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ON A BOUNDARY INTEGRAL METHOD FOR THE
SOLUTION OF THE HEAT EQUATION IN UNBOUNDED

DOMAINS WITH A NONSMOOTH BOUNDARY

OLAF HANSEN

ABSTRACT. We study a boundary integral method for the
solution of the heat equation in an unbounded domain D in
R2. It is assumed that the boundary of D is a polygon Γ = ∂D
and that R2 \ D is a simply connected domain. We use a
method which was proposed by Chapko and Kress [2] for the
case of a smooth bounded domain D and analyze this method
in the presence of a boundary with corners.

1. Introduction. In this paper we study the numerical solution of
the following initial value problem

(1.1)




ut(x, t) = c∆u(x, t), (x, t) ∈ D × (0, T ],
u(x, t) = F (x, t), (x, t) ∈ Γ × [0, T ],

u(x, t)
|x|→∞−→ 0, t ∈ [0, T ],

u(x, 0) = 0, x ∈ D.

Here D ⊂ R2 is an unbounded domain and the boundary Γ := ∂D is
a polygon. We further assume that the constants c and T are greater
than zero. The function F on the boundary should be sufficiently
smooth (see Section 2) and should fulfill certain conditions at time
t = 0, especially

(1.2) F (·, 0) ≡ 0.

There are several ways to approximate the solution of (1.1) with the
help of a boundary integral equation. One way would be to use a single
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or double layer potential on Γ× [0, T ] and to approximate the solution
of the resulting integral equation of the first or second kind on Γ× [0, T ]
with a Galerkin method. The corresponding integral operators and the
Galerkin method were studied by Costabel in [4].

On the other hand one can first discretize the Volterra part of the
integral equation on Γ×[0, T ] and then apply known numerical schemes
for the approximate solution of the resulting integral equations on Γ.
This approach was used by Lubich and Schneider in [10] and [11] for
the case of smooth boundaries.

In this paper we will follow the approach of Chapko and Kress [2].
They use Rothe’s method for the time discretization of (1.1) and then
use a special sequence of “fundamental solutions” for the solution of
the resulting sequence of boundary value problems. The advantage of
their method lies in the fact that they don’t have to calculate integrals
over the unbounded domain D. These integrals appear if one solves
an inhomogeneous boundary value problem with the boundary layer
method in the usual way.

In the present situation we have to study the resulting properties of
the boundary integral operators on polygons and also the smoothness
of the solution u in time is not obvious (see [8]). In Section 2 we will
study the time discretization of (1.1) and the convergence of the Rothe
method under sufficiently strong assumptions on F . In the next section
we study the system of boundary integral equations on Γ and we prove
the stability of the collocation method for the single layer approach.
Here we use results of Elschner and Graham [6]. In Section 4 we derive
our numerical algorithm and in Section 5 we present some numerical
results which show that our method is applicable and the necessity of
a special parametrization for Γ near the corners.

2. The time discretization and the boundary integral equa-
tions. In the following we assume that

(2.1) Γ =
M⋃
j=1

Γj ⊂ BR(0),

Γj = [ξj−1, ξj ], j = 1(1)M , ξ0 = ξM , ξj , j = 1(1)M , are the corners of
the polygon Γ and R > 0. Let ωj be the angle at corner j. Define ωj
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to be the greater of the two angles at corner j

(2.2) ωj := max{ωj , 2π − ωj}.

We will always assume ωj ∈ (π, 2π) and denote by Ã the symmetric
operator

Ãu := −c∆u, u ∈ DÃ := C2
0,comp(D),

C2
0,comp(D) := {u ∈ C2(D) |u|Γ ≡ 0, u has compact support in D},

c > 0 a constant. Ã is a positive operator,

(Ãu, u)L2(D) ≥ 0,

and the energy space for Ã is H1
0 (D). By A we denote the Friedrich

extension of Ã and A has the following properties [15]

A is self-adjoint,(2.3)
σ(A) ⊂ [0,∞),(2.4)

and

DA ⊂ H1
0 (D).(2.5)

To formulate (1.1) as an evolution equation in a standard form we need
the following two results.

Lemma 2.1. There is a continuous extension operator

γ− : C4(Γ,R) −→ C4
0 (B2R(0)),

where we denote by C4(Γ,R) the functions which are continuous on Γ
and four times continuous differentiable on every closed line [ξj−1, ξj ],
j = 1(1)M . The functions in C4

0 (B2R(0)) are four times continuous
differentiable in B2R(0) and the extension by zero is four times contin-
uous differentiable on R2.

Proof. With the help of a partition of unity of Γ we can reduce the
problem to the following two cases:
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a. f ∈ C4(Γ,R), f |Uε(ξj) ≡ 0, j = 0(1)M − 1,

b. f ∈ C4(Γ,R), supp (f) ⊂ ∪M−1
j=0 U2ε(ξj),

where ε := mini,j=1(1)M,i �=j |ξi − ξj |/8.

In case a) it is very simple to extend the function to a function in
C4

0 (B2R(0)). In case b) we only have to consider the following special
case:

Γ̃ := {(x, 0) |x ≥ 0} ∪ {y(α, β) | y ≥ 0},
α2 + β2 = 1, β �= 0.

We define
Γ̃Ref := {(x, 0) |x ≥ 0} ∪ {(0, y) | y ≥ 0}

and the linear invertible mapping L : Γ̃Ref
1:1−→Γ̃ by

L

(
x
y

)
:=

(
1 α
0 β

) (
x
y

)
.

On the reference configuration we define the function fRef by
fRef := f ◦ L ∈ C4(ΓRef,R)

and the restriction of fRef to the lines
f1(x) := fRef(x, 0) ∈ C4([0,∞),R),
f2(x) := fRef(0, x) ∈ C4([0,∞),R).

At the next step we define a function gT ∈ C∞(R2,R). The Taylor
coefficients of gT are equal to the coefficients of f1 and f2 at zero.

gT (x, y) := fRef(0, 0) + (f ′
1(0), f ′

2(0))
(
x
y

)

+
1
2

(x, y)
(
f ′′
1 (0) 0
0 f ′′

2 (0)

) (
x
y

)

+
1
6

(
f

(3)
1 (0)x3 + f

(3)
2 (0)y3

)
+

1
24

(
f

(4)
1 (0)x3 + f

(4)
2 (0)y4

)
,

f1,T (x) := f1(x) −
4∑

j=0

f
(j)
1 (0)
j!

xj ,

f2,T (x) := f2(x) −
4∑

j=0

f
(j)
2 (0)
j!

yj .
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Now it is clear that

g(x, y) := f1,T (|x|) + f4,T (|y|) ∈ C4(R2,R),

and

g + gT |Γ̃Ref
= fRef.

Further on the mapping fRef → g + gT is linear.

Now let ϕ ∈ C∞
0 (R2,R),

ϕ|U2ε(0) ≡ 1,
ϕ(x) ≡ 0, |x| ≥ 3ε.

We define γ−f by

(γ−f)(x, y) := ϕ(x, y)((g + gT ) ◦ L−1)(x, y).

This mapping is linear, continuous (we only need the derivatives of f up
to the order of 4) and supp (γ−f) ⊂ B3ε(0). We use this construction
for every corner of Γ and get the extension result in case b). This proves
our lemma.

Definition 2.2. a. If X is a Banach space we denote by
Ck,ϑ([0, T ], X) the Banach space of k-times continuously differentiable
functions, for which the kth derivative is ϑ-Hölder continuous.

b. By C4,(1,1)(Γ × [0, T ],R) we denote the continuous functions
G ∈ C(Γ × [0, T ],R), for which we have

G ∈ C1,1([0, T ], C4(Γ,R)), j = 1(1)M.

Corollary 2.3. Let G ∈ C4,(1,1)(Γ × [0, T ],R), then we define

G̃(x, t) := (γ−G(·, t))(x), (x, t) ∈ R2 × [0, T ].
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It follows
G̃ ∈ C1,1([0, T ], C4

0(B2R(0)).

Proof. As a natural candidate for DG̃ we have

DG̃(x, t) := (γ−DG)(x, t),

where (DG)(x, t) := Gt(x, t), (x, t) ∈ Γ × [0, T ]. For t, t + h ∈ [0, T ],
h �= 0, we get by Lemma 2.1

‖G̃(t + h) − G̃(t) − hDG̃(t)‖
C4(B2R(0))

= ‖γ−
(
G(t + h) −G(t) − hDG(·, t)

)
‖
C4(B2R(0))

≤ const ‖G(·, t + h) −G(·, t) − hDG(·, t)‖C4(Γ)

= O(h),

by the assumption. Together with the Hölder-continuity of DG̃ this
proves the corollary.

The mapping G→ G̃ will also be denoted by γ−. In the following we
will always assume that the function F (see (1.1)) fulfills

F ∈ C4,(1,1)(Γ × [0, T ],R)(2.6)

and

( d

dt
(γ−F )

)
|t=0 ≡ 0.(2.7)

Using standard results for evolution equations we get the following
result.

Theorem 2.4. Let (1.2), (2.6) and (2.7) be fulfilled. Then the
initial value problem (1.1) has a solution u ∈ C1,1([0, T ], L2(D)),
∆u ∈ C0,1([0, T ], L2(D)).
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Proof. We define

H(t) := c∆(γ−F )(t) − d

dt
(γ−F )(t), t ∈ [0, T ].

Corollary 2.3 and the continuity of ∆ : C2
0 (B2R(0))→C0(B2R(0)),

show that
H ∈ C0,1([0, T ], C0(B2R(0)).

By restriction to D we get H ∈ C0,1([0, T ], L2(D)). We consider the
following initial value problem in L2(D)

(2.8)
{
ũt = −Aũ + H, t ∈ (0, T ],
ũ(0) = 0.

Theorem 4.3.5 in Pazy [14] shows that (2.8) has a unique solution
ũ : [0, T ]→DA, Aũ, ũ ∈ C0,1([0, T ], L2(D)). The solution of (1.1) is
given by

u := ũ + γ−F.

This proves the theorem.

Now we know that our problem (1.1) has a unique solution u and
we can try to approximate it. For the time discretization we choose a
number N ∈ N and define the time step h := T/N . The application of
Rothe’s method to the initial value problem (1.1) gives us the following
sequence of boundary value problems

(2.9)




vn(x) − vn−1(x)
h

= c∆vn(x), x ∈ D, n = 1(1)N,

v0(x) = 0, x ∈ D,

vn|Γ = F (·, nh), n = 1(1)N,

vn(x)
‖x‖→∞−→ 0, n = 1(1)N.

The functions vn are approximations for u(·, nh). The first equation of
(2.9) is equivalent to

(2.10) −∆vn + γ2vn = γ2vn−1, n = 1(1)N,
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where the constant γ = γ(N) is defined by

γ :=

√
1
ch

=

√
N

cT
.

Our discretization (2.9)/(2.10) can be interpreted as an implicit Euler
scheme and we will write this scheme in an explicit form

(2.9) ⇔ vn − hc∆vn = vn−1

⇔
(
vn−(γ−F )(nh)

)
−hc∆

(
vn−(γ−F )(nh)

)
= vn−1−(γ−F )(nh)

+ hc∆(γ−F (nh))

Define v̂n := vn − (γ−F )(nh). Then the above equation together with
the boundary condition in (2.9) is equivalent to

v̂n + hA∆v̂n = vn−1 − (γ−F )(nh) + hc∆(γ−F )(nh)
v̂n|Γ = 0.

By (2.5) we get

v̂n = (I + hA)−1
(
vn−1− (γ−F )(nh) + hA(γ−F )(nh)

)
.

This implies

(2.12)
vn = v̂n + (γ−F )(nh)

= vn−1 + hφ((n− 1)h, vn−1, h), n = 1(1)N,

where the function φ is given by
(2.13)

φ(t, v, h) =
1
h

(
(γ−F )(t+h) − v + (I+hA)−1

(
v − (γ−F )(t+h)

+ ch∆(γ−F )(t+h)
))

Lemma 2.5. The implicit Euler scheme (2.12)/(2.13) is consistent
for (1.1) and has order 1 (F has to satisfy (1.2), (2.6) and (2.7)).
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Proof. Let s, s + h ∈ [0, T ], h �= 0. We get

u(s + h) − u(s)
h

− φ(s, u(s), h)

=
1
h

(
u(s + h) − u(s) + u(s) − (γ−F )(s + h)

− (I + hA)−1
[
u(s) − (γ−F )(s + h) + ch∆((γ−F )(s + h))

])
=

(I + hA)−1

h

(
(I + hA)ũ(s + h) −

[
. . .

])
=

(I + hA)−1

h

(
ũ(s + h) + h(H(s + h) − ũt(s + h)) −

[
. . .

])
The functions ũ and H were defined in the proof of Theorem 2.4. The
definition of ũ and H implies

u(s + h) − u(s)
h

− φ(s, u(s), h)

=
(I + hA)−1

h

(
u(s + h) − (γ−F )(s + h)

+ ch∆((γ−F )(s + h)) − h
d

dt
(γ−F )(s + h)

− hut(s + h) + h
d

dt
(γ−F )(s + h) −

[
. . .

])
=

(I + hA)−1

h

(
u(s + h) − u(s) − hut(s + h)

)
By (2.4) and Theorem 2.4 we get∥∥∥∥u(s + h) − u(s)

h
− φ(s, u(s), h)

∥∥∥∥
L2(D)

≤ ‖(I + hA)−1‖ 1
|h|

∣∣∣∣
∫ s+h

s

‖ut(ν) − ut(s + h)‖ dν
∣∣∣∣

≤ const
1
|h|

∣∣∣∣
∫ s+h

s

(s + h− ν) dν
∣∣∣∣

=
const

2
|h|.

This proves our lemma.
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Now we define

(2.14) v̂n+1 = u(nh) + hφ(nh, u(nh), h), n = 0(1)N − 1.

The definition of φ shows

(2.15)
‖v̂n+1 − vn+1‖L2(D) = ‖(I + hA)−1(u(nh) − vn)‖L2(D)

≤ ‖u(nh) − vn‖L2(D),

because σ(I + hA) ⊂ [1,∞). Equation (2.15), Lemma 2.5 and Section
2.5 in Dekker and Verwer [5] show the following theorem.

Theorem 2.6. Let the assumptions of Theorem 2.4 be fulfilled and
define vn,N , n = 1(1)N , n ∈ N, by (2.9). Then there exists a constant
C, which does not depend on N such that

max
n=1(1)N

∥∥∥∥u
(

n

N

)
− vn,N

∥∥∥∥
L2(D)

≤ C

N
.

This means that our implicit Euler scheme, which is given by Rothe’s
method, is convergent with order one.

To solve the sequence of boundary value problems (2.9) numerically
we use a boundary integral method, which we study in the following
section.

Now we study the regularity of the sequence (vn)n=1(1)N . First we
introduce some notations and repeat a theorem of Hammoudi [8].

For ω ∈ (0, 2π) we denote by Kω the angle

(2.16) Kω :=
{
r

(
cos(θ)
sin(θ)

)
| 0 ≤ r < ∞, θ ∈ [0, ω]

}
;

further we consider the following special functions on Kω.

(2.17)




σν,l,j(r, θ) := rlν+2j sin(lνθ),
Sν,l,j(r, θ) := rlν+2j(log(r) sin(lνθ) + θ cos(lνθ)),

l ∈ N, j ∈ N0, ν ∈
(

1
2
,∞

)
,
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and two sets of integers

(2.18)
{
Mν,s := {l ∈ N | lν ∈ N, 0 < lν < s},
Lν,s := {l ∈ N | lν �∈ N, 0 < lν < s}.

Hammoudi proved in his thesis [8].

Theorem 2.7. Let s ∈ R, s ≥ 1, s �∈ {l(π/ωj) | j = 1(1)M, l ∈ N},
and f ∈ Hs−1(D). By u ∈ H1

0 (D) we denote the solution of the
equation

(2.19)
{

(−∆ + γ2)u(x) = f(x), x ∈ D,

u|Γ = 0.

For an arbitrary corner ξm, m ∈ {1, . . . ,M}, of Γ we assume without
restriction that ξm = 0 and D should coincide with Kωm

in a neighbor-
hood B2ε(0), ε > 0. By ϕ ∈ C∞

0 (R2) we denote a cut-off function

(2.20) ϕ(x) = 1, x ∈ Bε(0), ϕ(x) = 0, x ∈ R2 \B2ε(0).

Then we get
(2.21)

ϕu = uR +
( ∑

l∈Lν,s

∑
0<lν+2j<s

Cl,jσν,l,j +
∑

l∈Mν,s

∑
0<lν+2j<s

Dl,jSν,l,j

)

uR ∈ Hs+1(Kωj
), ν = (π/ωm), Cj,l, Dj,l ∈ R, for all j, l.

Lemma 2.8. Let s ≥ 1, ω ∈ (0, 2π), ν := π/ω and

(2.22)

f(r, θ) := ϕ(r, θ)
( ∑

l∈Lν,s

∑
0<lν+2j<s

Cl,jσν,l,j(r, θ)

+
∑

l∈Mν,s

∑
0<lν+2j<s

Dl,jSν,l,j(r, θ)
)
,

where ϕ is a cut-off function which fulfills (2.20), Cl,j , Dl,j ∈ R. For
t ≥ s a function w(r, θ) exists of the following form

(2.23)

w(r, θ) = ϕ(r, θ)
( ∑

l∈Lν,s

k′
l∑

j=1

C ′
l,jσν,l,j(r, θ) +

∑
l∈Mν,s

k′′
l∑

j=1

D′
l,jSν,l,j(r, θ)

)
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k′l, k
′′
l ∈ N0, C ′

l,j, D
′
l,j ∈ R, such that

(−∆ + γ2)w(r, θ) = f(r, θ) + wR(r, θ),

wR ∈ Ht(Kω).

Proof. For the proof it is sufficient to consider only the case

f(r, θ) = ϕ(r, θ)σν,l,j0(r, θ)

or

f(r, θ) = ϕ(r, θ)Sν,l,j0(r, θ).

For simplicity we will only treat the first case. We make the ansatz

w̃(r, θ) =
m∑

j=j0+1

αjσν,l,j(r, θ),

m ≥ max{
[
(t− lν)/2

]
+ 1, j0 + 1}, this implies ϕσν,l,m ∈ Ht(Kω), see

[8], [9]. We get

(−∆ + γ2)σν,l,j = −((lν + 2j)2 − (lν)2)σν,l,j−1 + γ2σν,l,j .

This implies

(−∆ + γ2)w̃ = −
m∑

j=j0+1

αj((lν+2j)2 − (lν)2)σν,l,j−1 + γ2
m∑

j=j0+1

αjσν,l,j

= −αj0+1((lν + 2(j0 + 1))2 − (lν)2)σν,l,j0

+
m∑

j=j0+2

(
− αj((lν + 2j)2 − (lν)2) + αj−1γ

2
)
σν,l,j−1

+ αm γ2 σν,l,m.

Now we choose

αj0+1 := − 1
(lν + 2j0)2 − (lν)2

,

αj :=
αj−1γ

2

(lν + 2j)2 − (lν)2
) , j = j0 + 2(1)m,
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this implies

(−∆ + γ2) w̃(r, θ) = σν,l,j0(r, θ) + αmγ2σν,l,m.

Defining
w(r, θ) := ϕ(r, θ) w̃(r, θ)

leads to

(−∆ + γ2)w = ϕσν,l,j0 + αmγ2ϕσν,l,m − (∆ϕ)w̃ − (∇ϕ)(∇w̃)

and we have proven our result, because ∆ϕ and ∇ϕ are equal to 0 in
Bε(0).

In the next lemma we combine the last two results in order to describe
the behavior of the functions vn near the corners.

Lemma 2.9. There is an s ∈ (3.5, 4] such that all vn, n ∈ {1, . . .N}
(see (2.9), (2.10)) have the following representation near the corner ξm,
m ∈ {1, . . . ,M},

(2.24)

ϕvn = vn,R + ϕ

( ∑
l∈Lν,s

∑
0<lν+2j<s−1

Cl,jσν,l,j

+
∑

l∈Mν,s

∑
0<lν+2j<s−1

Dl,kSν,l,k

)
,

vn,R ∈ Hs(D), ν = (π/ωm), Cl,j , Dl,j ∈ R. Here we have again
assumed ξm = 0 and D ∩B2ε(0) = Kωm

∩B2ε(0). The coefficients Cl,j

and Dl,j depend on n and m, but we don’t indicate this dependence.
The function ϕ is again a cut-off function (see (2.20)).

Proof. Let s ∈ (2.5, 3] such that

s �∈
{
l
π

ωj

∣∣∣ j = 1(1)M, l ∈ N
}
.

Define s := s + 1. We will prove our assertion by induction.
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n = 1: v1 is the solution of

(−∆ + γ2)v1 = 0,
v1|Γ = F (·, h).

Let ṽ1 be the solution of

(−∆ + γ2)ṽ1 = −(−∆ + γ2)(γ−F (·, h)),
ṽ1|Γ = 0.

By Lemma 2.1 we know γ−F (·, h) ∈ H4(R2) and therefore

(−∆ + γ2)(γ−F (·, h)) ∈ H2(R2) ⊂ Hs−1(D).

Theorem 2.7 implies that ṽ1 has a representation of the form (2.24),
but

v1 = ṽ1 + γ−F (·, h)

and so the assertion is proved for n = 1.

n → n + 1: vn+1 solves

(−∆ + γ2)vn+1 = γ2vn,

vn+1|Γ = F (·, (n + 1)h).

Again we first look for the regularity of ṽn+1 which solves

(−∆ + γ2)ṽn+1 = γ2vn − (−∆ + γ2)(γ−F (·, (n + 1)h),
ṽn+1 = 0.

By induction we know

ϕ(γ2vn − (−∆ + γ2)(γ−F (·, (n + 1)h)))

= vn,R + ϕ

( ∑
l∈Lν,s

∑
0<lν+2j<s−1

Cl,jσν,l,j +
∑

l∈Lν,s

∑
0<lν+2j<s−1

Dl,jSν,l,j

)

− ϕ(−∆ + γ2)γ−F (·, (n + 1)h).

Lemma 2.8, for example with t = s + 1, shows the existence of w(r, θ),

(2.25)

w(r, θ) = ϕ(r, θ)
( ∑

l∈Lν,s

k′
l∑

j=1

C ′
l,jσν,l,j(r, θ) +

∑
l∈Mν,s

k′′
l∑

j=0

D′
l,jSν,l,j(r, θ)

)
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such that

(−∆ + γ2)(ϕṽn+1 − w) = ϕ(−∆ + γ2)ṽn+1 − (∇ϕ)(∇ṽn+1)
− (∆ϕ)ṽn+1 + (−∆ + γ2)w

= vn,R − ϕ(−∆ + γ2)γ−F (·, (n + 1)h) + wR

− (∇ϕ)(∇ṽn+1) − (∆ϕ)ṽn+1

Here vn,R ∈ Hs+1(D), ϕγ−F (·, (n + 1)h) ∈ H4(R2), (∇ϕ)(∇ṽn+1),
(∆ϕ)ṽn+1 ∈ H3(D) because ∆ϕ and ∇ϕ are zero near the origin and
ṽn+1 ∈ H4(D \ U(C)), where U(C) is a neighborhood of the corners
of Γ. wR ∈ Hs+1(D) by Lemma 2.8 and therefore the right-hand side
belongs to Hs−1(D) and Theorem 2.7 implies

ϕṽn+1 − w = ṽn+1,R + ϕ
( ∑
l∈Lν,s

∑
0<lν+2j<s−1

C ′
l,jσν,l,j

+
∑

l∈Mν,s

∑
0<lν+2j<s−1

D′
l,jSν,l,j

)
,

ṽn+1,R ∈ Hs+1(D). Now (2.25) shows

ϕṽn+1 = ṽ′n+1,R + ϕ
( ∑
l∈Lν,s

∑
0<lν+2j<s−1

C ′′
l,jσν,l,j

+
∑

l∈Mν,s

∑
0<lν+2j<s−1

D′′
j,lSν,l,j

)
,

ṽ′n+1 ∈ Hs+1(D). The equation

vn+1 = ṽn+1 + γ−F (·, (n + 1)h)

now proves the assertion for n + 1.

Remark. Lemma 2.9 shows that the kind of singularity of (vn)n=1(1)N

near the corners stays essentially the same during the evolution.

3. The boundary integral operator and its properties. We
denote by P the operator which appeared in equation (2.10)

(3.1) Pu := −∆u + γ2u
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The fundamental solution Φ0 for P is given by

(3.2) Φ0(x, y) = K0(γ|x− y|), x �= y, x, y ∈ R2.

By the same letter Φ0 we will also denote Green’s operator for P with
kernel Φ0. The modified Bessel functions K0 and I0 are defined in the
following way [1]

K0(z) = −
(

ln
(
z

2

)
+ γEul

)
I0(z)

+
∞∑
j=1

(
1

(j!)2

(
z2

4

)j j∑
k=1

1
k

)
z ∈ C \ {y|y ≤ 0},(3.3)

I0(z) =
∞∑
j=0

1
(j!)2

(
z2

4

)2

, z ∈ C.

(3.4)

Chapko and Kress used a special modification of the above given
fundamental solution in order to avoid the calculation of integrals over
the unbounded domain D. They introduced the functions
(3.5)

Φn(x, y) := K0(γ|x− y|) pn(|x− y|) −K ′
0(γ|x− y|) qn(|x− y|),

n ∈ N0.

The functions pn are even polynomials, pn(0) = 1, n ∈ N0, and
deg (pn) ∈ {n − 1, n}. The functions qn are odd polynomials with
deg (qn) ∈ {n − 1, n} and we have p0(x) ≡ 1, q0(x) ≡ 0. The
construction of pn and qn is given explicitly in their article [2].

The functions Φn have the following property

(3.6) Py Φn(x, y) = γ2 Φn−1(x, y), x �= y, n ∈ N,

and Φn(x, y) has the same kind of singularity at x = y as the funda-
mental solution K0.

In this paper we will only study a single layer approach for the
solution of (2.9). We make the following ansatz

(3.7)
ṽn(x) = − 1

π

n∑
m=1

∫
Γ

Φn−m(x, y)ϕm(y) dsy,

x ∈ R2 \ Γ, n = 1(1)N,
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where the functions ϕm ∈ L2(Γ), m = 1(1)N , are unknown. Now the
equations (3.6) and (3.7) imply the following lemma.

Lemma 3.1. We have ṽn = vn, n = 1(1)N , if and only if the
sequence (ϕn)n=1(1)N solves the following system of integral equations

(3.8)
(Lϕn)(x) = F (x, nh) +

1
π

n−1∑
m=1

∫
Γ

Φn−m(x, y)ϕm(y) dsy,

x ∈ Γ, n = 1(1)N,

where the integral operator L is given by

(3.9) (Lϕ)(x) := − 1
π

∫
Γ

Φ0(x, y)ϕ(y) dsy.

For the study of the mapping properties of L we follow the article
of Costabel [3]. The first step is to define ∂νu|Γ, where ν is the outer
normal of Γ for a sufficiently large function space. We introduce the
following Hilbert spaces

(3.10)
{
H1

P (D) := {u ∈ H1(D) |Pu ∈ L2(D)},
H1

P (Dc) := {u ∈ H1(Dc) |Pu ∈ L2(Dc)},

where Dc := R2 \D and the norm is given by

(3.11)

{ ‖u‖2
H1

P
(D) := ‖u‖2

H1 + ‖Pu‖2
L2(D),

‖u‖2
H1

P
(Dc) := ‖u‖2

H1 + ‖Pu‖2
L2(Dc).

By γ0 we denote the trace operator

(3.12) γ0u := u|Γ.

Lemma 3.2 [3, Lemma 3.6]. The operator

γ0 : Hs
loc(R

2) −→ Hs−(1/2)(Γ)
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is continuous for s ∈ [(1/2), (3/2)], and there is a continuous right
inverse γ−

0 of γ0

γ−
0 : Hs−(1/2)(Γ) −→ Hs

comp(R2),

s ∈ [(1/2), 1].

For ϕ ∈ Hs(Γ), s ≥ −1, the function

(3.13) (L0ϕ)(x) := − 1
π

∫
Γ

Φ0(x, y)ϕ(y) dsy, x ∈ R2 \ Γ,

is well defined, because Φ0(x, ·) ∈ H1(Γ). This definition implies

(3.14) L = γ0 ◦ L0.

In the next lemma we extend the definition of ∂ν to functions in H1
P (Dc)

and H1
P (D), respectively, and collect some properties of the mapping

u → ∂νu|Γ. We omit the proof, because it is very similar to the proofs
in [3].

Lemma 3.3. a. For u ∈ H1
P (Dc) we define the mapping

(3.15)

ϕ −→ 〈γc1u, ϕ〉H−1/2(Γ)×H1/2(Γ),

:=
∫
Dc

∇u∇(γ−
0 ϕ) + γ2u(γ−

0 ϕ) dx−
∫
Dc

(Pu)(γ−
0 ϕ) dx,

ϕ ∈ H1/2(Γ).

γc1u is a continuous mapping H1/2(Γ) → R and γc1u depends contin-
uously on u. If u ∈ H2(Dc), then the mapping can be written in the
following form

(3.16) 〈γc1u, ϕ〉H−1/2(Γ)×H1/2(Γ) =
∫

Γ

(∂νu)ϕdsy.

b. For u ∈ H1
P (D) we define

(3.17)
ϕ −→ 〈γ1u, ϕ〉H−1/2(Γ)×H1/2(Γ), ϕ ∈ H1/2(Γ),

:= −
∫
D

∇u∇(γ−
0 ϕ) + γ2u(γ−

0 ϕ) dx +
∫
D

(Pu) (γ−
0 ϕ) dx.
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γ1u is also continuous on H1/2(Γ) and γ1 is continuous as a mapping
from H1

P (D) into H−1/2(Γ). If u ∈ H2(D) we have

(3.18) 〈γ1u, ϕ〉H−1/2(Γ)×H1/2(Γ) =
∫

Γ

∂νuϕdsy.

With the help of γ1 and γc1 we can prove the first and second Green
formula for functions in H1

P (D) and H1
P (Dc), respectively,

(3.19)∫
D

(Pu)v dx =
∫
D

(∇u)(∇v) + γ2uv dx + 〈γ1u, γ0v〉H−1/2(Γ)×H1/2(Γ),

(3.20)∫
D

(uPv − vPu) dx = 〈γ1v, γ0u〉H−1/2(Γ)×H1/2(Γ)

− 〈γ1u, γ0v〉H−1/2(Γ)×H1/2(Γ), u, v ∈ H1
P (D),

and

(3.21)

∫
Dc

(Pu)v dx =
∫
Dc

(∇u)(∇v) + γ2uv dx

− 〈γc1u, γ0v〉H−1/2(Γ)×H1/2(Γ),

(3.22)∫
Dc

(uPv − vPu) dx = 〈γc1u, γ0v〉H−1/2(Γ)×H1/2(Γ)

− 〈γc1v, γ0u〉H−1/2(Γ)×H1/2(Γ), u, v ∈ H1
P (Dc).

Applying Green’s formula with v(y) = Φ0(x, y), u ∈ H2(R), and using
the density of the H2 functions in H1

P (D) and H1
P (Dc), respectively,

we get the following results

Lemma 3.4. Let u ∈ L2(R2), u|D ∈ H1
P (D), u|Dc ∈ H1

P (Dc). Then
we have the following representation for u

u(x) = (Φ0Pu)(x) + 〈∂νΦ0(x, ·), [u]〉H−1/2(Γ)×H1/2(Γ)

− 〈[γ1u],Φ0(x, ·)〉H−1/2(Γ)×H1/2(Γ).
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Remark. Here we have used the notation

[u] = γ0u|D − γ0u|Dc(3.23)
[γ1u] = γ1u|D − γc1u|Dc .(3.24)

Now we can prove two results, which are a little bit stronger than the
corresponding results in Theorem 1 (iii) and Theorem 2 in [3], because
the operator P which we study here is much simpler than the operators
which were studied by Costabel.

Theorem 3.5. a. L : H(−1/2)+σ(Γ) → H(1/2)+σ(Γ) is continuous,
σ ∈ (−1/2, 1/2).

b. There is a constant CL > 0 such that

〈ϕ,Lϕ〉H−1/2(Γ)×H1/2(Γ) ≥ CL‖ϕ‖2
H−1/2(Γ), ∀ϕ ∈ H−1/2(Γ).

Proof. a. We have
L0 = Φ0 ◦ γ′

0.

By Lemma 3.2 we know

γ0 : Hs(R2) −→ Hs−(1/2)(Γ), s ∈
(
− 1

2
,

1
2

)
,

which implies
γ′
0 : H(1/2)−s(Γ) −→ H−s

comp(Γ).

Because of γ2 > 0 we have

Φ0 : Hs(R2) −→ Hs+2(R2), ∀ s ∈ R2.

These formulas show

L0 : H(1/2)−s(Γ) −→ H2−s(R2), s ∈
(

1
2
,

3
2

)
.

Denoting 1− s by σ this implies that L0 is a continuous operator from
Hσ−(1/2)(Γ) into H1+σ(R2). Now we have

L = γ0 ◦ Φ0 ◦ γ′
0 : Hσ−1/2(Γ) −→ Hσ+(1/2)(Γ),
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by Lemma 3.2. This proves a).

b. First we note the jump relations for the single and double layer
potentials

[γ0L0ϕ] = 0, [γ1L0ϕ] = −ϕ, ϕ ∈ H−1/2(Γ),

see [3].

For ϕ ∈ H−(1/2)(Γ) we have L0ϕ ∈ H3/2(R2) and because Φ0 is the
fundamental solution for P we have

L0ϕ ∈ H1
P (D), resp. L0ϕ ∈ H1

P (Dc).

The first Green formula gives

∫
Dc

|∇L0ϕ|2 + γ2|L0ϕ|2 dx = 〈γc1L0ϕ, γ0L0ϕ〉H−1/2(Γ)×H1/2(Γ)∫
D

|∇L0ϕ|2 + γ2|L0ϕ|2 dx = −〈γ1L0ϕ, γ0L0ϕ〉H−1/2(Γ)×H1/2(Γ).

By addition we get

∫
R2

|∇L0ϕ|2 + γ2|L0ϕ|2 dx = −〈[γ1L0ϕ], γ0L0ϕ〉H−1/2(Γ)×H1/2(Γ)

= −〈[γ1L0ϕ], Lϕ〉H−1/2(Γ)×H1/2(Γ)

= 〈ϕ,Lϕ〉H−1/2(Γ)×H1/2(Γ).

Here we have also used the jump relations from above. Now we put
our results together and get

‖ϕ‖2
H−1/2(Γ) = ‖[γ1L0ϕ]‖2

H−1/2(Γ)

Lemma 3.3
≤ C‖L0ϕ‖2

H1(R2)

≤ C max{1, 1/γ2}
∫
R2

|∇L0ϕ|2 + γ2|L0ϕ|2 dx

= C max{1, 1/γ2}〈ϕ,Lϕ〉H−1/2(Γ)×H1/2(Γ).

This proves b).
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For our further studies we introduce parametrizations of Γ and
investigate the properties of the resulting integral operators on [0, 2π].
By

(3.25) α : [0, 2π] −→ R2,

we denote a parametrization of Γ, which is piecewise linear

(3.26) α|[τj ,τj+1](τ ) = ξj +
(τ − τj)
τj+1 − τj

(ξj+1−ξj), j = 0(1)M − 1,

0 = τ0 < τ1 < . . . < τM . To take care of the corner singularities
of the solutions of (3.8) we introduce a further parametrization αq,
q = (q0, . . . , qM−1), qj ≥ 1, j = 0(1)M − 1,

(3.27) αq := α ◦ α̃q,

where α̃q : [0, 2π] 1:1−→ [0, 2π] is monotone increasing and has the
following properties

(3.28)




α̃q ∈ C3([0, 2π]),
α̃′
q(τ ) > 0, τ ∈ [0, 2π] \ {τ0, . . . , τM},

α̃q(τ ) = τj + cj sgn (τ − τj)|τ − τj |qj ,

|τ − τj | sufficiently small, cj > 0, j = 0(1)M − 1.

An explicit construction of α̃q, given q, can be found for example in
the article [6]. This construction gives also

(3.29) α̃(1,1,... ,1)(τ ) ≡ τ.

Equation (3.8) can be written in the following form

(3.30)

− 1
π

∫ 2π

0

Φ0(αq(s), αq(τ ))ϕn(αq(τ ))|α′
q(τ )| dτ

= F (αq(s), nh)

+
1
π

n−1∑
m=1

∫ 2π

0

Φn−m(αq(s), αq(τ ))ϕm(αq(τ ))|α′
q(τ )| dτ.
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We define ϕ̃q,m(τ ) := ϕm(αq(τ ))|α′
q(τ )|. This leads us to the study of

the following system of integral equations on [0, 2π]:
(3.31)

(Aqϕ̃n,q)(s)

= F (αq(s), nh) +
1
π

n−1∑
m=1

∫ 2π

0

Φn−m(αq(s), αq(τ ))ϕ̃q,m(τ ) dτ,

n = 1(1)N,

where the operator Aq is given by

(3.32)

(Aqψ)(s) := − 1
π

∫ 2π

0

Φ0(αq(s), αq(τ ))ψ(τ ) dτ

=
1
π

∫ 2π

0

ln |αq(s) − αq(τ )|ψ(τ ) dτ

+
∫ 2π

0

ln |αq(s) − αq(τ )|2 k1(|αq(s) − αq(τ )|2)ψ(τ ) dτ

+
∫ 2π

0

k2(|αq(s) − αq(τ )|2)ψ(τ ) dτ

=: (A(1)
q ψ)(s) + (A(2)

q ψ)(s) + (A(3)
q ψ)(s).

The functions k1 and k2 are holomorphic functions on C and have the
following form

k1(z) =
∞∑
j=1

ajz
j , aj ∈ R, j = 1(1)∞,

k2(z) =
∞∑
j=0

bjz
j , bj ∈ R, j = 0(1)∞.

The following result was proved by Graham and Elschner.

Theorem 3.6 [6, Theorem 2]. Let q = (q0, . . . , qM−1), qj ≥ 1,
j = 0(1)M − 1.

A(1)
q : L2([0, 2π]) −→ H1([0, 2π])

is continuous and has a bounded inverse.
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A direct calculation shows that the functions

ln(|αq(s) − αq(τ )|2)k1(|αq(s) − αq(τ )|2) and k2(|αq(s) − αq(τ )|2)

are two times differentiable for s �= t and both derivatives are bounded
on [0, 2π]2. This implies

(3.33) A(2)
q , A(3)

q : L2([0, 2π]) −→ H2([0, 2π])

are continuous. Theorem 3.6, equation (3.33) and the compact inclu-
sion of H2([0, 2π]) into H1([0, 2π]) imply

Corollary 3.7. Let q = (q0, . . . , qM−1), qj ≥ 1, j = 0(1)M − 1.

Aq : L2([0, 2π]) −→ H1([0, 2π])

is a Fredholm operator with index 0.

Now we can use the same arguments as Elschner and Graham in [6]
to prove the following theorem.

Theorem 3.8. Let q = (q0, . . . , qM−1), qj ≥ 1, j = 0(1)M − 1.

Aq : L2([0, 2π]) −→ H1([0, 2π])

is continuous and has a bounded inverse.

Proof. Because of Corollary 3.7 we only have to show that

Aqu = 0, u ∈ L2([0, 2π])

implies u = 0.

Let q̃ = (1, . . . , 1). Then ũ(τ ) := (u ◦ α−1
q )(τ )(α−1

q )′(τ ) solves

Aq̃ũ = 0.

Our aim is to show that ũ ∈ Lp([0, 2π]), p > 1. Near τj , j ∈
{0, . . . ,M − 1}, we have

α−1
q (ν) = τj +

1

c
1/(qj)
j

sgn (ν − τj) |ν − τj |1/qj ,

(α−1
q )′(ν) =

1

c
1/qj

j qj
|ν − τj |(1−qj)/qj .
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For some ε > 0 and p ∈ (1, 2) we have

∫ sj+ε

sj

|ũ(τ )|p dτ = c̃j

∫ τj+ε

τj

∣∣∣∣u(α̃−1
q (τ ))(τ − τj)((1−qj)/qj)

∣∣∣∣
p

dτ

= ĉj

∫ τj+ε̃

τj

|u(s)p| |s− τj |p(1−qj)|s− τj |qj−1 ds

≤ ĉj

( ∫ τj+ε̃

τj

|u(s)|2 ds
)p/2

·
(∫ τj+ε̃

τj

(τ − τj)(2(p−1)(1−qj))/(2−p) dτ

)(2−p)/2

< ∞,

if p − 1 is sufficiently small. Here ε̃ := (ε/cj)1/qj . This implies
ũ ∈ Lp([0, 2π]). But then

ũ ◦ α−1 ∈ Lp(Γ) ⊂ H−1/2(Γ)

lies in the kernel of the operator L. Theorem 3.5 implies ũ ◦ α−1 = 0.
This shows the injectivity of Aq and together with Corollary 3.7 we
have proved our theorem.

At least we will study the regularity of the solutions (ϕn)n=1(1)N .
This will give us the right exponents qj near corners in order to get a
quadratic convergence rate of our linear approximations.

Lemma 3.9. Let (ϕn)n=1(1)N be the solution of the sequence of
integral equations (3.8). For arbitrary n ∈ {1, . . . , N} and m ∈
{1, . . . ,M} we find δ > 0 such that ϕn has the following representation
near corner m (we assume τm = 0)

(3.34) (ϕn ◦ α)(τ ) = ϕR(τ ) + ϕS(τ ), τ ∈ Uδ(τm),

where ϕR|[0,δ] ∈ H2([0, δ]), ϕR|[−δ,0] ∈ H2([−δ, 0]) and the function
ϕS belongs to C∞ outside {0}. Near the origin the growth of ϕS is
estimated by

(3.35) |ϕS(τ )| ≤ C|τ − τm|
π
ω m

−1| log |τ − τm||,
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C > 0.

Proof. We first define

wn(x) := − 1
π

∫
Γ

Φ0(x, y)ϕn(y) dsy, x ∈ R2,

(3.36)

Rn(x) :=
1
π

n−1∑
j=1

∫
Γ

Φn−j(x, y)ϕj(y) dsy

(3.37)

= − 1
π

n−1∑
j=1

wj(x) +
1
π

n−1∑
j=1

∫
Γ

(Φn−j − Φ0)(x, y)ϕj(y) dsy

x ∈ R2.

We remark here that the kernel Φn−j − Φ0 fulfills

(3.38) |Φn−j(x, y) − Φ0(x, y)| ≤ C|x− y| log(|x− y|)

in the neighborhood of the diagonal. The jump relations of the single
layer potential (see [3]) imply

[γ1wn] = −ϕn(3.39)

[γ1Rn] =
n−1∑
j=1

ϕj(3.40)

by (3.38). Formula (3.39) shows that we can deduce the regularity of
ϕn from the regularity of wn. The function wn fulfills the following
differential differential equation in R2 \ Γ

(−∆ + γ2)wn(x) = 0, x ∈ R2 \ Γ,
wn|Γ = F (·, nh) + Rn|Γ.

Now we can repeat the arguments of the proof of Lemma 2.9. Again
the regularity of wn follows from the regularity of w̃n which solves

(−∆ + γ2)w̃n(x) = −(−∆ + γ2)(γ−F (·, nh) + Rn)(x), x ∈ R2 \ Γ,
= −(−∆ + γ2)(γ−F (·, nh))(x) − γ2vn−1(x),

w̃n|Γ = 0.
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where we have used (3.6). If we assume that ξm = 0, B2ε(0) ∩ D =
B2ε(0) ∩Kωm

, ε > 0, then it follows (using the same arguments as in
the proof of Lemma 2.9)

ϕw̃n|Bε(0)∩D = ṽR + ϕ

( ∑
l∈Lν,s

∑
0<lν+2j<s−1

Cl,jσν,l,j

+
∑

l∈Mν,s

∑
0<lν+2j<s−1

Dl,jSν,l,j

)
,

vR ∈ Hs(D), ν = (π/ωm), s ∈ (3.5, 4]. Here we assume in contrast to
Theorem 2.7

s �∈
{
l
π

ωj
, l

π

2π − ωj

∣∣∣l ∈ N
}
,

but this is clearly possible.

An analogous formula holds for ϕw̃n|Bε(0)∩Dc , where ν has to be
replaced by (π/(2π − ωm)) and ṽr by ṽ1,R ∈ H2(Dc).

The relation
wn = w̃n + γ−F (·, nh) + Rn

proves a similar representation for wn around each corner because
γ−F (·, nh) ∈ H4(R2). Now (3.39) and (3.40) show

−ϕn = [γ1wn]
= [γ1w̃n] + [γ1(γ−F (., ·, nh))] + [γ1Rn]

= [γ1w̃n] +
n−1∑
j=1

ϕj .

Near the corner ξm we get

−ϕn =
[
∂

∂n

( ∑
l∈Lν,s

∑
0<lν+2j<s−1

Cl,jσν,l,j +
∑

l∈Mν,s

∑
0<lν+2j<s−1

Dl,jSν,l,j

+
∑

l∈Lν1,s

∑
0<lν1+2j<s−1

C ′
l,jσ

′
ν1,l,j

+
∑

l∈Mν1,s

∑
0<lν1+2j<s−1

D′
l,jS

′
ν1,l,j

)]

+
n−1∑
j=1

ϕj +
∂

∂n
(ṽR − ṽ1,R)|Γ.
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Here σ′
ν1,l,j

, S′
ν1,l,j

have the same form as σν,l,j and Sν,l,j , but on the
complementary angle (see (2.17)). We have denoted the outer normal
by n because ν has another meaning here. Now an induction and the
formulas (2.17) for the functions σν,l,j and Sν,l,j prove the lemma.

Lemma 3.10. Let

(3.41) qj >
5
2
ωj

π
, j = 1(1)M.

Then the solution ϕn,q, n = 1(1)N , of the sequence (3.31) belongs to
H2([0, 2π]).

Proof. By (3.30) and (3.31) we know

ϕn,q(τ ) = ϕn(αq(τ ))|α′(τ )|.

Only the smoothness of ϕn,q near the points τm, m = 1(1)M , has to be
considered, because away from the corners the operator L is a pseudo
differential operator of order −1 and the right-hand side of (3.30) is in
H4([τj , τj+1]), j = 0(1)M − 1.

But near the corners we have the representation of Lemma 3.9. This
implies

ϕn,q(τ ) = ϕn,R(αq(τ ))|α′(τ )| + ϕn,S(αq(τ ))|α′(τ )|,
τ ∈ Uδ(τm).

In the neighborhood of τm we have

|ϕn,S(αq(τ ))α′
q(τ )|
≤ C|τ − τm|qm[(π/ωm)−1] | log |τ − τm|| |τ − τm|qm−1

and we note

qm

(
π

ωm
− 1

)
+ qm − 1 = qm

π

ωm
− 1

≥ 3
2
,
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if (3.41) is fulfilled. This shows that the first part is in H2. The second
term on the right-hand side is also in H2 on both sides of τm and the
function and the first derivative is zero at τm. This shows that this
factor is in H2(Uδ(τm)). Now Lemma 3.10 is proven.

4. The numerical algorithm. In order to approximate vn,
n = 1(1)N , see (2.9), numerically, we use the ansatz (3.7) and calculate
approximations for ϕ̃q,m, m = 1(1)N , see (3.30).

We use a collocation method, where the trial space consists of pe-
riodic, continuous and piecewise linear functions on a uniform grid of
[0, 2π]. We denote the trial space by

(4.1)
TK := {u ∈ Cper([0, 2π])|u|[(j/K),((j+1)/K)] linear j = 0(1)K−1},

and we will always assume that

(4.2) τj,K := τjK ∈ {0, . . . ,K}, j = 0(1)M.

The solution ϕ̂q,n,K ∈ TK of the collocation method is defined by

(Aqϕ̂q,n,K)
(

j

K

)
= F

(
αq

(
j

K

)
, nh

)

+
1
π

n−1∑
m=1

∫ 2π

0

Φn−m

(
αq

(
j

K

)
, αq(τ )

)
ϕ̂q,m,K(τ ) dτ,

j = 0(1)K − 1, n = 1(1)N.

As usual, see [6], we have to introduce a modification of the above
method in order to prove the stability of the collocation method. Let
i∗ ∈ N0 be fixed. For K sufficiently large we denote by ϕ̂∗

q,n,K the
solution of

(Aqϕ̂
∗
q,n,K)

(
j

K

)
= F

(
αq

(
j

K

)
, nh

)

+
1
π

n−1∑
m=1

∫ 2π

0

Φn−m

(
αq

(
j

K

)
, αq(τ )

)
ϕ̂∗
q,m,K(τ ) dτ,(4.4)

j = 0(1)K − 1, |j − τj,K | ≥ i∗, n = 1(1)N,

ϕ̂∗
q,n,K ∈ T ∗

K :=
{
u ∈ TK

∣∣∣u(
j

K

)
= 0, |j−τj,K | < i∗

}
.(4.5)
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Theorem 4.1. Let (1.2), (2.6), (2.7) and (3.38) be fulfilled, N ∈ N
fixed. If i∗ is chosen sufficiently large, there exists a K0 ∈ N such that
for every K ≥ K0 the solution of (4.4) is uniquely determined and we
get

(4.6) ‖ϕ̂q,m − ϕ̂∗
q,m,K‖L2[0, 2π] ≤ C

K2
, m = 1(1)N,

where the constant C does not depend on K or m.

Proof. The approximation order of the spaces TK for the solutions
ϕ̃q,m is clear by Corollary 3.10 and (3.38). The stability of the
collocation method for sufficiently large i∗ is proved in [6] for the
operator with a logarithmic kernel. But by Corollary 3.7 we know
that Aq is only a compact perturbation of the logarithmic operator
A

(1)
q . Theorem 3.8 shows that Aq has a bounded inverse and Theorem

II.3.1. of [7] now proves the theorem.

A possible numerical strategy for the approximate solution of (1.1)
would be as follows (here we will indicate the dependence of our
solutions on the time discretization parameter N which was fixed until
now, but we will omit the i∗-modification, which is rarely needed in
practice):

Given an ε > 0 choose N ∈ N and calculate ϕ̂
(N)
q,n,K1

, n = 1(1)N , q
chosen according to (3.41), such that

‖ϕ̂(N)
q,n,K1

− ϕ̂
(N)
q,n,2K1

‖L2([0,2π]) ≤ 3
8
ε, n = 1(1)N.

Then repeat the calculation with N replaced by 2N . This gives ϕ̂(2N)
q,n,K2

,
n = 1(1)2N , with the property

‖ϕ̂(2N)
q,n,K2

− ϕ̂
(2N)
q,n,2K2

‖L2([0,2π]) ≤ 3
8
ε, n = 1(1)2N.

If
‖ϕ̂(N)

q,n,K1
− ϕ̂

(2N)
q,2n,K2

‖L2([0,2π]) ≤ 1
4
ε, n = 1(1)N,

then accept ϕ̂
(N)
q,n,K1

as an approximation for ϕ̂
(N)
q,n , n = 1(1)N . Other-

wise start again with N replaced by 2N .
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FIGURE 1. The domain D and its boundary Γ.

The approximations v̂
(N)
q,n,K1

for vn, n = 1(1)N , are calculated by

(4.7)

v̂
(N)
q,n,K1

(x) := − 1
π

n∑
m=1

∫
Γ

Φ(N)
n−m(x, y)ϕ̂(N)

q,m,K1
(y) dsy, n = 1(1)N.

Here we have also indicated the dependence of the kernels Φ on the
time discretization.

5. A numerical example. To illustrate the convergence results of
Theorem 2.6 and Theorem 4.1 we solve numerically equation (1.1) for
the following case.

The polygon Γ has the corners ξ0 = (0, 0.25), ξ1 = (1,−.5), ξ2 =
(1, 0.5), ξ3 = (0, 0.5) and ξ4 = ξ0 (see Figure 1). The piecewise linear
parametrization α : [0, 2π] → Γ is defined by τi = π/2 × i, i = 0(1)4
(see (3.25) and (3.26)).

The right-hand side F of the equation (1.1) is defined by

(5.1) F (x, t) := t2(1 + sin(α−1(x) + t)), (x, t) ∈ Γ × [0, 1],
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FIGURE 2. The temperature development at line Θ.

so (1.2), (2.6) and (2.7) are fulfilled and we have T = 1.

For the numerical computations we use two grading vectors (see
(3.27)),

(5.2) q1 = (1, 1, 1, 1) and q2 = (4.5, 4.5, 4, 4).

The entries of vector q2 are about 0.25 greater than the requirement
in (3.41). Besides the function ϕ̂

(N)
q,n,K we will also compute the

function v̂
(N)
q,n,K (see (4.7)), at 201 equidistributed points on the line

Θ = [−2, 2] × {−0.6}. This will allow us to estimate the rate of
convergence of v̂

(N)
q,n,K in L2(Θ). To calculate the integrals over Γ we

use a singularity subtraction technique and calculate the integrals over
the logarithmic singularity explicitly and use 3 point Gauss formulas
for the regular part.

In Figure 2 the development of the temperature along the line Θ
is shown. For the calculation of the data we have used N = 10, 64
partitions of Γ and q = (4.5, 4.5, 4, 4).
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TABLE 1. Fixed time discretization, several space

discretizations, grading vector q1.

K ‖ϕ̂(4)
q1,4,K

−ϕ̂
(4)
q1,4,256

‖L2(Γ) EOC ‖v̂(4)
q1,4,K

−v̂
(4)
q2,4,256

‖L2(Θ) EOC

8 0.71227 0.08339
16 0.56359 0.34 0.04420 0.92
32 0.45004 0.33 0.02182 1.02
64 0.34708 0.38 0.01024 1.09
128 0.20804 0.74 0.00467 1.13

TABLE 2. Fixed time discretization, several space

discretizations, grading vector q2.

K ‖ϕ̂(4)
q2,4,K

−ϕ̂
(4)
q2,4,256

‖L2(Γ) EOC ‖v̂(4)
q2,4,K

−v̂
(4)
q2,4,256

‖L2(Θ) EOC

8 1.37605 0.26335
16 0.51794 1.41 0.02445 3.43
32 0.16422 1.65 0.00284 3.11
64 0.03382 2.27 0.00032 3.15
128 0.00722 2.22 0.00009 3.59

In the first example we choose a time discretization with N = 4 and
study the influence of the grading on the convergence. Therefore we
calculate ‖ϕ̂(4)

q1,4,K
−ϕ̂

(4)
q1,4,256

‖L2(Γ), ‖ϕ̂(4)
q2,4,K

−ϕ̂
(4)
q2,4,256

‖L2(Γ), ‖v̂(4)
q1,4,K

−
v̂
(4)
q2,4,256

‖L2(Γ) and ‖v̂(4)
q2,4,K

− v̂
(4)
q2,4,256

‖L2(Γ), K = 8, 16, 32, 64, 128. This

means that we use ϕ̂
(4)
q1,4,256

and ϕ̂
(4)
q2,4,256

, respectively, as a reference
solution. We also estimate the order of convergence (EOC).

The results show that one has to use the parametrization with a slow
velocity near the corners in order to get the convergence rate of 2 which
one expects for the piecewise linear approximations (see Theorem 4.2).
For the functions v̂ one gets a better convergence in both cases but here
also the grading vector q2 shows much better results.

In the next step we only use the vector q2 and fix a space discretiza-
tion with 64 partitions of Γ. The above result shows that this space
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TABLE 3. Several time discretizations, one space

discretization, grading vector q2.

N ‖ϕ̂(N)
q2,N,64−ϕ̂

(64)
q2,64,64

‖L2(Γ) EOC ‖v̂(N)
q2,N,64−v̂

(64)
q2,64,64

‖L2(Θ) EOC

2 4.68448 0.18635
4 2.62000 1.41 0.09233 1.01
8 1.28590 1.03 0.04368 1.08
16 0.56238 1.19 0.01894 1.21
32 0.18920 1.57 0.00642 1.56

discretization causes an error of about 0.001. Then we calculate the
approximations for the time t = 1 with several time discretizations and
again estimate the order of convergence.

Both EOC columns show clearly the linear convergence rate of the
implicit Euler scheme which was predicted by Theorem 2.6 (the EOC
of 1.5 as well as the higher estimated orders in the last rows of the
previous examples are caused by the effect that we compare the results
with a calculated reference solution).

The above results show that the method of Chapko and Kress can
be used to calculate the solution of the heat equation (1.1) if the
boundary of D has corners. The only drawback of this method is
the large computing time which is needed to calculate the right-hand
side of the collocation equation (4.4). But the effort for this calculation
corresponds to the effort which would arise if one solves the Volterra
integral equation on the boundary (see [3]) to approximate the solutions
of (1.1).
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