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ON THE NON-EXPONENTIAL CONVERGENCE
OF ASYMPTOTICALLY STABLE SOLUTIONS

OF LINEAR SCALAR VOLTERRA
INTEGRO-DIFFERENTIAL EQUATIONS

JOHN A.D. APPLEBY AND DAVID W. REYNOLDS

ABSTRACT. We study the stability of the scalar linear
Volterra equation

x′(t) = −ax(t) +

∫ t

0

k(t − s)x(s) ds, x(0) = x0

under the assumption that all solutions satisfy x(t) → 0 as
t → ∞. It is shown that if k is a continuously differentiable,
positive, integrable function which is subexponential in the
sense that k′(t)/k(t) → 0 as t → ∞, then x(t) cannot converge
to 0 as t → ∞ faster than k(t).

1. Introduction. In this note we consider the asymptotic stability
of the scalar linear Volterra integro-differential equation

x′(t) = −ax(t) +
∫ t

0

k(t − s)x(s) ds, t > 0,(1)

x(0) = x0.(2)

In [6] Lakshmikantham and Corduneanu asked if all solutions of (1)
satisfy x(t) → 0 as t → ∞, whether that convergence is exponentially
fast. The question was natural in view of the fact that asymptotic
stability of the zero solution of equations with bounded delay implies
exponential asymptotic stability of the zero solution. In [9] Murakami
showed that exponential asymptotic stability does not automatically
follow from the property of (uniform) asymptotic stability of the zero
solution. His result assumes that k ∈ L1(0,∞) ∩ C[0,∞) and is of
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one sign, and that the zero solution of (1) is uniformly asymptotically
stable. It asserts that the zero solution of (1) is exponentially asymp-
totically stable if and only if k is exponentially integrable. We term a
function k ∈ L1(0,∞) exponentially integrable if

∫ ∞
0

|k(s)|eγs ds < ∞
for some γ > 0. The natural question to ask is at what rate does
x(t) → 0 as t → ∞ if k is not exponentially integrable.

If x(t) → 0 as t → ∞, we establish here using elementary analysis
a positive lower bound for lim inft→∞ x(t)/k(t) for a class of kernels
which cannot be exponentially integrable.

2. Technical discussion and results. A clue to the asymptotic
behavior of x(t)/k(t) as t → ∞ is provided by a result of Burton [4,
Theorem 1.3.7]. Our main result is analogous to it.

Theorem 1. Let k(t) ≥ 0 and k ∈ L1(0,∞). Suppose that x is an
integrable solution of (1). Then there is a constant β > 0 such that

(3)
∫ ∞

t

|x(s)| ds ≥ β|x0|
∫ ∞

t

k(s) ds, t ≥ 0.

Moreover if
∫ ∞

t
k(s) ds > 0 for large t,

(4) lim inf
t→∞

∫ ∞
t

|x(s)| ds∫ ∞
t

k(s) ds
≥ |x0|

a
(
a − ∫ ∞

0
k(s) ds

) .

Proof. Suppose that x0 > 0. In Burton [4], an estimate of the form
(3) is established on t ≥ 1 from the inequality

(5) a

∫ ∞

t

x(s) ds ≥
∫ t

0

x(s) ds

∫ ∞

t

k(s) ds, t ≥ 0.

An estimate of the form (3) is also true for 0 ≤ t ≤ 1. It follows from
(5) under the additional hypothesis of the theorem that

lim inf
t→∞

∫ ∞
t

x(s) ds∫ ∞
t

k(s) ds
≥ 1

a

∫ ∞

0

x(s) ds.
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Since x ∈ L1(0,∞) and is a solution of (1), x(t) → 0 as t → ∞. Thus
integration of (1) shows that

x0 =
( ∫ ∞

0

x(s) ds

)(
a −

∫ ∞

0

k(s) ds

)
,

from which (4) follows. The argument is similar if x0 < 0.

It is shown in Appleby and Reynolds [1, Theorem 6.5] under addi-
tional hypothesis on k, which do not allow it be exponentially inte-
grable, that

lim
t→∞

∫ ∞
t

|x(s)| ds∫ ∞
t

k(s) ds
=

x0(
a − ∫ ∞

0
k(s) ds

)2 ,

if a >
∫ ∞
0

k(s) ds. Thus the exact value of the righthand side of (4) is
known in that case.

Grossman and Miller [7] proved using Laplace transforms, a well-
known result providing a necessary and sufficient condition for the
solution of (1) to be integrable. It is that x ∈ L1(0,∞) if and only if
the equation p+a− k̄(p) = 0 has no solutions with Re p ≥ 0, where k̄ is
the Laplace transform of k. Under the hypotheses on k in Theorem 1,
this simplifies to x ∈ L1(0,∞) if and only if a >

∫ ∞
0

k(s) ds.

Staffans [10] considers linear Volterra integro-differential equations
for which the ordinary differential part of the equation dominates.
There the dominant instantaneous term is used to construct Lyapunov
functions with which results on the boundedness and asymptotic behav-
ior of solutions are obtained. Also in [10] Laplace transform and Lya-
punov function methods are compared for investigating the asymptotic
behavior of convolution equations. It is remarked that for this class
of equations the results for uniform stability or uniform asymptotic
stability obtained using transform methods generally supersede those
obtained with Lyapunov theory. In the present work, the convolution
equation (1) is studied under the assumption that a ≥ ∫ ∞

0
k(s) ds, so

the ordinary differential part dominates.

The scalar Volterra integro-differential equation (1) has been exten-
sively studied under the hypotheses that the kernel k satisfies

(6) k(t) ≥ 0, k ∈ L1(0,∞), k ∈ C[0,∞).
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A rough classification of the stability of the zero solution of (1) can
be found using the values of a and

∫ ∞
0

k(s) ds. Brauer [2] showed
that the solution could not be stable if a <

∫ ∞
0

k(s) ds, and therefore
cannot be asymptotically stable. A slight modification of the argument
in Kordonis and Philos [8] shows that the zero solution is stable if
a =

∫ ∞
0

k(s) ds. This is a sharpening of Burton [3, Theorem 5.2.3].
In the other case a >

∫ ∞
0

k(s) ds, the zero solution is asymptotically
stable; moreover, every solution tends to zero. This is proved in
Burton and Mahfoud [5, Theorem 1], which contains an insightful
discussion of other important papers. Therefore a necessary condition
for limt→∞ x(t) = 0 for all solutions of (1) is that

(7) a ≥
∫ ∞

0

k(s) ds,

a simple consequence of which is that a > 0.

We consider the condition

(8) k ∈ C1[0,∞), k(t) > 0 for t ≥ 0, lim
t→∞

k′(t)
k(t)

= 0.

An example is k(t) = (1+ t)−α for α > 1. It is straightforward to infer
from (8) that

(9) lim
t→∞ k(t)eεt = ∞,

for every ε > 0. Therefore, k cannot be exponentially integrable. We
now state our main result.

Theorem 2. Suppose that k satisfies (6) and (8). Suppose that x
is a solution of (1) satisfying x(t) → 0 as t → ∞. Then there is a
constant α > 0 such that

(10) |x(t)| ≥ α|x0|k(t), t ≥ 0.

Moreover if x0 	= 0

(11) lim inf
t→∞

|x(t)|
k(t)

≥ |x0|
a
(
a − ∫ ∞

0
k(s) ds

) ,
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where the righthand side is interpreted as ∞ if a =
∫ ∞
0

k(s) ds.

We have preferred to posit x(t) → 0 as t → ∞ as a hypothesis of
this theorem. However, we only use it to infer that a ≥ ∫ ∞

0
k(s) ds; the

theorem and our proof remain valid if this condition replaces x(t) → 0
as t → ∞.

It is shown in Appleby and Reynolds [1, Theorem 6.2] that

lim
t→∞

x(t)
k(t)

=
x0(

a − ∫ ∞
0

k(s) ds
)2 ,

if a >
∫ ∞
0

k(s) ds, and in addition to (6) k satisfies

(12) lim
t→∞

∫ t

0
k(t − s)k(s) ds

k(t)
= 2

∫ ∞

0

k(s) ds, lim
t→∞

k(t − s)
k(t)

= 1

for each fixed s > 0. Thus the exact value of the lefthand side of (11) is
known in that case. The relationship between these hypotheses and the
present paper is that (8) implies the second condition in (12), which in
turn implies (9).

It is easy to see that, under the hypotheses of Theorem 2, solutions
of (1) can never decay exponentially.

Corollary 3. Suppose that k satisfies (6) and (8). If x0 	= 0, then
for every ε > 0,

(13) lim inf
t→∞ |x(t)|eεt = ∞.

To see that this limiting value is unbounded, note that (8) implies
(9), and so

lim inf
t→∞ |x(t)|eεt = lim inf

t→∞
|x(t)|
k(t)

·k(t)eεt ≥ lim inf
t→∞

|x(t)|
k(t)

·lim inf
t→∞ k(t)eεt = ∞,

for every ε > 0, provided x0 	= 0. Incidentally, this furnishes a slight
improvement to a straightforward application of Murakami [9, Theorem
3], which yields lim supt→∞ |x(t)|eεt = ∞ for every ε > 0.
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3. Proof of Theorem 2. Suppose that the hypotheses of
Theorem 2 hold. To investigate (1), we first represent the solution
in terms of the resolvent of a linear convolution Volterra equation. In
fact if h is given by

(14) h(t) =
∫ t

0

e−a(t−s)k(s) ds, t ≥ 0,

and r is the unique continuous solution of

(15) r(t) = h(t) +
∫ t

0

h(t − s)r(s) ds, t ≥ 0,

then the unique continuous solution of the initial-value problem (1) and
(2) is given by

(16) x(t) = e−at

(
1 +

∫ t

0

easr(s) ds

)
x0, t ≥ 0.

To demonstrate this assertion it is sufficient to verify that (16) provides
a solution of (1). By substituting (14) into (15) and using Fubini’s
theorem, it is seen that

r(t)x0 =
(

h(t) +
∫ t

0

h(t − s)r(s) ds

)
x0

=
( ∫ t

0

k(t − s)e−as ds +
∫ t

0

∫ t

s

k(t − u)e−a(u−s)r(s) du ds

)
x0

=
( ∫ t

0

k(t − s)e−as ds +
∫ t

0

k(t − u)
∫ u

0

e−a(u−s)r(s) ds du

)
x0

=
∫ t

0

k(t − s)e−as

(
1 +

∫ s

0

eaur(u) du

)
x0 ds

=
∫ t

0

k(t − s)x(s) ds.

It follows from this and x′(t) = −ax(t) + r(t)x0 that x given by (16) is
a solution of (1).

We establish now some of the properties of the function r occurring
in the representation (16). As a preliminary step we note that the
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function h defined in (14) is a continuously differentiable, integrable
function with h(0) = 0 and h(t) > 0 for all t > 0. It has already been
observed that x(t) → 0 as t → ∞ implies (7). From this and Fubini’s
Theorem, we find that

(17) µ :=
∫ ∞

0

h(s) ds =
1
a

∫ ∞

0

k(s) ds ≤ 1.

Due to the dominated convergence theorem, h(t) → 0 as t → ∞. By
L’Hôpital’s rule and (8),

(18)
lim

t→∞
h(t)
k(t)

= lim
t→∞

∫ t

0
eask(s) ds

eatk(t)
= lim

t→∞
eatk(t)

eatk′(t) + aeatk(t)

= lim
t→∞

1
[k′(t)/k(t)] + a

=
1
a
.

This also implies that

(19)
h′(t)
h(t)

=
−ah(t) + k(t)

h(t)
= −a +

k(t)
h(t)

→ 0 as t → ∞.

It is a standard result that (15) has a unique continuous solution r
with r(t) > 0 for all t > 0. It is convenient to record here an estimate
detailing the asymptotic behavior of r(t)/h(t) as t → ∞:

(20) lim inf
t→∞

r(t)
h(t)

≥ 1
1− µ

,

where the righthand side is interpreted as ∞ if µ = 1. The proof is
postponed to the end.

To complete the proof note that since r(t) > 0 for all t > 0, (16)
implies that

|x(t)|
|x0| = e−at

(
1 +

∫ t

0

easr(s) ds

)
.

Using (6) we get

(21)
|x(t)|

|x0|k(t) =
1

k(t)eat
+

∫ t

0
easr(s) ds

eatk(t)
≥

∫ t

0
easr(s) ds

eatk(t)
.
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Suppose that µ < 1. Let 0 < ε < 1. Equation (20) implies that there
exists T > 0 such that

r(t) >
(1− ε)h(t)

1− µ
, t > T.

Therefore for t > T ,

∫ t

0
easr(s) ds

eatk(t)
≥

∫ t

T
easr(s) ds

eatk(t)
>

(
1− ε

1− µ

)∫ t

T
eash(s) ds

eatk(t)
.

It follows from L’Hôpital’s rule, (8) and (18)s that

lim
t→∞

∫ t

T
eash(s) ds

eatk(t)
= lim

t→∞
eath(t)

aeatk(t) + eatk′(t)

= lim
t→∞

h(t)/k(t)
a + (k′(t)/k(t))

=
1
a2

.

Hence

lim inf
t→∞

∫ t

0
easr(s) ds

eatk(t)
≥ 1− ε

a2(1− µ)
=

1− ε

a
(
a − ∫ ∞

0
k(s) ds

) .

Therefore by taking the lim inf of both sides of (21) as t → ∞ and
letting ε → 0, we obtain (11) in the case µ < 1. The result for µ = 1 is
similar. Notice that (10) follows from (21) and (11).

Equation (20) remains to be established. Since h(t) > 0 for t > 0, it
can be inferred from the Neumann series representation of the resolvent
r that r(t) ↑ ∑N

j=1 h∗j(t) as N ↑ ∞, where h∗j is the j-fold convolution
of h on [0,∞). Hence for N ≥ 1

(22) lim inf
t→∞

r(t)
h(t)

≥
N∑

j=1

lim inf
t→∞

h∗j(t)
h(t)

.

If we can prove that

(23) lim inf
t→∞

h∗j(t)
h(t)

≥ µj−1, j ≥ 1,
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it follows that

lim inf
t→∞

r(t)
h(t)

≥
N∑

j=1

µj−1.

Letting N → ∞, we obtain (20).

The proof of (23) begins by observing that for any 0 < T ≤ t

h∗j(t)
h(t)

=
∫ T

0

h(t − s)
h(t)

h∗(j−1)(s) ds +
∫ t

T

h(t − s)
h(t)

h∗(j−1)(s) ds

≥
∫ T

0

h(t − s)
h(t)

h∗(j−1)(s) ds

=
∫ T

0

(
h(t − s)

h(t)
− 1

)
h∗(j−1)(s) ds +

∫ T

0

h∗(j−1)(s) ds.

Thus, since
∫ ∞
0

h∗(j−1)(s) ds = µj−1,
(24)
h∗j(t)
h(t)

− µj−1 ≥
∫ T

0

(
h(t − s)

h(t)
− 1

)
h∗(j−1)(s) ds −

∫ ∞

T

h∗(j−1)(s) ds.

T can be chosen large enough for the last integral to be arbitrarily small.
Hence to establish (23) it is enough to prove that the first term tends
to 0 as t → ∞. Due to (19), h′(t) = p(t)h(t) for a continuous function
p with limt→∞ p(t) = 0. Let s > 0 be fixed. Then

∫ t

t−s
p(u) du → 0 as

t → ∞. Since h(t) = h(1) exp(
∫ t

1
p(u) du),

h(t − s)
h(t)

= exp
(
−

∫ t

t−s

p(u) du

)
−→ 1 as t → ∞.

This implies that

∣∣∣∣
∫ T

0

(
h(t−s)

h(t)
− 1

)
h∗(j−1)(s)ds

∣∣∣∣ ≤ sup
0≤s≤T

∣∣∣∣h(t−s)
h(t)

− 1
∣∣∣∣
∫ ∞

0

h∗(j−1)(s)ds

→ 0 as t → ∞.

This finishes the proof of Theorem 2.
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