/2

≤ 1
c1c3

‖uΛ̃ − uΛ‖1/2,−1/2 + c5ε‖uΛ‖1/2,−1/2

+
( ∑

λ∈J\Λ
2−|λ1||g1

λ1
|2 + 2|λ2||g2

λ2
|2
)1/2

.

The estimates (4.34) and (4.35) show that

(4.37) ηΛ,ε :=
( ∑

λ∈J\Λ
a2

λ(Λ, ε)
)1/2

defines up to the tolerance ε > 0 an efficient and reliable a posteriori
estimator. The inequality (4.36) relates two successive Galerkin solu-
tions and is crucial for the convergence proof of the adaptive scheme
presented in the next section.

5. Adaptive schemes. The a posteriori estimates in Section 4
suggest to apply the following adaptive scheme which is based on the
idea of equilibration of the error. For any Λ ⊂ J , a tolerance ε > 0
and an index-set Λ̃ such that (

∑
λ∈Λ̃\Λ a

2
λ(Λ, ε))1/2 carries the relevant

part of the error ‖u− uΛ‖1/2,−1/2 in the sense of (4.34) and (4.35) one
takes sufficiently many terms aλ(Λ, ε), λ ∈ Z ⊂ Λ̃\Λ, if possible the
biggest ones, i.e., |Z| possibly small, such that

(5.1)
( ∑

λ∈Z\Λ
a2

λ(Λ, ε)
)1/2

≥ (1 − θ)
( ∑

λ∈Λ̃\Λ
a2

λ(Λ, ε)
)1/2
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for some fixed θ ∈ (0, 1). Then the next Galerkin step uses ΛZ := Λ∪Z
and gives possibly a more exact approximation uΛZ

. This approach is
well known and described in several papers about a posteriori estimates
and adaptive schemes. Therefore, we omit further details.

What we want to do next is to pose conditions which imply the con-
vergence of such an adaptive scheme. That is, the following algorithm
ensures that either the new Galerkin solution is really better or the
a posteriori estimator shows that one has already reached an approx-
imate solution within the desired accuracy. We shall restrict our at-
tention to transmission problems with respect to smooth boundaries Γ.
This restriction seems necessary for having a sufficiently strong relation
between the Galerkin orthogonality induced by the Galerkin method
and an appropriate Hilbert space norm ‖·‖ equivalent to the ‖·‖1,2,−1/2-
norm. We shall show that there is a self-adjoint operator S, such that
the difference H −S allows asymptotically better estimates than H it-
self. We notice that a similar idea is applied in [14] on non-symmetric
elliptic boundary value problem which includes a convection term.

Lemma 5.1. Let Re (1 + 1/μ) > 0 and Re (1 + μ) > 0. Then there
is an operator C : L2(Γ) × H−1(Γ) → H−1/2(Γ) × H1/2(Γ) such that
S := H−C : H1/2(Γ)×H−1/2(Γ) → H−1/2(Γ)×H1/2(Γ) is self-adjoint
and positive definite, i.e., one has

(5.2) |〈Su, ū〉Γ| � ‖u‖2
1/2,−1/2, u ∈ H1/2(Γ) ×H−1/2(Γ).

Proof. At first we consider the operator

S0 :=
(

1/2(1 + 1/μ)D0 0
0 1/2(1 + μ)V0

)
,

where D0 and V0 denote the integral operators with respect to the wave
number zero. It is well known, cf. e.g. [11], that there is a self-adjoint
compact operator C0 : L2(Γ) ×H−1(Γ) → H−1/2(Γ) ×H1/2(Γ) with

|〈(S0 + C0u, ū〉Γ| � ‖u‖2
1/2,−1/2, u ∈ H1/2(Γ) ×H−1/2(Γ),

hence, S := S0 + C0 satisfies (5.2). Therefore the assertion of the
lemma is proved when we show that C := H − S : L2(Γ) ×H−1(Γ) →
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H−1/2(Γ) ×H1/2(Γ) is bounded, i.e., we have to investigate

C =
(

1/2(D1 −D0 + 1/μ(D2 −D0)) K ′

−K 1/2(V1 − V0 + μ(V2 − V0))

)
.

Because of the mapping properties of Di − D0 and Vi − V0, i = 1, 2,
studied in [12], we only have to consider the operators K ′ and K. In
[29] it is proved that K ′ : Hs(Γ) → Hs+1/2(Γ) is bounded for s ∈ R
if Γ is smooth enough, e.g., if Γ is a Cl-curve with l ≥ |s| + 1/2.
Boundedness results for K then follow by duality arguments. Thus,
since Γ is smooth, the operator C fulfills in fact the desired boundedness
property.

Clearly, the operator C = H −S is also bounded as an operator from
Hs(Γ) ×H−1+s(Γ) to H−1/2(Γ) ×H1/2(Γ) for s ∈ [0, 1/2].

Lemma 5.2. Let t ∈ [max(0, 1 − γ1
2), 1/2). Then, for Λ ⊂ J with

(5.3) ‖(I −QΛ)v‖1/2,−1/2 ≤ δ‖v‖1−t,−t, v ∈ H1−t(Γ) ×H−t(Γ),

and Λ̃ ⊂ J , Λ ⊂ Λ̃, one has

(5.4) |〈C(u−uΛ̃), uΛ̃ − uΛ〉Γ| � δ(‖u−uΛ̃‖2
1/2,−1/2 +‖u−uΛ‖2

1/2,−1/2)

with a constant independent of δ, Λ and Λ̃.

Proof. The mapping properties of C give
(5.5)

|〈C(u− uΛ̃), uΛ̃ − uΛ〉Γ| ≤ ‖C(u− uΛ̃)‖−1/2,1/2‖uΛ̃ − uΛ‖1/2,−1/2

≤ ‖u− uΛ̃‖t,t−1‖uΛ̃ − uΛ‖1/2,−1/2.

Furthermore, the Ansatz of the Aubin Nitsche trick provides for (5.3)
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the estimates
(5.6)
‖u− uΛ̃‖t,t−1 = sup

‖ξ‖−t,1−t=1

|〈u− uΛ̃, ξ〉Γ|

= sup
‖ξ‖−t,1−t=1

|〈H(u− uΛ̃), (H ′)−1ξ〉Γ|

� sup
‖ξ‖−t,1−t=1

inf
χ∈SΛ̃

‖(H ′)−1ξ−χ‖1/2,−1/2‖u− uΛ̃‖1/2,−1/2

� δ sup
‖ξ‖−t,1−t=1

‖(H ′)−1ξ‖1−t,−t‖u−uΛ̃‖1/2,−1/2

� δ‖u− uΛ̃‖1/2,−1/2.

We obtain (5.4) by combining (5.5) and (5.6).

Next we define an appropriate Hilbert space norm ‖ · ‖ by

‖u‖ :=
√
〈Su, ū〉Γ, u ∈ H1/2(Γ) ×H−1/2(Γ).

Lemma 5.1 gives constants c7, c8 > 0 such that
(5.7)
c7‖u‖1/2,−1/2 ≤ ‖u‖ ≤ c8‖u‖1/2,−1/2, u ∈ H1/2(Γ) ×H−1/2(Γ).

A simple calculation yields

‖u− uΛ‖2 − ‖u− uΛ̃‖2 − ‖uΛ − uΛ̃‖2 = 2〈S(u− uΛ̃), uΛ̃ − uΛ〉Γ;

hence the Galerkin orthogonality 〈H(u− uΛ̃), uΛ̃ − uΛ〉Γ = 0 implies

‖u− uΛ̃‖2 = ‖u− uΛ‖2 − ‖uΛ − uΛ̃‖2 + 2〈C(u− uΛ̃), uΛ̃ − uΛ〉Γ.
Therefore, by (5.3) and its consequence (5.4) for a fixed t ∈ [max(0,
1 − γ1

2), 1/2), we get a constant c6 > 0 such that

(5.8) (1 − c6δ)‖u− uΛ̃‖2 ≤ (1 + c6δ)‖u− uΛ‖2 − ‖uΛ − uΛ̃‖2.

Theorem 5.3. Let there be given a tolerance eps > 0. Fix any
θ∗ ∈ (0, 1) and define

(5.9) Ce :=
(

1
c1c3

+
1 − θ∗

2(2 − θ∗)c2c4

)
.
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Choose any μ∗ > 0 such that

(5.10) μ∗Ce ≤ 1 − θ∗

2(2 − θ∗)c2c4
,

set

(5.11) ε :=
μ∗eps

2c5‖uΛ‖1/2,−1/2

and choose δ∗ > 0 such that

(5.12) δ∗ <
c21c

2
3c

2
7(1 − θ∗)2

4c22c
2
4c6c

2
8

.

Suppose that Λ ⊂ J satisfies

(5.13)
( ∑

λ∈J\Λ
2−|λ1||g1

λ1
|2 + 2|λ2||g2

λ2
|2
)1/2

<
1
2
μ∗eps

and

(5.14) ‖(I −QΛ)v‖1/2,−1/2 ≤ δ∗‖v‖1−t,−t, v ∈ H1−t(Γ) ×H−t(Γ).

Then whenever Λ̃ ⊂ J , Λ ⊂ Λ̃ fulfills

(5.15)
( ∑

λ∈Λ̃\Λ
aλ(Λ, ε)2

)1/2

≥ (1 − θ∗)
( ∑

λ∈J\Λ
aλ(Λ, ε)2

)1/2

,

there exists a constant κ ∈ (0, 1), depending on the constants θ∗, δ∗ and
the constants ci, i = 1, . . . , 8, such that either

(5.16) ‖u− uΛ̃‖ ≤ κ‖u− uΛ‖

or (
∑

λ∈J\Λ aλ(Λ, ε)2)1/2 ≤ eps .

Proof. We first assume that ‖u − uΛ‖1/2,−1/2 ≥ eps /Ce where the
constant Ce > 0 is defined by (5.9). When Λ̃ satisfies (5.15) we infer
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from (4.34), (4.36), (5.10), (5.11) and (5.13), cf. [14],

(5.17)

‖uΛ̃ − uΛ‖1/2,−1/2 ≥ c1c3

(( ∑
λ∈Λ̃\Λ

aλ(Λ, ε)2
)1/2

− c5ε‖uΛ‖1/2,−1/2

−
( ∑

λ∈J\λ

2−|λ1||g1
λ1
|2 + 2|λ2||g2

λ2
|2
)1/2)

≥ c1c3(1 − θ∗)
2c2c4

‖u− uΛ‖1/2,−1/2.

By (5.7) and (5.17) we obtain with c9 := (c1c3c7(1 − θ∗))/(2c2c4c8)

(5.18) ‖uΛ̃ − uΛ‖ ≥ c9‖u− uΛ‖.

On account of (5.8) we obtain, by (5.18),

‖u− uΛ̃‖ ≤
√

1 − c29 + c6δ∗

1 − c6δ∗
‖u− uΛ‖;

hence,

(5.19) ‖u− uΛ̃‖ ≤ κ‖u− uΛ‖

with κ ∈ (0, 1) because of (5.12).

On the other hand, ‖u − uΛ‖1/2,−1/2 < eps /Ce yields, in view of
(4.35), (5.11) and (5.13), cf. [14],

( ∑
λ∈J\Λ

aλ(Λ, ε)2
)1/2

≤ (1/(c1c3)) + μ∗Ce)eps
Ce

.

Taking (5.9) and (5.10) into account, we see that (1/(c1c3)+μ∗Ce)/Ce ≤
Λ so that ( ∑

λ∈J\Λ
aλ(Λ, ε)2

)1/2

≤ eps ,

which completes the proof.
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Note that (
∑

λ∈J\Λ aλ(Λ, ε)2)1/2 ≤ eps yields, by (4.34), (5.11) and
(5.13),

(5.20) ‖u− uΛ‖1/2,−1/2 ≤ c2c4(1 + μ∗)ε.

Remark 5.4. The term ‖uΛ‖1/2,−1/2 in (5.11) can be replaced by

( ∑
λ1∈Λ1

2|λ1||〈u1
Λ, ψ̃

1
λ1
〉|2 +

∑
λ2∈Λ2

2−|λ2||〈u2
Λ, ψ̃

2
λ2
〉|2
)1/2

.

The constants then change in an obvious way.

An asymptotic sufficient condition for (5.14) is, e.g., that SΛ ⊂ Sn,
n = (m,m), with

m � log2 δ
∗

t− 1/2
− 1,

which follows by (
∑∞

j=m+1 2(2t−1)j)1/2 � δ∗.

Theorem 5.3 suggests the following convergent adaptive algorithm:

1) Choose θ∗, μ∗ and δ∗, an initial accuracy eps 1 and a final accuracy
eps .

2) Set Λ1,0 ⊂ J such that ‖(I − QΛ1,0)v‖1/2,−1/2 ≤ δ∗‖v‖1−t,−t,
v ∈ H1−t(Γ) ×H−t(Γ).

3) Choose for i = 1,∞ index sets Λi,1 ⊂ J , Λi,1 ⊃ Λi,0 such that

( ∑
λ∈J\Λi,1

2−|λ1||g1
λ1
|2 + 2|λ2||g2

λ2
|2
)1/2

<
1
2
μ∗eps i.

a) Compute for j = 1,∞ the Galerkin solution uΛi,j
with respect to

SΛi,j
.

Set

ε :=
μ∗ · eps i

2c5‖uΛi,j
‖1/2,−1/2

.
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Determine an appropriate index set NΛi,j ,ε and

ηΛi,j,ε
:=
( ∑

λ∈NΛi,j ,ε

a2
λ(Λ, ε)

)1/2

.

b) If ηΛi,j,ε
< eps i, set j := ∞,

else choose Λi,j+1 ⊃ Λi,j , Λi,j+1\Λi,j ⊂ NΛi,j ,ε such that

( ∑
λ∈Λi,j+1\Λi,j

a2
λ(Λ, ε)

)1/2

≥ (1 − θ∗)ηΛi,j ,ε.

If eps i < eps , go to Stop,
else set eps i+1 := eps i/2 and Λi+1,0 := Λi,j .

4) Stop.

Finally we notice that, by mapping properties of the operators Aj ,
KΩj

and VΩj
one can derive error estimates for representations of

Galerkin approximations as well as their convergence with respect to
an adaptive scheme if therein the parameters are chosen such that the
resulting κ ∈ (0, 1) is appropriately small. Small κ ∈ (0, 1) can be
attained if the parameters θ∗ and δ∗ are suitably adapted.
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