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AN EXPLICIT BOUNDARY INTEGRAL REPRESENTATION
OF THE SOLUTION OF THE TWO-DIMENSIONAL

HEAT EQUATION AND ITS DISCRETIZATION

I.P. GAVRILYUK AND V.L. MAKAROV

ABSTRACT. An explicit representation of the solution
of the two-dimensional heat equation through solutions of
boundary integral equations is given. Using this represen-
tation we get a semi-discretization, in time, where a sequence
of boundary integral equations must be solved. For the last
ones the collocation quadrature method can be used.

1. Introduction. The horizontal line method, Rothe’s method,
is often used in order to solve the heat equation numerically. This
method consists of a time discretization by finite differences and leads
to a sequence of boundary value problems for an inhomogeneous ellip-
tic equation. The last ones can be solved using finite element, finite
difference or other methods. In order to overcome difficulties caused by
a complicated geometry of the problem the method of integral equa-
tions is often used where volume potentials due to the inhomogeneity
are incorporated. The advantages of the boundary integral equation
method, such as the dimension reduction, the simplification of the ge-
ometry of the problem in two-dimensional case, possibility of solving of
exterior problems, etc., can be preserved by using approaches involv-
ing only boundary integrals, see [3, 8] and references therein, which
leads to very effective discretizations especially in cases of a compli-
cated geometry. The kernels of the boundary integral equations in [8]
are evaluated by the Cauchy integral formula and numerical integration
in the complex plane. A more explicit procedure for the computation of
the kernels involved in the sequence of boundary integral equations and
based on some recurrence equations is given in [3]. A drawback of the
line method is a fixed convergence order independent of the smoothness
of the initial data.

The aims of this paper are to overcome this difficulty and to give
an explicit representation of the solution of the two-dimensional heat
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equation through solutions of boundary integral equations in the case
of stationary boundary conditions. Then using this representation we
get a semi-discretization, in time, with accuracy depending on the
smoothness of the initial data where a sequence of boundary integral
equations must be solved. Our approach is based on the results of
[1, 4] and is different from Rothe’s method [3] and the operational
quadrature method [8]. The kernels are explicitly given by well-
studied classical special functions. A fully discrete method can then
be constructed analogously to [3]. We also give an approximation
with spectral accuracy for a time-dependent boundary condition using
Duhamel’s integrals. It allows us to use the previous results concerning
the stationary boundary conditions.

2. The heat equation with time-independent boundary
condition. Let us consider the following problem

(2.1)

∂u

∂t
= ∆u(x, t), (x, t) ∈ D × (0, T ],

u(x, t) = φ(x), x ∈ Γ,
u(x, 0) = 0, x ∈ D.

Homogeneous boundary conditions are often more convenient from
various points of view. In order to deal with such boundary conditions,
we represent the solution of (2.1) as

(2.2) u(x, t) = v(x, t) + V (x),

where the functions v and V satisfy the following equations

(2.3)
∆V (x) = 0, x ∈ D,

V (x) = φ(x), x ∈ Γ,

and

(2.4)

∂v

∂t
= ∆v(x, t), (x, t) ∈ D × (0, T ],

v(x, t) = 0, x ∈ Γ,
v(x, 0) = −V (x), x ∈ D.
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We define the self-adjoint operator A by

D(A) = H2(D) ∩
◦
H1(D), Au = −∆u ∀u ∈ D(A)

and denote its range by R(A), where H l(D),
◦
H l(D) state for the well-

known Sobolev spaces. Then the problem (2.4) can be written in the
operator form

dv(t)
dt

+Av = 0, v(0) = −V,
where v(t) is a vector-valued function.

Using the results of [1, 4], we get

(2.5) v(x, t) = e−γt
∞∑

n=0

(−1)nL(0)
n (2γt)wn(x),

where γ is an arbitrary positive number, L
(0)
n (ξ) is the Laguerre

polynomial of degree n and wn satisfies the equations

(2.6) (γI +A)wn+1 = (γI −A)wn, n = 0, 1, . . .

or

(2.7)
(γ −∆)wn+1(x) = (γ +∆)wn(x), x ∈ D, n = 0, 1, . . . ,

wn+1(x) = 0, x ∈ Γ.
For w0 we have

w0 = −[I + Tγ(A)]V = −2γ(γ +A)−1V,

where Tγ(A) = (γI − A)(γI + A)−1 is the Cayley transform of the
operator A. We denote by Sγ : V → u the (boundary) operator defined
by

(2.8)
(γ −∆)u(x) = 0, x ∈ D,

u(x) = −V (x), x ∈ Γ,
and set Pγ = I − Sγ . Then we can write

(2.9)
(γ −∆)w0(x) = −2γV (x), x ∈ D,

w0(x) = 0, x ∈ Γ,
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or, similarly,
w0 = −2Pγ(V ).

As a natural approximation for the exact solution (2.5) one can use the
truncated sum

(2.10) vN (x, t) = e−γt
N∑

n=0

(−1)nL(0)
n (2γt)wn(x).

It was shown in [1, 4] that

(2.11) ‖v(·, t)− vN (·, t)‖ ≤ cN−σ‖Aσw0‖
provided that w0 ∈ D(Aσ) for some σ > 0. The truncated sum (2.10)
together with (2.6) can be considered as a semi-discrete approximation
for the problem (2.4). The estimate (2.11) shows that this approxi-
mation possesses at least a convergence order O(N−1) provided that
V ∈ R(A).

The next lemma shows that all wn, n = 1, 2, . . . , can be represented
using the operator Sγ .

Lemma 2.1. The functions wn(x), x ∈ D, can be represented
through the boundary operator Sγ by the formulas

(2.12) w0 = −2Pγ(V ), wn = −2Pγ

[
V− (−2γ)

n

n!
∂n

∂γn
Sγ(V )

]
, n ≥ 1.

Proof. Using the fact that ∆kV = 0, k = 1, 2, . . . , we get
(2.13)
(γ −∆)nwn(x) = (γ +∆)nw0

= (2γ − γ +∆)nw0

=
n∑

p=0

(
n

p

)
(2γ)n−p(−γ +∆)pw0

= −2
n∑

p=1

(
n

p

)
(2γ)n−p(−γ)pV − (2γ)n2[V − Sγ(V )]

= −2V [(2γ − γ)n − (2γ)n]− (2γ)n2[V − Sγ(V )]
= −2[γnV − (2γ)nSγ(V )], x ∈ D,

wn(x) = 0, x ∈ Γ.



THE TWO-DIMENSIONAL HEAT EQUATION 67

In order to solve (2.13) we use the following result which one can get
analogously to [10]: if

(γ −∆)nu = v(x), x ∈ D,

u(x) = 0, x ∈ Γ

and (γ −∆)v = 0, then

u =
(−1)n
n!

Pγ
∂nv

∂γn
.

Representing wn = wn1 +wn2 , where wn1 , wn2 are the solutions of the
problems

(γ −∆)nwn1(x) = −2γnV (x), x ∈ D, wn1(x) = 0, x ∈ Γ,
(γ −∆)nwn2(x) = 2(2γ)

nSγ(V ), x ∈ D, wn2(x) = 0, x ∈ Γ

we get

wn1 = −2Pγ(V ), wn2 = 2(2γ)
n (−1)n

n!
Pγ

∂n

∂γn
Sγ(V ),

i.e.,

wn = −2Pγ

[
V − (−2γ)

n

n!
∂n

∂γn
Sγ(V )

]
,

which proves the lemma.

Note that the formula (2.12) allows us to avoid volume potentials
when solving the inhomogeneous equations (2.6). Using the volume
potentials has the drawback of destroying the two main advantages
of the boundary integral equation method: this method reduces the
dimensionality of the problem and is especially useful for unbounded
domains since a problem over an unbounded domain is replaced by
one over a boundary. The solution of (2.8) can be represented as the
following double layer potential

(2.14) Sγ(V )(x) =
1
π

∫
Γ

∂K0(
√
γ|x− y|)

∂ν(y)
g(y) ds(y),
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where g(y) is an unknown density, ν(y) is the outer normal to Γ,
|x− y| is the distance between the points x and y, Kn(z), n = 0, 1, . . . ,
denotes the modified Bessel function of order n, see, e.g., [2, 7, 11,
12], computer algebra tools MATHEMATICA, MAPLE, REDUCE or World
Wide Web: [5],

(2.15)

K0(z) = −I0(z) ln z2 +
∞∑

m=0

(
z

2

)2m
ψ(m+ 1)
(m!)2

,

Kn(z) = (−1)n+1In(z) ln
(
z

2

)
+
1
2

n−1∑
m=0

(−1)m
(
z

2

)2m−n (n−m−1)!
m!

+
(−1)n
2

∞∑
m=0

(
z

2

)n+2m
ψ(n+m+1) + ψ(m+1)

m!(n+m)!
,

n = 1, 2, . . . ,

ψ(z) is the logarithmic derivative of the gamma function, ψ(m+1) = 1+
(1/2)+ · · ·+(1/m)−γ, γ = limm→∞(

∑m
n=1(1/n)− lnm) = 0.57721 . . .

is the Euler’s constant, and

(2.16) In(z) =
∞∑

m=0

(z/2)2m+n

m!Γ(m+ n+ 1)

is the Bessel function of the complex argument of order n.

The density g(y) is the solution of the boundary integral equation of
the second kind

(2.17) −g(x) + 1
π

∫
Γ

∂K0(
√
γ|x− y|)

∂ν(y)
g(y) ds(y) = −V (x), x ∈ Γ.

The operator Sγ can also be represented through the single layer
potential

(2.18) Sγ(ϕ)(x) = − 1
π

∫
Γ

K0(
√
γ|x− y|)g̃(y) ds(y), x ∈ D,

where the density g̃(y) satisfies the boundary integral equation of the
first kind

(2.19)
1
π

∫
Γ

g̃(y)K0(
√
γ|x− y|) ds(y) = −V (x), x ∈ Γ.
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Let us denote

Φn(x, y) ≡ Φn(
√
γ|x− y|) = (−2γ)

n

n!
∂n

∂γn
K0(

√
γ|x− y|),

g(j)(y) ≡ g(j)(y, γ) =
(−2γ)j

j!
∂j

∂γj
g(y, γ).

By the differentiation of (2.14) and (2.17), we get

(2.20)

(−2γ)n
n!

∂n

∂γn
Sγ(V ) =

1
π

∫
Γ

n∑
j=0

∂

∂ν(y)
Φn−j(x, y)g(j)(y) ds(y),

x ∈ D,

(2.21)

−g(j)(x, γ) +
1
π

∫
Γ

∂

∂ν(y)
K0(

√
γ|x− y|)g(j)(y, γ) ds(y)

= − 1
π

∫
Γ

j−1∑
l=0

∂

∂ν(y)
Φj−l(x, y)g(l)(y, γ) ds(y),

x ∈ Γ, j = 0, 1, 2, . . . ,

where the righthand side in (2.21) is equal to −V (x) for j = 0.
Analogously we get by the differentiation of (2.18) and (2.19),

(2.22)

(−2γ)n
n!

∂n

∂γn
Sγ(V ) =

1
π

∫
Γ

n∑
j=0

Φn−j(x, y)g̃(j)(y) ds(y), x ∈ D,

(2.23)
1
π

∫
Γ

K0(
√
γ|x− y|)g̃(j)(y, γ) ds(y)

= − 1
π

∫
Γ

j−1∑
l=0

Φj−l(x, y)g̃(l)(y, γ) ds(y), x ∈ Γ,

j = 0, 1, 2, . . . , where the righthand side is equal to −V (x) for j = 0.
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The equation (2.21) takes the form

(2.24)

− g(j)(x, γ) +
1
π

∫
Γ

∂

∂ν(y)
K0(

√
γ|x− y|)g(j)(y, γ) ds(y)

= −g(j−1)(x, γ)

+
1
π

∫
Γ

j−1∑
l=0

∂

∂ν(y)
[Φj−1−l(x, y)− Φj−l(x, y)]g(l)(y, γ) ds(y).

Using the known result [2]

(
d

zdz

)m

K0(z) = (−1)mz−mKm(z)

and setting z2 = 2ξ, z =
√
2ξ, we get

(
d

dξ

)m

K0(
√
2ξ) = (−1)m(2ξ)−m/2Km(

√
2ξ),

which further yields for ξ = γ|x− y|2/2, γ = 2ξ|x− y|−2,
(2.25)

Φn(x, y) =
(−2γ)n

n!
∂n

∂ξn
K0(

√
2ξ) =

1
n!
(
√
γ|x−y|)nKn(

√
γ|x−y|).

The function Kn(z) can be expressed through only two functions K0(z)
and K ′

0(z). Actually, using the formulas [2]

(2.26)
Kν−1(z)−Kν+1(z) = −2νz−1Kν(z),
Kν−1(z) +Kν+1(z) = −2K ′

ν(z),

setting iz for z in (2.26) and denoting iνKν(iz) = K̃ν(z) we get

(2.27) K̃ν−1(z) + K̃ν+1(z) =
2ν
z
K̃ν(z),

which yields

(2.28) K̃m+1(z) = K̃1(z)Rm,1(z)− K̃0(z)Rm−1,2(z),
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where Rm,ν(z) denotes the Lommel’s polynomial in 1/z

(2.29)

Rm,ν(z) =
�m/2�∑
n=0

(−1)m(m−n)!(ν+m−n−1)!
n!(m− 2n)!(ν + n− 1)!

(
z

2

)−m+2n

=
Γ(ν+m)
Γ(ν)

(
z

2

)−m

2F3

(
1−m
2

,−m

2
; ν,−m, 1−ν−m;−z2

)

and pFq is the generalized hypergeometric function. One can find var-
ious formulas, properties for Bessel’s functions and Lommel’s polyno-
mials in [2, 5, 7, 11, 12].

It follows from (2.28) that

(2.30) Kn(z) = (−i)n−1[−K ′
0(z)Rn−1,1(−iz) + iK0(z)Rn−2,2(−iz)]

and we get from (2.25)

(2.31)

Φn(x, y)

=
(−i)n−1

n!
[K0(

√
γ|x−y|)vn(

√
γ|x−y|)−K ′

0(
√
γ|x−y|)ṽn(

√
γ|x−y|)],

where

(2.32)
vn(z) = iznRn−2,2(−iz), ṽn(z) = znRn−1,1(−iz),

R−1,1 = 0, R0,1 = 1, R−2,2 = −1, R−1,2 = 0
n = 0, 1, 2, . . . .

One can see from (2.29) and (2.32) that vn(z) is an even and ṽn(z) is
an odd polynomial in z =

√
γ|x − y| of degree ≤ n. Analogously as

above one can also find

(2.33)
∂Φn(x, y)

∂yi
=

γ

n!
(xi − yi)(

√
γ|x− y|)n−1Kn−1(

√
γ|x− y|)

and following one can find (∂Φn(x, y)/∂ν(y)).

Summarizing these results together with Lemma 2.1, we arrive at the
following statement.
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Theorem 2.1. The functions wn(x), x ∈ D from (2.5) and (2.10)
can be represented by the following formulas

wn(x) = −2
[
Ṽ (1)(x)− 1

π

∫
Γ

∂K0(
√
γ|x− y|)

∂ν(y)
ĝ(0)(y) ds(y)

]

or

wn(x) = −2
[
Ṽ (2)(x) +

1
π

∫
Γ

K0(
√
γ|x− y|)ˆ̃g(0)

(y) ds(y)
]
, x ∈ D,

where

Ṽ (1)(x) = V (x)− 1
π

∫
Γ

n∑
j=0

∂

∂ν(y)
Φn−j(x, y)g(j)(y) ds(y), x ∈ D,

Ṽ (2)(x) = V (x)− 1
π

∫
Γ

n∑
j=0

Φn−j(x, y)g̃(j)(y) ds(y), x ∈ D,

K0(
√
γ|x − y|), Φn(x, y), (∂Φn(x, y)/∂ν(y)) are given explicitly by

(2.15), (2.31), (2.33), g(j)(y), g̃(j)(y), j ≥ 0, are the solutions of

the boundary integral equations (2.21), (2.23), ĝ(0)(y) and ˆ̃g
(0)
(y) are

the solutions of the boundary integral equations (2.17), (2.19) with the
functions Ṽ (1) and Ṽ (2) instead of V .

Now we are in the position to formulate the following procedure
and algorithm for solving the problem (2.1) through boundary integral
equations only.

procedure HEBBIE(V,wn)

(computes wn(x) by boundary integral equations based on the single
layer potential; Input:V ; Output:wn)

begin

1. Find g̃(0)(y), y ∈ Γ as the solution of the boundary integral equation
(2.19) with the input-function V ;

2. For j = 1, . . . , n, find g̃(j)(y), y ∈ Γ as the solution of boundary
integral equations (2.23);
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3. Find

Ṽ (2)(x) = V (x)− 1
π

∫
Γ

n∑
j=0

Φn−j(x, y)g̃(j)(y) ds(y), x ∈ D

and ˆ̃g
(0)
(y), y ∈ Γ, as the solution of the boundary integral equation

1
π

∫
Γ

ˆ̃g(y)K0(
√
γ|x− y|) ds(y) = −Ṽ (2)(x), x ∈ Γ;

4. Find

wn(x) = −2Ṽ (2)(x)− 2
π

∫
Γ

K0(
√
γ|x− y|)ˆ̃g(0)

(y) ds(y), x ∈ D

end

The next algorithm computes the approximate solution of the prob-
lem (2.1) by (2.10).

Algorithm 2.1.

(computes the approximate solution of the heat equation with a time
independent boundary condition through boundary integral equations
using the procedure HEBBIE)

begin

1. For n = 0, 1, . . . , N

HEBBIE(V,wn);

2. Find vN (x, t) by (2.10)

end

An algorithm based on the double layer potential can be formulated
analogously.
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It is easy to see that

(2.34)

(γ −∆)Φn =
(−2γ)n

n!
∂n

∂γn
(γ −∆)K0(

√
γ|x− y|)

− (−2γ)n
(n− 1)!

∂n−1

∂γn−1
K0(

√
γ|x− y|)

= 2γΦn−1.

Using this relation one can derive recurrence equations for the polyno-
mials vn, ṽn and their coefficients. Comparing (2.34) with (2.5) in [3]
we conclude that our method is closely related to the methods from [3,
8] (for the relation between the last two methods, see [3]). However,
we wish to point out that we are working with kernels explicitly given
through well-studied classical functions whereas the kernels in [3] are
evaluated using explicit recurrence formulas analogously to (2.34) and
the kernels from [8] are obtained using Cauchy integral formula and nu-
merical integration in the complex plane. Another distinctive feature
of our approach is the original time discretization (2.6), (2.10), which
possesses the remarkable approximating property (2.11). Note that if
we choose γ = 2τ−1 and interpret wn as an approximation at the point
tn = nτ , then (2.7) recalls the Cranc-Nikolson difference schema.

3. Parameterized boundary integral equations. We assume
that the boundary curve Γ is given by a parametric representation

Γ = {x(s) : 0 ≤ s ≤ 2π},

where x : R → R2 is at least C2 and 2π-periodic with |x′(s)| > 0 for all
s. Since the algorithmical treatment of the integral equations (2.17) and
(2.19) is very similar to each other we consider only the representation
(2.18) of the operator Sγ and the related boundary integral equations
(2.23). These equations take the following parametric form

(3.1)

1
2π

∫ 2π

0

H0(s, σ)g̃(j)(σ) dσ = − 1
2π

∫ 2π

0

j−1∑
l=0

Hj−l(s, σ)q̃(l)(σ) dσ,

0 ≤ s ≤ 2π,
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where

H0(s, σ) = −2K0(
√
γ|x(s)− x(σ)|),

Hn(s, σ) = −2(−2γ)
n

n!
∂n

∂γn
K0(

√
γ|x(s)− x(σ)|)

= −2 1
n!
(
√
γ|x(s)− x(σ)|)nKn(

√
γ|x(s)− x(σ)|),

q̃(j)(σ) = |x′(σ)|g̃(j)(x(σ)).

Taking into account the logarithmic singularity of K0 we can represent

H0(s, σ) = ln
(
4
e
sin2 s− σ

2

){
1 + sin2 s− σ

2
H1

0 (s, σ)
}
+H2

0 (s, σ),

where

H1
0 (s, σ) =

I0(
√
γ|x(s)− x(σ)|)− 1
sin2((s− σ)/2)

,

H2
0 (s, σ) = ln

γe|x(s)− x(σ)|2
16 sin2((s− σ)/2)

I0(
√
γ|x(s)− x(σ)|)

− 2
∞∑

m=0

(
r

2

)2m
ψ(m+ 1)
(m!)2

, r =
√
γ|x(s)− x(σ)|.

Analogously, taking into account the representations (2.25) and (2.31),
we see that Φn possesses the logarithmic singularity; therefore, we
represent for n ≥ 1,

Hn(s, σ) = ln
(
4
e
sin2 s− σ

2

)
H1

n(s, σ) +H2
n(s, σ)

with

H1
n(s, σ) =

(−1)n
n!

rnIn(r),

H2
n(s, σ) =

(−1)n
n!

rnIn(r) ln
γe|x(s)− x(σ)|2
16 sin2((s− σ)/2)

− 2
n−1

n!

n−1∑
m=0

(−1)m
(
r

2

)2m (n−m− 1)!
m!
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− (−1)n
n!2n+1

r2n
∞∑

m=0

(
r

2

)2m
ψ(n+m+ 1) + ψ(m+ 1)

m!(n+m)!
.

Now the functions Hj
i , i = 0, 1, j = 1, 2, turn out to be infinitely

differentiable. Using the expansions (2.15) and (2.1), we can deduce
the diagonal terms

H1
0 (s, s) = γ|x′(s)|2, H2

0 (s, s) = ln
γe

4
|x′(s)|2 − 2γ.

A discretization of (3.1) can be done by the collocation quadrature
method in complete analogy with [3].

4. The heat equation with common boundary condition. Let
us consider the problem

(4.1)

∂u

∂t
= ∆u(x, t), (x, t) ∈ D × (0, T ],

u(x, t) = φ(x, t), x ∈ Γ,
u(x, 0) = 0, x ∈ D,

where, contrary to (2.1), the boundary function depends on both the
time and the spatial variables. In order to reduce this problem to the
one with time-independent boundary condition, we use the following
representation by the Duhamel’s integrals

(4.2)

u(x, t) =
∂

∂t

∫ t

0

U(x, λ, t− λ) dλ

=
∫ t

0

∂

∂t
U(x, λ, t− λ) dλ

= U(x, 0, t) +
∫ t

0

∂

∂λ
U(x, λ, t− λ′)|λ′=λ dλ,

where U(x, λ, t) is the solution of the auxiliary problem

(4.3)

∂U(x, λ, t)
∂t

= ∆U(x, λ, t), (x, t) ∈ D × (0, T ],
U(x, λ, t) = φ(x, λ), x ∈ Γ,
U(x, λ, 0) = 0, x ∈ D
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with the boundary conditions depending on a parameter λ but not on
the time variable t. The last problem can be split up into the stationary
case

(4.4)
∆V (x, λ) = 0, x ∈ D,

V (x, λ) = φ(x, λ), x ∈ Γ,
and the nonstationary case with a homogeneous boundary condition

(4.5)

∂v(x, λ, t)
∂t

= ∆v(x, λ, t), (x, t) ∈ D × (0, T ],
v(x, λ, t) = 0, x ∈ Γ,
v(x, λ, 0) = −V (x, λ), x ∈ D

so that
U(x, λ, t) = v(x, λ, t) + V (x, λ).

The solution of the initial boundary value problem for the heat equation
depends continuously on the given initial and boundary data, see, e.g.,
[6, p. 134] for the maximum norm. For this reason we can use an
approximation

Φ̃(x, t) =
∑

i

ai(x)pi(t) ≈ Φ(x, t),

where variables x and t are separated. One of possible constructions
with floating accuracy depending on the smoothness of boundary data
can be as follows.

Let t0 = 0 and tj , j = 1, 2, . . . ,K be the roots of the equation

d

dt
L

(0)
K+1(t) ≡ −L(1)

K (t) = 0,

where L(α)
n denotes the Laguerre polynomials. Let ωi be the coefficients

of the Gauss-Radau quadrature formula

∫ ∞

0

u(t)e−t dt ≈
K∑

i=0

ωiu(ti),

ωi =
1

(N + 1)[L(0)
N+1(ti)]2

,
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which is exact for u ∈ PK = {all polynomials p with degree (p) ≤ K}
[9]. The polynomial

pK(t) ≡ IKu =
K∑

k=0

akL
(0)
k (2γt)

with

ak =
K∑

i=0

ωiu

(
ti
2γ

)
L

(0)
k (ti)

is the interpolation polynomial of the function u(t) related to the
points tj , j = 0, 1, . . . ,K which also defines the interpolation operator
IK : C[0,∞)→ PK . The following holds [9]

‖u− IKu‖µ,1 ≤ cεK
µ−((m−1)/2)‖u‖m,1−ε

∀ ε > 0, 0 ≤ µ ≤ m, m >
1
2
,

where

‖v‖2
0,ν =

∫ ∞

0

f2(x)e−νx dx, ‖v‖2
µ,ν =

µ∑
j=0

∥∥∥∥d
jv

dxj

∥∥∥∥
2

0,ν

.

Applied to the function Φ1(x, t) = eγtΦ(x, t), this approach leads to
the approximation

Φ̃(x, t) = e−γtIKΦ1 = e−γt
K∑

i=0

ai(x)L
(0)
i (2γt) ≈ Φ(x, t)

with

(4.6) ai(x) =
K∑

k=0

ωkΦ1

(
x,

tk
2γ

)
L

(0)
k (tk).

Due to the linearity of (4.4) and (4.5), one has

V (x, λ) =
K∑

i=0

Vi(x, λ), vi(x, λ, t) =
K∑

i=0

vi(x, λ, t),
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where Vi(x, λ) satisfies the equations

∆Vi(x, λ) = 0, x ∈ D,

Vi(x, λ) = e−γλL
(0)
i (2γλ)ai(x), x ∈ Γ

and vi(x, λ, t) satisfies the equations

∂vi(x, λ, t)
∂t

= ∆vi(x, λ, t), (x, t) ∈ D × (0, T ],
vi(x, λ, t) = 0, x ∈ Γ,
vi(x, λ, 0) = −Vi(x, λ), x ∈ D.

It is easy to see that

Vi(x, λ) = e−γλL
(0)
i (2γλ)V̂i(x),

vi(x, λ, t) = e−γλL
(0)
i (2γλ)v̂i(x, t),

where the functions V̂i(x) and v̂i(x, t) are the solutions of the problems

∆V̂i(x) = 0, x ∈ D,

V̂i(x) = ai(x), x ∈ Γ

and
∂v̂i(x, t)

∂t
= ∆v̂i(x, t), (x, t) ∈ D × (0, T ],

v̂i(x, t) = 0, x ∈ Γ,
v̂i(x, 0) = −V̂i(x), x ∈ D.

Using results of previous sections we can represent

v̂i(x, t) = e−γt
∞∑

n=0

(−1)nL(0)
n (2γt)w

(i)
n (x),

where

w
(i)
0 = −2Pγ(V̂i),

w(i)
n = −2Pγ

[
V̂i − (−2γ)

n

n!
∂n

∂γn
Sγ(V̂i)

]
.
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Then we get an approximation for U(x, λ, t) by

Ũ(x, λ, t) =
K∑

i=0

e−γλL
(0)
i (2γλ)[v̂i(x, t) + V̂i(x)]

=
K∑

i=0

e−γλL
(0)
i (2γλ)

[ ∞∑
n=0

(−1)nL(0)
n (2γt)w

(i)
n (x) + V̂i(x)

]
.

Using Duhamel’s integral we now get the following approximation for
u(x, t):

ũK(x, t) =
∫ t

0

∂

∂t
Ũ(x, λ, t− λ) dλ

=
K∑

i=0

∞∑
n=0

(−1)nIi,n(t, γ)w(i)
n (x) +

K∑
i=0

V̂i(x)

and the semi-discrete approximation

(4.7)

ũN
K(x, t) =

∫ t

0

∂

∂t
Ũ(x, λ, t− λ) dλ

=
K∑

i=0

N∑
n=0

(−1)nIi,n(t, γ)w(i)
n (x) +

K∑
i=0

V̂i(x),

where

Ii,n(t, γ) =
∫ t

0

∂

∂t
[e−γ(t−λ)L(0)

n (2γ(t− λ))]e−γλL
(0)
i (2γλ) dλ.

Using classical results for the Laguerre polynomials, see, e.g., [2], we
get

Ii,n(t, γ) = −γe−γt

∫ t

0

L(0)
n (2γ(t− λ))L(0)

i (2γλ) dλ

+ e−γt ∂

∂t

∫ t

0

L(0)
n (2γ(t− λ))L(0)

i (2γλ) dλ− e−γtL
(0)
i (2γt)
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=
[
− 1
2
e−τ/2

∫ τ

0

L(0)
n (τ − ξ)L(0)

i (ξ) dξ

+ e−τ/2 ∂

∂t

∫ τ

0

L(0)
n (τ − ξ)L(0)

i (ξ) dξ
]

τ=2γt

− e−γtL
(0)
i (2γt)

=
{
− 1
2
e−τ/2[L(0)

n+i(τ )− L
(0)
n+i+1(τ )] + e−τ/2L

(0)
n+i(τ )

}
τ=2γt

− e−γtL
(0)
i (2γt)

=
1
2
e−γt

[
L

(0)
n+i(2γt) + L

(0)
n+i+1(2γt)− 2L(0))i(2γt)

]
.

The following algorithm based on the single layer potential performs
our approach for the heat equation with a time-dependent boundary
condition through boundary integral equations.

Algorithm 2.

begin

1. For i = 0, 1, . . . ,K

1.1. Find ai(x) by (4.6) and V̂i(x) = Sγ(ai), x ∈ D solving the
boundary integral equations

1
π

∫
Γ

g̃i(y)K0(
√
γ|x− y|) ds(y) = −ai(x)

and computing

V̂i(x) = − 1
π

∫
Γ

K0(
√
γ|x− y|)g̃i(y) ds(y);

1.2. HEBBIE(V̂i, w
(i)
n );

2. Find ũN
K(x, t) by (4.7)

end

Note that our approach leads to approximations which are functions
of continuous time and spatial arguments. Thus, setting these ap-
proximations into the heat equation and using the maximum principle
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one can get a posteriori estimates and construct various feedback algo-
rithms.
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