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A PHASE FIELD SYSTEM WITH MEMORY:
GLOBAL EXISTENCE

AMY NOVICK-COHEN

ABSTRACT. In the present paper we analyze a phase field
model with memory:

(PFM)




ut+(l/2)φt =
∫ t

−∞ a1(t−s)∆u(s) ds

(x, t) ∈ Ω× (0, T )
τφt =

∫ t

−∞ a2(t−s)[ξ2∆φ+(φ−φ3)/η+u](s) ds

(x, t) ∈ Ω× (0, T )
n · ∇u = n · ∇φ = 0 (x, t) ∈ ∂Ω× (0, T )
u(x, 0) = u0(x), φ(x, 0) = φ0(x) x ∈ Ω

for T > 0, which has been recently proposed [29] as a phe-
nomenological model to describe phase transitions in the pres-
ence of slowly relaxing internal variables. The system yields
motion by mean curvature with memory under suitable as-
sumptions in a sharp interface limit. In the present pa-
per we give a proof of global existence of a weak solution
(u, φ) ∈ C([0, T ];L2(Ω) × H1(Ω)) for (PFM) assuming that
Ω is a smooth bounded domain in Rn, n = 1, 2, or 3, the
kernels a1, a2 ∈ L1(R+) are of positive type, the initial data
is in L2(Ω)× H1(Ω), and the history is in L1(−∞, 0;H2(Ω))
and L1(−∞, 0;H3(Ω))∩L5(−∞, 0;L6(Ω)), respectively. Our
methodology combines results from the theory of Volterra in-
tegral equations with Galerkin methods and energy estimates.
The results presented here were announced in [26].

Keywords and phrases. Phase field equations, memory, integro-differential
equations, Galerkin methods, phase transitions.

Copyright c©2002 Rocky Mountain Mathematics Consortium

73



74 A. NOVICK-COHEN

1. Introduction. We establish global existence of a weak solution,
(u, φ) ∈ C([0, T ], L2(Ω) ×H1(Ω)), T > 0, for the system:

ut +
l

2
φt = a1 ∗ �u + f1, (x, t) ∈ Ω × (0, T ),

(1.1)

τφt = a2 ∗
[
ξ2�φ +

φ− φ3

η
+ u

]
+ f2, (x, t) ∈ Ω × (0, T ),

(1.2)

n · ∇u = n · ∇φ = 0, (x, t) ∈ ∂Ω × (0, T ),
(1.3)

u(x, 0) = u0(x), φ(x, 0) = φ0(x), x ∈ Ω,
(1.4)

where u = u(x, t) represents a dimensionless temperature and φ =
φ(x, t) is a nonconserved order parameter. The constant l is a di-
mensionless latent heat, τ is a dimensionless relaxation time, ξ is a
dimensionless interaction length, and η is a dimensionless potential
well depth. Equation (1.1) constitutes an energy balance equation,
and equation (1.2) is a type of phase relaxation equation. The un-
derlying constitutive assumption here is that the system responds in
a delayed or time averaged fashion to thermal gradients and to de-
viations from equilibrium [29]. We shall assume Ω to be a bounded
domain in Rn, n = 1, 2, or 3, with a sufficiently smooth boundary, and
we shall furthermore assume that the initial data {u0, φ0} is prescribed
in L2(Ω) ×H1(Ω).

In (1.1) (1.2), the first terms on the right hand side are convolution
terms, defined by

(ai ∗ Ψ)(t) :=
∫ t

0

ai(t− s) Ψ(s) ds i = 1 or 2,

for 0 ≤ t < T , Ψ ∈ Lp(0, T ;Lp(Ω)), 1 ≤ p ≤ ∞. Here ai, i = 1, 2, act
as “memory kernels,” mediating a delayed or averaged response of the
system to thermal gradients in equation (1.1) and to deviations from
equilibrium in equation (1.2), respectively. We shall assume throughout
that 〈·, ·〉 denotes the L2(Ω) inner product. With regard to the memory
kernels, we shall assume throughout that ai ∈ L1(R+), i = 1, 2, and
that the kernels ai are of positive type.
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Definition 1. A kernel a is said to be of positive type on the interval
[0, T ] for T > 0 if a ∈ L1(0, T ), and

(1.5)
∫ T

0

〈ψ, ai ∗ ψ〉 dt ≥ 0, ∀ ψ ∈ L2(0, T ; L2(Ω)).

The terms f1 and f2 reflect the influence of the “history” of the
system. We shall assume that {f1, f2} ∈ L1(R+; L1(Ω)×H1(Ω)). One
can assume, though it is by no means essential, that:

(1.6) f1(x, t) =
∫ 0

−∞
a1(t− s)�u(x, s) ds, (x, t) ∈ Ω × [0, T ]

and

(1.7)
f2(x, t) =

∫ 0

−∞
a2(t− s)

[
ξ2�φ +

φ− φ3

η
+ u

]
(x, s) ds

(x, t) ∈ Ω × [0, T ],

respectively, where

u(x, t) = uh(x, t), φ(x, t) = φh(x, t), (x, t) ∈ Ω × (−∞, 0),

for prescribed history functions uh and φh such that

uh(x, t) ∈ L1(−∞, 0;H2(Ω))

and
φh(x, t) ∈ L1(−∞, 0;H3(Ω)) ∩ L5(−∞, 0;L6(Ω)).

Thus (1.1) (1.2) may be written equivalently as they appear in (PFM).
We remark here that though the effects of possible body heating and
boundary heating have been neglected for simplicity in (PFM), they
can be included in the system (1.1) (1.4) by incorporating appropriate
forcing terms into f1 and f2, and the analysis which we present here
may be suitably modified accordingly. See for example the discussion
in [25], where possible boundary heating was taken into account.

Note that if the kernels are chosen as ai(t) = αiδ(t), where αi is
a constant, then the system (PFM) reduces to the classical phase
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field equations as introduced by Fix [14] and Caginalp [7] and which
have their roots in Landau-Ginzburg theory [23, 22]. See [6] for an
overview and discussion. Classical phase field equations were designed
to describe nonisothermal phase separation, and the literature treating
their analysis and predictions is vast. It is relevant for our present
considerations to note that global existence was proven for the classical
phase field equations taking, as we do, initial data in L2(Ω) ×H1(Ω),
by Bates and Zheng [3]. For earlier existence results, see Caginalp
[7] and later Elliott and Zheng [13]. In the classical phase field
context, Bates and Zheng also proved uniqueness, additional regularity,
as well existence of a compact global attractor and inertial sets in
L2(Ω) × H1(Ω) for fixed energy levels, i.e., for

∫
Ω
{u + (l/2)φ} dx =

constant. Such properties as uniqueness, additional regularity and
compactness in L2(Ω) × H1(Ω) cannot be expected to hold for phase
field equations with memory without sufficiently strong assumptions on
the kernels, a1, a2.

There is also a large literature concerning phase field equations in
which memory effects have been included in the energy balance equa-
tion, but not in the phase relaxation equation. The rationale behind the
inclusion of the memory effects in the energy balance equation is to rid
the system of the anomaly of infinite speed of heat propagation, essen-
tially incorporating a Gurtin-Pipkin type formulation [21] for memory
effects in the energy balance equation into a phase field setting. With
regard to papers which have been published treating such systems,
we note that existence of solutions (u, φ) ∈ C(R+; L2(Ω) × H1(Ω))
was proven by Aizicovici and Barbu [2] taking initial conditions in
L2(Ω)×H1(Ω), (thermal) memory kernels of positive type in L1(R+),
(thermal) history f1 ∈ L2

loc(R
+; L2(Ω)), and assuming Robin and

Dirichlet boundary conditions from u and φ respectively, and unique-
ness was demonstrated in one space dimension, n = 1. Under addi-
tional assumptions on the kernel uniqueness could be proven for n = 2
and 3, and making suitable restrictions on the kernel and on the data,
further regularity and asymptotic properties were obtained. For the
case of Neumann boundary conditions, initial data in L2(Ω) ×H1(Ω),
f1 ∈ L1(R+; L2(Ω)), and a1 ∈ L1

loc(R
+), existence of weak solutions

was proven by Colli and Laurençot [11], but continuity from the ini-
tial data was not obtained. In [12] under additional assumptions on
the kernel, they demonstrated uniqueness and characterized the ω-limit
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set. Further analysis of the long time behavior for the phase field model
with memory in the energy balance equation has recently been under-
taken by Giorgi, Grasselli and Pata [15,16]. In particular, we note that
in [16], the existence of a uniform attractor was proven.

The focus of the present paper is on proving existence for (PFM).
After announcing these results in [26], the author became aware that
existence had been under independent study by Grasselli and Rotstein
[18, 17] for (PFM), though history effects in the phase relaxation equa-
tion were not taken into account there. We prove existence of a solution
which is smoother than the solution which is obtained by Grasselli in
[17] under the same (very weak) assumptions on the memory kernels,
in that continuity is achieved from initial data in L2(Ω)×H1(Ω). Our
methodology differs from that of [17] in that we rely on weaker ap-
proximants and obtain additional (two-sided) estimates. Existence is
proven by Grasselli and Rotstein in [18] under considerably more re-
strictive assumptions on the memory kernels. In [18, 17] uniqueness
and well-posedness are also proven based on additional assumptions on
the memory kernels; in the present manuscript no explicit discussion is
made of either uniqueness or well-posedness.

Before turning to the details of the existence proof, we give some
words of introduction to (PFM) as it is a model which has only been
proposed quite recently. The present formulation essentially constitutes
a phenomenological extension of the classical phase field equations in
which memory effects are taken into account both in the energy balance
equation and in the phase relaxation equation. The rationale for in-
cluding memory effects in the phase relaxation equation is to take into
account in an averaged way the presence of slowly relaxing “internal
variables” which are troublesome to represent explicitly. Such internal
variables could represent, for example, configurational degrees of free-
dom which are important in polymer melts during phase transition.
Equation (1.2) can be seen to have the structure

(1.8) τφt = −
∫ t

∞
a2(t− s)

δF(u, φ)
δφ

(s) ds,

where F(u, φ) is an appropriately defined free energy, as opposed to
classical phase relaxation which has the form

τφt = −δF(u, φ)
δφ

.
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While the effects of delayed or averaged response in the energy balance
equation are predicted to be noticeable under extreme thermal con-
ditions, such as very high temperatures or very low temperatures, the
effects of delayed or averaged response in the phase relaxation equation
should not require such extreme conditions to be influential. A length-
ier discussion of the derivation and the implications of (1.8) is given
in [29]. For conditions which guarantee thermodynamic consistency of
(PFM), see [19]. We remark that it is also feasible to consider phase
relaxation with memory in the context of a conserved order parame-
ter in analogy with the conserved phase field equations introduced by
Caginalp [8] or the conserved phase field model with memory in the
energy balance equation as proposed by the author in [25].

To gain intuition into our expectations from the system (PFM), it
is helpful to consider the qualitative long time behavior, which should
include a description of such features as coarsening. Such qualitative
descriptions should be viewed as a focusing on the behavior in the
neighborhood of some specific region of the global attractor. For the
classical phase field equations, the work on global attractors of Bates
and Zheng [3], see also [4], is complemented by the work by Caginalp
and Fife [10] where it was formally demonstrated that under suitable
scaling assumptions, the limiting motion as t → ∞ is described by a
Stefan problem which includes Gibbs-Thomson effects. More recently,
Caginalp and Chen [9] have demonstrated rigorously that depending on
which particular distinguished is limit considered, the limiting motion
may be given by the classical Stefan problem, a type of surface tension
model, with or without attachment kinetics, a two phase Hele-Shaw
model, or motion by mean curvature. In particular, we note that
motion by mean curvature is predicted when τ = O(ε), ξ = O(ε1/2),
η = O(ε), and l = O(ε), for 0 < ε � 1. For the standard phase
field model with memory, where memory effects are included in the
energy balance equation but not in the phase relaxation equation, while
considerable analytical work has been undertaken regarding certain
aspects of the long time behavior, the qualitative behavior has for the
most part yet to be studied.

With regard to the system (PFM), we remark that certain interesting
sharp interface limiting motions have been worked out formally. For
example, if the distinguished limit τ = O(ε), ξ = O(ε1/2), η = O(ε),
l = O(ε2) is considered, where 0 < ε � 1, and the kernels are taken to
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be exponential functions, then the (scaled) limiting motion is given by
[27, 29]

(1.9) Vt + γV (1 − V 2) = κ(1 − V 2),

where V denotes the normal velocity of the front, κ denotes the mean
curvature and γ is the rate of exponential decay of the phase memory
kernel, or if the distinguished limit τ = O(ε), ξ = O(ε1/2), η = O(ε),
l = O(ε2) is considered, and the kernels are taken to be approximately
“weakly singular;” i.e., ai = biγi exp(−γit) where bi = O(1) and
γi = O(ε−3/2), then the (scaled) limiting motion:

(1.10) ε3/2Vt + V = κ

[1] is predicted. A crystalline algorithm was constructed to study equa-
tions such as (1.9) and (1.10) in [27]. Implementing the crystalline al-
gorithm for initially convex polygonal phase boundaries with vanishing
initial velocity, it could be seen that while monotone melting occurred
for regular polygonal initial conditions, for sufficiently asymmetric con-
vex polygonal initial conditions two-dimensional damped oscillations
appeared [28, 29]. For further discussion of equations (1.9), (1.10) and
their generalizations, see [1, 30].

The outline of our paper is as follows. In Section 2 we rescale
equations (1.1) (1.4) for simplicity, summarize our assumptions on
kernels and present some technical lemmas and inequalities to be
employed in the sequel. In Section 3 we state and prove our main
existence result, Theorem 1 which we paraphrase below as Theorem A.

Theorem A. Suppose that {u0, φ0} ∈ L2(Ω)×H1(Ω) and {f1, f2} ∈
L1(0, T ;L2(Ω)×H1(Ω)), then there exists a solution to (1.1) (1.4) such
that {u, φ} ∈ C([0, T ]; L2(Ω)×H1(Ω)) and {ut, φt} ∈ L∞(0, T ;H−2(Ω)×
H−1(Ω)) + L1(0, T ; L2(Ω) ×H1(Ω)).

We remark that if uh ∈ L1(0, T ;H2(Ω)) and φh ∈ L1(0, T ;H3(Ω)) ∩
L5(0, T ;L6(Ω)), then {f1, f2} satisfy the assumptions stated in Theo-
rem A, see Lemma 2.3. Also, the solution which we obtain is too weak
to satisfy (1.3) in any strong sense; hence, (1.3) should be understood
as being satisfied in the sense of approximating sequences.
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The proof of Theorem A in Section 3 proceeds by making Galerkin
approximations for u and φ and demonstrating that the Galerkin coef-
ficients are uniquely determined and differentiable in L1 on some max-
imal interval [0, TN ) (Lemma 3.1), then obtaining an energy inequality
which yields that TN = ∞ (Lemma 3.2, Lemma 3.3) and gives some
a priori bounds (Lemma 3.4). Afterwards, subsequences are taken and
a solution {u, φ} is obtained, {u, φ} ∈ C([0, T ]; H−2(Ω) × H−1(Ω))
(Lemmas 3.5 3.7). Lastly in Lemmas 3.8 and 3.9, using weak con-
tinuity and energy estimates we demonstrate that in fact {u, φ} ∈
C([0, T ]; L2(Ω) × H1(Ω)); i.e., that the solution is continuous in the
spaces is which the initial data was assumed to be taken. Section 4
contains a few comments.

Our method of proof is similar to that of [17] in that there also
Galerkin approximants are employed; however, the approximants used
in [17] are more regular than those which we employ here, being based
on a Coleman-Gurtin type regularization of the Gurtin-Pipkin heat
law and C([0, T ]; L2(Ω)) approximants of the history. Moreover, in
[17] two sequential limiting processes are needed to obtain a solution,
and history in the phase relaxation equation is neglected. Thus our
methodology is seemingly more straightforward. We note also that
Lemma 3.9 given here in Section 3 can be adapted without undo
difficulty to demonstrate that the solution obtained in Theorem 2.1
of [17] in fact does lie in C([0, T ]; L2(Ω) × H1(Ω)). Similarly the
results achieved in [11] in the context of the classical phase field
model with memory may be strengthened to yield a solution {u, φ} ∈
C([0, T ]; L2(Ω) × H1(Ω)) by suitably adapting Lemma 3.9 given here
to the context of [11].

2. Preliminaries. It is easy to verify that by appropriate rescaling
of the parameters, functions, and variables in (1.1) (1.4), it is possible,
by identifying

f1(x, t) =
∫ 0

−∞
a1(t− s)�u(s)ds, (x, t) ∈ Ω × [0, T ]

and

f2(x, t) =
∫ 0

−∞
a2(t− s)[ξ2�φ + φ− φ3 + u](s)ds, (x, t) ∈ Ω × [0, T ],
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to write (1.1) (1.4) in the form:

ut +
l

2
φt = a1 ∗ �u + f1, (x, t) ∈ Ω × (0, T ),

(2.1)

φt = a2 ∗ [ξ2�φ + φ− φ3 + u] + f2, (x, t) ∈ Ω × (0, T ),(2.2)

n · ∇u = n · ∇φ = 0, (x, t) ∈ ∂Ω × (0, T ),
(2.3)

u(x, 0) = u0(x), φ(x, 0) = φ0(x), x ∈ Ω.
(2.4)

We shall give our analysis in the sequel in terms of the system
(2.1) (2.4), for the sake of simplicity.

Following our remarks in the introduction, we shall formulate our
assumptions on the kernels ai, i = 1 or 2 as

(H1) ai ∈ L1(R+),

(H2)
∫ T

0

〈ψ, ai ∗ ψ〉 dt ≥ 0 ∀ψ ∈ L2(0, T ;L2(Ω)), ∀T > 0.

In our analysis we shall frequently make use of Young’s inequality for
convolutions:

Lemma 2.1. If a ∈ L1(J) and ϕ ∈ Lp(J), p ∈ [1,∞] where J = R,
R+ or [0, T ], 0 < T < ∞, then a ∗ ϕ ∈ Lp(J), and

(2.5) ‖a ∗ ϕ‖Lp(J) ≤ ‖a‖L1(J) · ‖ϕ‖Lp(J).

Proof: This result is standard, see, e.g., [20, Theorem 2.2].

From Lemma 2.1 and Fubini’s theorem, one easily obtains

Lemma 2.2. If a ∈ L1(J) and φ ∈ Lp(J ;Lp(Ω)), p ∈ [1,∞] where
J = R, R+ or [0, T ], 0 < T < ∞, then a ∗ φ ∈ Lp(J ; Lp(Ω)), and

(2.6) ‖a ∗ φ‖Lp(J; Lp(Ω)) ≤ ‖a|‖L1(J) · ‖φ‖Lp(J; Lp(Ω)).
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We present below for the reader’s convenience a number of embedding
results to be used in the sequel. Note that the Gagliardo-Nirenberg
inequality:

‖Djv‖Lp(Ω) ≤ C1‖Dmv‖a
Lr(Ω)‖v‖1−a

Lq(Ω) + C2‖v‖Lq(Ω)

for
j

m
≤ a ≤ 1 and

1
p
≥ j

n
+ a

(
1
r
− m

n

)
+ (1 − a)

1
q
,

where Ci = Ci(Ω), implies in particular that for Ω ⊂ Rn, n = 1, 2, 3,

||φ||L4(Ω) ≤ C3||∇φ||aL2(Ω)||φ||1−a
L2(Ω) + C4||φ||L2(Ω), ∀a ∈

[
3
4
, 1

]
,

(2.7)

||φ||L4(Ω) ≤ C5||φ||Hs(Ω) + C6||φ||L2(Ω), ∀s ≥ 3
4
,

(2.8)

||φ||L6(Ω) ≤ C7||∇φ||L2(Ω) + C8||φ||L2(Ω),
(2.9)

||φ||L8(Ω) ≤ C9||D3φ||1/16
L2(Ω)||φ||15/16

L6(Ω) + C10||φ||L6(Ω),

(2.10)

||∇φ||L4(Ω) ≤ C11||D3φ||3/8
L2(Ω)||φ||5/8

L6(Ω) + C12||φ||L6(Ω),

(2.11)

where Ci = Ci(Ω). It is useful to note in particular that (2.7) and (2.9)
imply that constants C13 and C14 exist such that

||φ||L4(Ω) ≤ C13||φ||H1(Ω),(2.12)

and

||φ||L6(Ω) ≤ C14||φ||H1(Ω).(2.13)

In the sequel, Ci shall denote constants which depend on Ω, and
possibly on ξ, l, the history, and the initial conditions.

Below we prove the lemma mentioned in the introduction.
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Lemma 2.3. If a1, a2 ∈ L1(R+), uh ∈ L1(−∞, 0; H2(Ω)), and φh ∈
L1(−∞, 0; H3(Ω)) ∩ L5(−∞, 0; L6(Ω)), then f1, f2 as defined in (1.6)
and (1.7) satisfy f1 ∈ L1(−∞, 0; L2(Ω)) and f2 ∈ L1(−∞, 0;H1(Ω)).

Proof: It follows from (1.6) that

||f1||L1(−∞,0; L2(Ω)) ≤
∫ T

0

∫ 0

−∞
|a1(t− s)| ||�uh(x, s)||L2(Ω) ds dt.

Interchanging the order of integration and recalling assumption (H1)

||f1||L1(−∞,0; L2(Ω)) ≤ ||a1||L1(R+)||�uh||L1(−∞,0; L2(Ω)).

Thus if uh ∈ L1(−∞, 0; H2(Ω)), then f1 ∈ L1(−∞, 0; L2(Ω)).

With regard to f2, we have similarly that

||f2||L1(−∞,0; H1(Ω)) ≤ ||a2||L1(R+)||ξ2�φ3
h + φh − φ3

h

+ uh||L1(−∞,0; H1(Ω))

≤ ||a2||L1(R+)

{
ξ2||�φh||L1(−∞,0; H1(Ω))

+ ||φh||L1(−∞,0; H1(Ω))

+ ||φ3
h||L1(−∞,0; H1(Ω)) + ||uh||L1(−∞,0; H1(Ω))

}
.

Noting that

∫ 0

−∞

[ ∫
Ω

|∇φ3|2 + |φ3|2
]1/2

dt

≤ C15

∫ 0

−∞

{
||φ||3L6(Ω) + ||φ||2L8(Ω)||∇φ||L4(Ω)

}
dt,

and using the interpolation inequalities (2.10), (2.11), one finds that

||f2||L1(−∞,0; H1(Ω)) ≤ C16 ||a2||L1(R+)

{
||uh||L1(−∞,0; H1(Ω))

+ ||φh||L1(−∞,0; H3(Ω)) + ||φh||L5(−∞,0; L6(Ω))

}
.
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Thus the assumptions on uh and φh guarantee that f2 ∈ L1(−∞, 0;H1(Ω)),
as claimed.

3. Existence. We now turn to prove our main theorem:

Theorem 1. Suppose that {u0, φ0} ∈ L2(Ω)×H1(Ω) and {f1, f2} ∈
L1(0, T ;L2(Ω)×H1(Ω)), then there exists a global solution to (2.1) (2.4)
in the sense of Definition 2.

Definition 2. We shall say that {u, φ} constitutes a solution to
(2.1) (2.4) on the interval [0, T ], 0 < T < ∞, if

{u, φ} ∈ C([0, T ]; L2(Ω) ×H1(Ω))

{ut, φt} ∈ L∞(0, T ; H−2(Ω) ×H−1(Ω)) + L1(0, T ; L2(Ω) ×H1(Ω)),

{u, φ} satisfy the initial conditions (2.4), and

∫ T

0

∫
Ω

y(x, t)
[
ut +

l

2
φt − f1

]
(x, t) dx dt

−
∫ T

0

∫
Ω

�y(x, t) (a1 ∗ u)(x, t) dx dt = 0,

∫ T

0

∫
Ω

z(x, t) [φt − a2 ∗ (φ− φ3 + u) − f2](x, t) dx dt

+
∫ T

0

∫
Ω

∇z(x, t) · a2 ∗ ∇φ(x, t) dx dt = 0,

for any y ∈ L1(0, T ; H2(Ω))∩L∞(0, T ; L2(Ω)) and z ∈ L1(0, T ; H1(Ω))∩
L∞(0, T ; H−1(Ω)).

Proof: Our method of proof of existence relies on a Galerkin approxi-
mation based on the eigenfunctions of the linear operator A : L2(Ω) →
H−2(Ω),

(3.1) AΨ = −∆Ψ, x ∈ Ω, n · ∇ψ = 0, x ∈ ∂Ω.
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Let {Ψi} denote an L2(Ω)-orthonormal sequence of eigenfunctions
of the linear operator A which are ordered sequentially so that the
associated eigenvalues λi satisfy

0 = λ0 < λ1 ≤ λ2 ≤ . . . ,

and note that Ψ0 = |Ω|− 1
2 .

We shall now seek approximations for u and φ based on the ordered
sequence of eigenfunctions {Ψi}. More specifically, we shall seek
approximations of the form:

uN (x, t) :=
N∑

i=0

cNi(t)Ψi(x)(3.2)

φN (x, t) :=
N∑

i=0

dNi(t)Ψi(x).(3.3)

Let Sp(N) := span {Ψ0, . . . ,ΨN}. We denote by P i : L2(Ω) → Sp(N)
the projection of L2(Ω) onto Ψi and by PN : L2(Ω) → Sp(N) the
projection of L2(Ω) onto the span of the first N + 1 modes, i.e.,
PN =

∑N
i=0 P

i.

The functions {uN , φN} shall constitute an approximation to a solu-
tion {u, φ} of (PFM) in that they shall be required to satisfy

∫ T

0

b1i 〈Ψi, uNt +
l

2
φNt

− a1 ∗ ∆uN − PNf1〉 dt = 0(3.4)

∫ T

0

b2i 〈Ψi, φNt
− a2 ∗ [ξ2∆φN + φN − PN (φN )3 + uN ] − PNf2〉 dt = 0

(3.5)

〈Ψi, uN 〉 = P iu0, 〈Ψi, φN 〉 = P iφ0,(3.6)

for i = 0, 1, . . . , N and for all b1i, b2i ∈ L∞(0, T ). Equations (3.4) (3.6)
imply that {cNi, dNi} satisfy

cNit
+

l

2
dNit

= −λiξ
2a1 ∗ cNi + P if1(3.7)

dNit
= −λiξ

2a2 ∗ dNi + a2 ∗ (cNi + dNi) + gNi(dN0, . . . , dNN ) + P if2

(3.8)

cNi(0) = P iu0, dNi(0) = P iφ0,(3.9)
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for i = 0, 1, . . . , N , in the L1(0, T ) sense, where gNi denotes a nonlinear
term which can be written explicitly as:

gNi := gNi(dN0, dN1, . . . , dNN ) = −〈Ψi, a2 ∗ PN (φN )3〉.

We now consider existence, uniqueness and regularity of solutions to
(3.7) (3.9).

Lemma 3.1. For (u0, φ0) ∈ L2(Ω) × L2(Ω)) and f1, f2 ∈ L1(0,∞;
L2(Ω)), there exists a unique solution {cNi, dNi} ∈ (C[0, TN ))2(N+1) to
the system (3.7) (3.9) for N = 0, 1, . . . , where the interval (0, TN ) is
maximal, i.e., either TN = ∞ or else the solution becomes unbounded
as t ↑ TN . Moreover, the solution is differentiable with values in
L1(0, TN ).

Proof: We first show that there exists a unique solution

{cNi, dNi} ∈ (C[0, TN ))2(N+1)

to (3.7) (3.9) for N = 0, 1, 2, . . . , where TN > 0 is maximal and after-
wards we return to demonstrate the desired differentiability properties.

Let us substitute (3.8) into (3.7). Integrating the resultant equations
over the interval (0, t) for t > 0, and using the initial conditions (3.9)
yields

cNi(t) = 1 ∗ a1 ∗ (−λiξ
2cNi) + 1 ∗ P if1

− 1
2

[
1 ∗ a2 ∗ (−λiξ

2 + 1) dNi + 1 ∗ a2 ∗ cNi(3.10)

+ 1 ∗ gNi + 1 ∗ P if2

]
+ cNi(0) +

l

2
dNi(0),

dNi(t) = 1 ∗ a2 ∗ (−λiξ
2 + 1) dNi + 1 ∗ a2 ∗ cNi

(3.11)

+ 1 ∗ gNi + 1 ∗ P if2 + dNi(0).

We shall now see that all terms on the right hand side of the system
(3.10) (3.11) which do not depend on the history or the initial condition
are the form

(3.12) 1 ∗ aj ∗ h(cN0, . . . , cNN , dN0, . . . , dNN ), j = 1 or 2,
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where h is a continuously differentiable function of its variables. For
the terms which are of the form const. ·1∗aj ∗cNi or const. ·1∗aj ∗dNi,
this is obvious. That terms proportional to 1 ∗ gNi are of this form can
be readily seen by noting that

gNi = −〈Ψi, a2 ∗
N∑

j=0

〈Ψj , (φN )3〉Ψj〉 = −a2 ∗ 〈Ψi, (φN )3〉,

for i = 0, . . . , N and by recalling the definition of φN .

Consider now an arbitrary term of the form (3.12). By formally
exchanging the order of integration
(3.13)

1 ∗ ai ∗ h =
∫ t

0

αi(t− s)h(cN0(s), . . . , cNN (s), dN0(s), . . . , dNN (s)) ds

where αi(t) =
∫ t

0
ai(τ ) dτ . Thus, 1 ∗ ai ∗ h may be written as

(3.14)

1 ∗ ai ∗ h =
∫ t

0

b(t, s, cN0(s), . . . , cNN (s), dN0(s), . . . , dNN (s)) ds,

where b = b(t, s, cN0, . . . , cNN , dN0, . . . , dNN ) is a continuous function
of its arguments.

Note that terms which depend on the history are of the form

(3.15) const. · 1 ∗ P ifj , j = 1 or 2.

Since by assumption f1, f2 ∈ L1(0,∞;L2(Ω)), these terms constitute
continuous functions of t. Thus, having formally exchanged the order
of integration, (3.10) (3.11) can be expressed as

(3.16) x(t) =
∫ t

0

b̃(t, s, x(s)) ds + f̃(t) + x(0),

where
x = (cN0, . . . , cNN , dN0, . . . , dNN ),

b̃, f̃ ∈ R2(N+1) and b̃ = b̃(t, s, x) and f̃ = f̃(t) depend continuously on
their arguments. Thus written, standard theorems on Volterra integral
equations of the second kind can be invoked. In particular, by [24,
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Theorems 1.1 and 2.2], there exists a continuous solution x(t) to (3.16)
on a maximal interval. The continuity of the solution to (3.16) now
allows us to re-exchange the order of integration, yielding a continuous
solution {cNi, dNi}i=0,... ,N to (3.10) (3.11).

With regard to uniqueness, note by (3.13) that (3.14) may be written
more specifically as

(3.17) x(t) = α1 ∗ h̃1(x) + α2 ∗ h̃2(x) + f̃(t) + x(0),

where αj(t), h̃j(x), and f̃(t) are continuous functions of their argu-
ments. This implies, see, e.g., [24, Theorem 2.3], that the solu-
tion to (3.16) is unique. This can readily be seen to imply in turn
that {cNi, dNi}i=0,... ,N constitute a unique continuous solution to
(3.10) (3.11).

With regard to the differentiability of {cNi, dNi}i=0,... ,N , we proceed
as follows. Formally differentiating either of the integral terms in (3.17)
with respect to time and recalling that αj = 1 ∗ aj yields a term of the
form ∫ t

0

aj(t− s)h̃j(x(s)) ds,

where h̃j(x) is continuous and j = 1 or 2. Upon changing variables,
this can be written as

(3.18)
∫ t

0

aj(q)h̃j(x(t− q)) dq.

Since aj ∈ L1(R+) and h̃j is continuous with respect to the variable
x whose components cN0, . . . , cNN , dN0, . . . , dNN are continuous with
respect to t, such terms are clearly continuous with respect to time.

To verify the differentiability of the history contribution to (3.17),
f̃(t), we note that differentiating terms of the form (3.15) yields terms
of the form const.P ifj where P ifj can be expressed as

(3.19) 〈Ψi, fj(t)〉.
Since, by assumption, f1, f2 ∈ L1(0,∞;L2(Ω)), by Cauchy-Schwartz

(3.20)

∫ TN

0

|〈Ψi, fj(t)〉| dt ≤ ‖Ψi‖L2(Ω) · ‖fj‖2
L1(−∞,0;L2(Ω))

= ‖fj‖2
L1(−∞,0;L2(Ω)).
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Hence terms of the form (3.19) belong to L1(0, TN ). Combining this
result with the continuity of the terms of the form (3.18), we find that
cNit

, dNit
∈ L1(0, TN ), for i = 0, 1, . . . , N .

Returning to the original form of the problem (3.10) (3.11), by
differentiating and subtracting, the claim of the lemma is proven.

Lemma 3.2. If u0(x) ∈ L2(Ω), φ0 ∈ H1(Ω), f1 ∈ L1(0,∞;L2(Ω)),
and f2 ∈ L1(0,∞;H1(Ω)), then TN = ∞ for any N = 0, 1, 2, . . . ,
where TN denotes the maximal interval of existence of the solution
{cNi, dNi}i=0,... ,N of (3.7) (3.9).

Proof: By Lemma 3.1, for any N = 0, 1, . . . , there exists a unique
continuous solution {cNi, dNi}i=0,... ,N to (3.7) (3.9) with time deriva-
tives in L1 on the interval [0, TN ). By (3.2) (3.3), this implies
that there exists a unique set of approximants {uN (x, t), φN(x, t)} for
N = 0, 1, 2, . . . , which are arbitrarily smooth in space and possess time
derivatives in L1 on the interval [0, TN ) and satisfy equations (3.4) (3.6)
on the interval [0, TN ). The proof of Lemma 3.2 is based on obtaining
an a priori estimate which is uniform in N and T . The a priori estimate
is derived below as Lemma 3.3.

Lemma 3.3. If {cNi, dNi}i=0,... ,N denotes the solution of (3.7) (3.9)
with initial conditions and history as prescribed in Lemma 3.2, then

(3.21)
N∑

i=0

|cNi(T )|2 ≤ C and
N∑

i=0

|dNi(T )|2 ≤ C,

for any 0 < T < TN , where C depends on the initial conditions, the
history, Ω, and the parameters l and ξ, but is independent of N and T .

Proof: Let us now multiply (3.7) by (2/l)cNi and (3.8) by λiξ
2 dNi −

dNi + 〈Ψi, PN (φ3
N )〉 − cNi. Summing over i, i = 0, 1, . . . , N , recalling
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(3.2) (3.3), and adding together the two resultant expressions yields

〈
−[ξ2∆φN +φN −PN (φN )3], φNt

〉
+

〈
2
l
uN , uNt

〉(3.22)

=
2
l

〈
uN ,

∫ t

0

a1(t−s)∆uN (s) ds + f1

〉

−
〈

[ξ2∆φN +φN −PN (φN )3+uN ],

∫ t

0

a2(t−s)[ξ2∆φN +φN −PN (φN )3+uN ](s) ds + f2

〉
.

Since φNt
∈ Sp(N) with coefficients in L1(0, T ),

〈PN (φN )3, φNt
〉 = 〈(φN )3, φNt

〉.

Integrating both sides of (3.22) between 0 and T , for 0 < T < TN , and
invoking Lemma A.1, see Appendix A, we obtain

∫
Ω

[
ξ2

2
|∇φN |2 − 1

2
|φN |2 +

1
4
φ4

N +
1
l
u2

N

]∣∣∣T
0

= −2
l

∫ T

0

〈uN (t),
∫ t

0

a1(t− s)∆uN (s) ds + f1〉 dt

−
∫ T

0

〈[ξ2∆φN + φN − PN (φN )3 + uN ](t),
∫ t

0

a2(t− s)[ξ2∆φN + φN − PN (φN )3 + uN ](s) ds + f2〉 dt.

By construction uN is smooth and satisfies the Neumann boundary
condition (2.3). Splitting the integrals on the right hand side of the
above expression into contributions which depend on uN (t), φN (t), for
0 ≤ t ≤ T , and into contributions which depend on the history as
well, then integrating by parts the term on the right hand side which
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depends on uN only, we obtain

(3.23)
∫

Ω

[
ξ2

2
|∇φN |2 − 1

2
|φN |2 +

1
4
φ4

N +
1
l
u2

N

]
(T )

=
∫

Ω

[
ξ2

2
|∇φN |2 − 1

2
φ2

N +
1
4
φ4

N +
1
l
u2

N

]
(0)

− 2
l

∫ T

0

〈ψ1(s),
∫ t

0

a1(t− s)ψ1(s) ds〉 dt

−
∫ T

0

〈ψ2(s),
∫ t

0

a2(t− s)ψ2(s) ds〉 dt

+
2
l

∫ T

0

〈uN , f1(x, t)〉 dt−
∫ T

0

〈ψ2(s), f2(x, t)〉 dt,

where

(3.24) ψ1 = ∇uN and ψ2 = ξ2∆φN + φN − PN (φN )3 + uN .

We now estimate the various terms in (3.23). Let us first treat the
right hand side of (3.23). Note that the first term on the right hand
side of (3.23) is bound by

C0 =
∫

Ω

[
ξ2

2
|∇φ0|2 +

1
4
φ4

0 +
1
l
u2

0

]
.

The second and third terms on the right hand side are nonpositive by
virtue of the assumption that a1 and a2 are kernels of positive type. In
order to estimate the last two terms on the right hand side, we proceed
as follows. We write the first of these latter terms as

(3.25)
2
l

∫ T

0

〈uN , f1〉 dt ≤ 2
l

∫ T

0

‖uN‖L2(Ω)‖f1‖L2(Ω) dt

≤
∫ T

0

{
1
l
‖uN‖2

L2(Ω) +
1
l

}

× {‖f1‖L2(Ω) + ‖f2‖H1(Ω)} dt

=
∫ T

0

1
l
‖uN‖2

L2(Ω){‖f1‖L2(Ω) + ‖f2‖H1(Ω)} dt

+
1
l
{‖f1‖L1(0,T ;L2(Ω)) + ‖f2‖L1(0,T ;H1(Ω))}.
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The treatment of the very last term is slightly technical. We break up
this term into four parts by writing:

−
∫ T

0

〈ξ2∆φN + φN − PNφ3
N + uN , f2〉 dt

= −
∫ T

0

〈ξ2∆φN , f2〉 dt +
∫ T

0

〈φN , f2〉 dt−
∫ T

0

〈PNφ3
N , f2〉 dt

+
∫ T

0

〈uN , f2〉 dt,

and we estimate each of the parts separately. With regard to the first
part, we recall that φN is smooth and satisfies the Neumann boundary
condition (2.3) by construction. Hence, we may integrate by parts and
use the Cauchy-Schwartz inequality to obtain

(3.26)
∫ T

0

〈ξ2∆φN , f2〉 dt ≤
∫ T

0

ξ2‖∇φN‖L2(Ω)‖∇f2‖L2(Ω) dt

≤
∫ T

0

ξ2

2
{‖∇φN‖2

L2(Ω) + 1}
× {‖f1‖L2(Ω) + ‖f2‖H1(Ω)} dt

=
∫ T

0

ξ2

2
‖∇φN‖2

L2(Ω){‖f1‖L2(Ω) + ‖f2‖H1(Ω)} dt

+
ξ2

2
{‖f1‖L1(0,T ;L2(Ω)) + ‖f2‖L1(0,T ;H1(Ω))}.

Similarly,

(3.27)
∫ T

0

〈φN , f2〉 dt

≤
∫ T

0

‖φN‖L2(Ω)‖f2‖L2(Ω) dt

≤ |Ω|1/4

∫ T

0

‖φN‖L4(Ω)‖f2‖L2(Ω) dt

≤ |Ω|1/4

4

∫ T

0

‖φN‖4
L4(Ω){‖f1‖L2(Ω) + ‖f2‖H1(Ω)} dt

+
3|Ω|1/4

4
{‖f1‖L1(0,T ;L2(Ω)) + ‖f2‖L1(0,T ;H1(Ω))},
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and

(3.28)
∫ T

0

〈uN , f1〉 dt

≤
∫ T

0

1
2
‖uN‖2

L2(Ω){‖f1‖L2(Ω) + ‖f2‖H1(Ω)} dt

+
1
2
{‖f1‖L1(0,T ;L2(Ω)) + ‖f2‖L1(0,T ;H1(Ω))}.

To estimate the remaining term, using Hölder’s inequality and Jensen’s
inequality, we write∫ T

0

〈PNφ3
N , f2〉 dt ≤

∫ T

0

‖φN‖3
L4(Ω)‖f2‖L4(Ω) dt

≤ 3
4

∫ T

0

‖φN‖4
L4(Ω)‖f2‖L4(Ω) dt

+
1
4
‖f2‖L1(0,T ;L4(Ω)).

The embedding inequality (2.12) allows us to conclude that

(3.29)
∫ T

0

〈PNφ3
N , f2〉 dt

≤ 3
4
C13

∫ T

0

‖φN‖4
L4(Ω){‖f1‖L2(Ω) + ‖f2‖H1(Ω)} dt

+
1
4
C13{‖f1‖L1(0,T ;L2(Ω)) + ‖f2‖L1(0,T ;H1(Ω))}.

Combining the estimates (3.25) (3.29), we obtain

(3.30)
∫

Ω

[
ξ2

2
|∇φN |2 − 1

2
φ2

N +
1
4
φ4

N +
1
l
u2

N

]
(T )

≤
∫

Ω

[
ξ2

2
|∇φ0|2 +

1
4
φ4

0 +
1
l
u2

0

]

+ C17

∫ T

0

∫
Ω

[
ξ2

2
|∇φN |2 +

1
4
φ4

N +
1
l
u2

N

]

×
{
‖f1‖L2(Ω) + ‖f2‖H1(Ω)

}
dt

+ C18

{
‖f1‖L1(0,T ;L2(Ω)) + ‖f2‖L1(0,T ;H1(Ω))

}
,
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where C17 and C18 depend on l, ξ and Ω only. Finally noting that, by
Young’s inequality,

(3.31) −
∫

Ω

1
8
φ4

N − 1
2
|Ω| ≤

∫
Ω

−1
2
φ2

N ,

and recalling the assumed L1-integrability of f1 and f2 in L2(Ω) and
H2(Ω) respectively, (3.30) can be written as

∫
Ω

[
ξ2

2
|∇φN |2 +

1
8
φ4

N +
1
l
u2

N

]
(T )

≤ C19 + C20

∫ T

0

∫
Ω

[
ξ2

2
|∇φN |2 +

1
8
φ4

N +
1
l
u2

N

]

×
{
‖f1‖L2(Ω) + ‖f2‖H1(Ω)

}
dt,

where C19 depends on the initial conditions, the history, as well as
on l, ξ and Ω, and C20 depends on l, ξ and Ω only. By Gronwall’s
inequality, we obtain now that

(3.32)
∫

Ω

[
1
2
|∇φN |2 +

1
8
φ4

N +
1
l
u2

N

]
(T ) ≤ C21,

where C21 is independent of N and T . It follows from (3.32) that

‖uN‖L∞(0,T ;L2(Ω)) ≤ (lC21)1/2 and ‖φN‖L∞(0,T ;L4(Ω)) < (8C21)1/4.

This implies in turn that

‖uN‖L∞(0,T ;L2(Ω)) < (lC21)1/2 and ‖φN‖L∞(0,T ;L2(Ω)) < (8ΩC21)1/4,

and therefore by the assumed form of uN and φN and the orthonor-
mality of the eigenfunctions {Ψi},

N∑
i=0

|cNi(T )|2 ≤ C and
N∑

i=0

|dNi(T )|2 ≤ C,

where C is independent of N and T . This completes the proof of
Lemma 3.3.
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Since by (3.21) the functions cNi, dNi are uniformly bounded in time,
this implies that TN = ∞, for N = 0, 1, 2, . . . , and completes the proof
of Lemma 3.2.

To guarantee the existence of a solution to (PFM) in the sense indi-
cated in Definition 2, we must ascertain convergence of a subsequence of
the approximants {uN , φN} in an appropriate sense. For this purpose,
we state

Lemma 3.4. There exists a constant C̃ which may depend on the
initial conditions, the history l, ξ and Ω but is independent of N and
T , such that

‖uN‖L∞(0,T ;L2(Ω)) ≤ C̃,(3.33)

‖φN‖L∞(0,T ;H1(Ω)) ≤ C̃,(3.34)

‖uNt
− f1N

+ f2N
‖L∞(0,T ;H−2(Ω)) ≤ C̃,(3.35)

‖uNt
‖L∞(0,T ;H−2(Ω))+L1(0,T ;L2(Ω)) ≤ C̃,(3.36)

‖φNt
− f2N

‖L∞(0,T ;H−1(Ω)) ≤ C̃,(3.37)

‖φNt
‖L∞(0,T ;H−1(Ω))+L1(0,T ;H1(Ω)) ≤ C̃,(3.38)

‖a1 ∗ uN‖L∞(0,T ;L2(Ω)) ≤ C̃,(3.39)

‖a2 ∗ φN‖L∞(0,T ;H1(Ω)) ≤ C̃,(3.40)

and

‖a2 ∗ φ3
N‖L∞(0,T ;L2(Ω)) ≤ C̃.(3.41)

Proof: Let C̃ denote initially a generic constant whose value may
change from line to line; afterwards it can be taken to denote the
maximum among the bounds obtained in this fashion. The a priori
estimate (3.32) obtained earlier implies (3.33),

‖φN‖L∞(0,T ;L4(Ω)) ≤ C̃,(3.42)

and

‖∇φN‖L∞(0,T ;L2(Ω)) ≤ C̃.(3.43)
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Recalling (3.31), (3.34) is obtained from (3.42) and (3.43). Note also
that (3.34) together with the embedding inequality (2.13) imply that

(3.44) ‖φ3
N‖L∞(0,T ;L2(Ω)) ≤ C̃.

To obtain the estimates on uNt
and φNt

, we refer back to the equations
(3.4) and (3.5) which are satisfied by φNt

and uNt
. With regard to φNt

,
(3.37) and (3.38) follow from (3.5), using (2.6), (H1), the estimates
(3.33), (3.34) and (3.44) and our assumptions on the history. Turning
now to (3.4), we see that the assumptions on the history and on a1

together with (2.6) and the estimates (3.33), (3.37) and (3.38) yield
(3.35) (3.36). The estimates (3.39) and (3.40) follow from (2.6) and
(3.33), (3.34). Finally, (3.41) follows from (3.44) and (2.6).

From Lemma 3.4, it readily follows that

Lemma 3.5. For any T > 0, there exist functions u, φ, χ0, χ1 and χ2

and a subsequence {uN ′ , φN ′}, denoted for simplicity again as {uN , φN}
such that the following convergences hold

uN
∗
⇀ u inL∞(0, T ;L2(Ω)),(3.45)

φN
∗
⇀ φ inL∞(0, T ;H1(Ω)),(3.46)

uNt
− f1N

+ f2N

∗
⇀ ut − f1 + f2in L∞(0, T ;H−2(Ω)),

(3.47)

φNt
− f2N

∗
⇀ φt − f2in L∞(0, T ;H−1(Ω)),(3.48)

a1 ∗ uN
∗
⇀ χ0 inL∞(0, T ;L2(Ω)),(3.49)

a2 ∗ φN
∗
⇀ χ1 inL∞(0, T ;H1(Ω)),(3.50)

a2 ∗ φ3
N

∗
⇀ χ2 inL∞(0, T ;L2(Ω)).(3.51)

Moreover,

f1N
→ f1 in L1(0, T ;L2(Ω)),(3.52)

f2N
→ f2 in L1(0, T ;H1(Ω)),(3.53)

uNt
⇀ ut in L1(0, T ;H−2(Ω)),(3.54)

φNt
⇀ φt in L1(0, T ;H−1(Ω)),(3.55)
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and

uN → u in Lp(0, T ;Hs(Ω)), 1 ≤ p < ∞, −1 ≤ s < 0,(3.56)
φN → φ in Lp(0, T ;Hs(Ω)), 1 ≤ p < ∞, 0 ≤ s < 1.(3.57)

Proof: The weak-star convergences indicated in (3.45), (3.46), (3.49) (3.51),
(3.54) (3.55) follow from the uniform estimates given in Lemma 3.4.
The convergences in (3.52) (3.53) are true by construction, and to-
gether with the estimates (3.35) (3.37), yield (3.54) (3.55). Finally
the strong convergence stated in (3.56) (3.57) follows from the com-
pactness results of Simon [31, Corollary 4].

From Lemma 3.5 and from the equations satisfied by uN and φN , it
follows that

(3.58) 0 =
∫ T

0

〈y, ut +
l

2
φt − ∆χ0 − f1〉1 dt,

and

(3.59) 0 =
∫ T

0

〈z, φt − χ1 − χ0 + χ2 − ∆χ1 − f2〉2 dt

for all y ∈ X̃1 and z ∈ X̃2 where 〈·, ·〉i indicates the bilinear functional
from X̃i ×Xi to R defined by

〈f, g〉i =
∫

Ω

f(x)g(x) dx, ∀f ∈ X̃i, g ∈ Xi, i = 1 or 2,

where
X̃1 = L1(0,∞;H2(Ω)) ∩ L∞(0, T ;L2(Ω)),
X1 = L∞(0,∞;H−2(Ω)) + L1(0, T ;L2(Ω)),

and
X̃2 = L1(0,∞;H1(Ω)) ∩ L∞(0, T ;H−1(Ω)),
X2 = L∞(0,∞;H−1(Ω)) + L1(0, T ;H1(Ω)).
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From (3.58), (3.59) and Lemma 1.1 in Temam [32, Chapter 3], we
conclude

Lemma 3.6. The functions u and φ given in Lemma 3.5 satisfy

u ∈ C([0, T ];H−2),(3.60)

and

φ ∈ C([0, T ];H−1).(3.61)

The results obtained in Lemma 3.6 fall short of guaranteeing continu-
ity from initial data in L2(Ω)×H1(Ω) as claimed in Theorem 1. Also,
to guarantee the existence of a solution in the sense of Definition 2, it
is necessary to be able to identify the limiting functions χ0, χ1 and χ2.
We address this latter point first.

Lemma 3.7. For almost every (x, t) ∈ Ω × (0, T ),

χ0 = a1 ∗ u,(3.62)
χ1 = a2 ∗ φ,(3.63)
χ2 = a2 ∗ φ3.(3.64)

Proof: We know by Lemmas 2.2 and 3.5 that χ0 and a1 ∗ u belong to
L∞(0, T ;H−1(Ω)) and that χ1 and a2 ∗ φ belong to L∞(0, T ;L2(Ω)).
From (2.6), (3.56) (3.57) and weak lower semi-continuity of norms, it
follows therefore that

‖χ0 − a1 ∗ u‖L2(0,T ;H−1(Ω))

≤ lim
N→∞

‖a1 ∗ (uN − u)‖L2(0,T ;H−1(Ω))

≤ ‖a1‖L1(R+) lim
N→∞

‖uN − u‖L2(0,T ;H−1(Ω)) = 0,
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‖χ1 − a2 ∗ φ‖L2(0,T ;L2(Ω))

≤ lim
N→∞

‖a2 ∗ (φN − φ)‖L2(0,T ;L2(Ω))

≤ ‖a2‖L1(R+) lim
N→∞

‖φN − φ‖L2(0,T ;L2(Ω)) = 0,

which imply (3.62) and (3.63).

To prove (3.64), note that by (3.51) that χ2 and a2 ∗ φ3 both belong
to L∞(0, T ;L2(Ω)). Hence to identify the limit, it suffices to prove
that the two functions coincide in the weaker space L4/3(0, T ;L4/3(Ω)).
Therefore to complete the proof of the lemma, by weak lower semi-
continuity it suffices to demonstrate that

(3.65) lim
N→∞

‖a2 ∗ (φ3
N − φ3)‖L4/3(0,T ;L4/3(Ω)) = 0.

Recalling Lemma 2.2,

‖a2 ∗ (φ3
N − φ3)‖L4/3(0,T ;L4/3(Ω))

≤ ‖a2‖L1(R+)‖φ3
N − φ3‖L4/3(0,T ;L4/3(Ω)),

and we shall now show that

(3.66) lim
N→∞

‖φ3
N − φ3‖L4/3(0,T ;L4/3(Ω)) = 0.

This can be accomplished by noting that

‖φ3
N − φ3‖ 4

3

L
4
3 (0,T ;L

4
3 (Ω))

=
∫ T

0

∫
Ω

(φN − φ)
4
3 (φ2

N + φNφ + φ2)
4
3 dt

(3.67)

≤
∫ T

0

[ ∫
Ω

(φN − φ)4
]1/3[ ∫

Ω

(φ2
N + φNφ + φ2)2

] 2
3

dt

≤ 3 sup
t∈[0,T ]

{[∫
Ω

φ4
N

] 2
3

+
[ ∫

Ω

φ4

] 2
3
}∫ T

0

[ ∫
Ω

(φN − φ)4
] 1

3

.

(3.68)

Recalling (3.42) and (3.46), we see that (3.68) implies that

‖φ3
N − φ3‖4/3

L4/3(0,T ;L4/3(Ω))
≤ C22‖φN − φ‖L4/3(0,T ;L4(Ω)).
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From the embedding inequality (2.8), it follows that

‖φN − φ‖L4/3(0,T ;L4(Ω)) ≤ C5‖φN − φ‖L4/3(0,T ;Hs(Ω))

+ C6‖φN − φ‖L4/3(0,T ;L2(Ω))

for any s ∈ [3/4, 1) and by Lemma 3.5,

lim
N→∞

‖φN − φ‖Lp(0,T ;Hs(Ω)) = 0

for any 1 ≤ p < ∞ and 0 ≤ s < 1. Therefore limN→∞ ‖φ3
N −

φ3‖L4/3(0,T ;L4/3(Ω)) = 0 which completes the proof.

To complete the proof of Theorem 1, it remains to prove the desired
continuity. With this end in mind, we first prove an auxiliary lemma,
namely,

Lemma 3.8. φ ∈ C([0, T ];L2(Ω)).

Proof: The proof is roughly analogous to the proof of Lemma 1.2
in Temam [32, Chapter 3], but we give the details for the sake of
completeness. According to Lemma 3.6, φ is continuous from [0, T ] to
H−1(Ω) hence, by Lemma 1.4 in [32, Chapter 3] and (3.46), φ is weakly
continuous from [0, T ] into L2(Ω). Therefore, for any t0 ∈ [0, T ],

(3.69)

lim
t→t0

‖φ(t) − φ(t0)‖2
L2(Ω) = lim

t→t0
‖φ(t)‖2

L2(Ω)

− 2 lim
t→t0

(φ(t), φ(t0))L2(Ω),L2(Ω)

+ ‖φ(t0)‖2
L2(Ω)

= lim
t→t0

‖φ(t)‖2
L2(Ω) − ‖φ(t0)‖2

L2(Ω).

By (3.46) and (3.55)

φ ∈ L∞(0, T ;H1(Ω)),

and

φt ∈ L1(0, T ;H−1(Ω)).
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Hence it follows from Lemma A.1, given in Appendix A, that

‖φ(t)‖2
L2(Ω) = ‖φ(t0)‖2

L2(Ω) + 2
∫ t

t0

〈φ(s), φt(s)〉{H1(Ω),H−1(Ω)} ds.

Therefore,
lim
t→t0

‖φ(t)‖2
L2(Ω) − ‖φ(t0)‖2

L2(Ω) = 0.

In view of (3.69) the proof is completed.

We now turn to prove:

Lemma 3.9. u ∈ C([0, T ];L2(Ω)) and φ ∈ C([0, T ];H1(Ω)).

Proof: The technique used here is somewhat reminiscent of that
employed in [5, Section 3]. By Lemma 3.6 and Lemma 3.8, u ∈
C([0, T ];H−2(Ω)) and φ ∈ C([0, T ];L2(Ω)) and hence u and φ are
weakly continuous in H−2(Ω) and L2(Ω) respectively. From the weak
continuity which has been demonstrated for u and for φ and since by
Lemma 3.5,

(3.70) u ∈ L∞(0, T ;L2(Ω)) and φ ∈ L∞(0, T ;H1(Ω)),

one may conclude from Lemma 1.4 in [32, Chapter 3] that u is weak
continuous in L2(Ω) and φ is weakly continuous in H1(Ω). Since by
(2.12) and (3.70)

φ ∈ L∞(0, T ;L4(Ω)),

we see that φ2 ∈ L∞(0, T ;L2(Ω)) and φ2 ∈ C([0, T ];L1(Ω)). Therefore
we may similarly conclude that φ2 is weakly continuous in L2(Ω).

By the weak continuity of φ in H1(Ω), and since by assumption
φ0 ∈ H1(Ω),

0 ≤ lim inf
T→0

∫
Ω

|∇φ(T ) −∇φ0|2

= lim inf
T→0

{‖∇φ(T )‖2
L2(Ω) − 2〈∇φ(T ),∇φ0〉 + ‖∇φ0‖2

L2(Ω)}
= lim inf

T→0
‖∇φ(T )‖2

L2(Ω) − ‖∇φ0‖2
L2(Ω).
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Hence,

(3.71)
∫

Ω

|∇φ0|2 ≤ lim inf
T→0

∫
Ω

|∇φ(T )|2.

The weak continuity which has been proven for u yields similarly that

(3.72)
∫

Ω

u2
0 ≤ lim inf

T→0

∫
Ω

u2(T ).

By treating analogously the expression

0 ≤ lim inf
T→0

∫
Ω

|φ2(T ) − φ2
0|2,

and relying on the weak continuity which has been demonstrated for
φ2, we find that

(3.73)
∫

Ω

φ4
0 ≤ lim inf

T→0

∫
Ω

φ4(T ).

Recalling that φN → φ in C([0, T ];L2(Ω)),

(3.74)
∫

Ω

φ2
0 = lim

T→0

∫
Ω

φ2(T ).

By (3.71) (3.73),

(3.75)
∫

Ω

[
ξ2

2
|∇φ0|2 − 1

2
|φ0|2 +

1
4
φ4

0 +
1
l
u2

0

]

≤ lim inf
T→0

∫
Ω

[
ξ2

2
|∇φ|2 − 1

2
|φ0|2 +

1
4
φ4 +

1
l
u2

]
(T ).

To obtain an estimate in the opposite direction, we note that using
the estimates (3.25) (3.29) in (3.23) and the notation from (3.30)
(3.76)∫

Ω

[
ξ2

2
|∇φN |2 +

1
4
φ4

N +
1
l
u2

N

]
(T )

≤
∫

Ω

[
ξ2

2
|∇φN |2 +

1
4
φ4

N +
1
l
u2

N

]
(0) +

1
2

∫
Ω

[φ2
N (T ) − φ2

N (0)]

+ C17

∫ T

0

{
ξ2

2
|∇φN |2 +

1
4
φ4

N +
1
l
u2

N

}
{‖f1‖L2(Ω) + ‖f2‖H2(Ω)} dt

+ C18

∫ T

0

{‖f1‖L2(Ω) + ‖f2‖H1(Ω)} dt,
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where the coefficients C17 and C18 depend on l, ξ and Ω, but are
independent of N and T . By Lemma A.1, we may write

1
2

∫
Ω

[φ2
N (T ) − φ2

N (0)] =
∫ T

0

〈φN , φNt
〉{H1(Ω),H−1(Ω)} dt,

and hence relying on the uniform estimates of Lemma 3.4,

1
2

∫
Ω

[φ2
N (T ) − φ2

N (0)] =
∫ T

0

〈φN , (φNt
− f2N

) + f2N
〉 dt

≤
∫ T

0

‖φN‖H1(Ω)‖φNt
− f2N

‖H−1(Ω) dt

+
∫ T

0

‖φN‖H−1(Ω)‖f2N
‖H1(Ω)

≤ C23

∫ T

0

{1 + ‖f2‖H1(Ω)} dt.

This allows us to write (3.76) as

(3.77)
∫

Ω

[
ξ2

2
|∇φN |2 +

1
4
φ4

N +
1
l
u2

N

]
(T )

≤
∫

Ω

[
ξ2

2
|∇φN |2 +

1
4
φ4

N +
1
l
u2

N

]
(0)

+ C24

∫ T

0

{1 + ‖f1‖L2(Ω) + ‖f2‖H1(Ω)}

+ C25

∫ T

0

{
ξ2

2
|∇φN |2 +

1
4
φ4

N +
1
l
u2

N

}

× {‖f1‖L2(Ω) + ‖f2‖H2(Ω)} dt.
Adding C24/C25 to both sides of the above equation

(3.78)
∫

Ω

[
ξ2

2
|∇φN |2 +

1
4
φ4

N +
1
l
u2

N +
C24

C25

]
(T )

≤
∫

Ω

[
ξ2

2
|∇φN |2 +

1
4
φ4

N +
1
l
u2

N +
C24

C25

]
(0)

+ C25

∫ T

0

{
ξ2

2
|∇φN |2 +

1
4
φ4

N +
1
l
u2

N +
C24

C25

}

× {1 + ‖f1‖L2(Ω) + ‖f2‖H2(Ω)} dt.
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Applying Gronwall’s inequality to (3.78) yields

∫
Ω

[
ξ2

2
|∇φN |2+

1
4
φ4

N +
1
l
u2

N +
C24

C25

]
(T )

(3.79)

≤
∫

Ω

[
ξ2

2
|∇φN |2+

1
4
φ4

N +
1
l
u2

N +
C24

C25

]
(0)

× e
C25

∫ T

0
{1+‖f1‖L2(Ω)+‖f2‖H1(Ω)} dt

.

Applying weak lower semi-continuity to the lefthand side of (3.79) and
by completion of the norms (semi-norms) on the right hand side, we
obtain

∫
Ω

[
ξ2

2
|∇φ|2+

1
4
φ4+

1
l
u2+

C24

C25

]
(T )

≤
∫

Ω

[
ξ2

2
|∇φ|2+

1
4
φ4+

1
l
u2−C24

C25

]
(0)

× e
C25

∫ T

0
{1+‖f1‖L2(Ω)+‖f2‖H1(Ω)} dt

.

From the above expression, it follows that

(3.80) lim sup
T→0

∫
Ω

[
ξ2

2
|∇φ|2+

1
4
φ4+

1
l
u2+

C24

C25

]
(T )

≤
∫

Ω

[ξ2

2
|∇φ|2+

1
4
φ4+

1
l
u2+

C24

C25

]
(0).

Combining (3.74), (3.75) and (3.80) we see that {u, φ} ∈ C([0, T ];L2(Ω)×
H1(Ω)) as claimed.

Combining the results of (3.58), (3.59), Lemmas 3.5, 3.7 and 3.9, the
proof of Theorem 1 is now completed.

4. Some concluding remarks. Further properties of (PFM) are
presently under active study, and (PFM) is well on its way to being
on sound analytical and thermodynamical grounds. Additional goals
are to connect the phase field model with memory to specific physical
systems and to justify rigorously the limiting geometric motions.
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APPENDIX

We give below a technical lemma which was used in proving Lemma
3.3, Lemma 3.8 and Lemma 3.9.

Lemma A.1. Let V,H, V ′ be three Hilbert spaces

V ⊂ H ≡ H ′ ⊂ V ′,

where H ′ is the dual of H,V ′ is the dual of V and V is dense and
continuously injected in H. If a function v belongs to L∞(0, T ;V )
and its time derivative vt belongs to L1(0, T ;V ′), then v is almost
everywhere equal to a function which is continuous from [0, T ] and we
have the following equality, which holds in the scalar distribution sense
on (0, T ):

(5.81)
d

dt
‖v‖L2(Ω) = 2〈v, vt〉{V,V ′}.

Proof: The proof is analogous to the proof of Lemma 1.2 which
appears in [32, Chapter 3].
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