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ABSTRACT. We discuss an integral equation of first kind
which arises from an inverse problem for detecting steel rein-
forcement bars. Since the kernel of this integral equation is
analytic, our problem is severely ill-posed. We transform the
problem for this integral equation into a Cauchy problem for
Laplace’s equation. By using the conditional estimation of the
Cauchy problem for the elliptic operator, we prove that, un-
der suitable hypotheses, a logarithmic stabilizing estimation
holds for the solution of the integral equation. In addition,
this method can be used to determine discontinuous points of
the solution of the integral equation.

1. Introduction. In [3], Engl and Isakov discuss an inverse problem
for detecting steel reinforcement bars inside of concrete. Under suitable
hypotheses, they transform the problem into a first kind integral
equation with analytic kernel and prove the uniqueness of the solution
of the integral equation. From the theory of integral operators, we know
this integral equation is a severely ill-posed problem, since the singular
values of the integral operator decrease rapidly, e.g., [5, 13]. This kind
of integral equation is also proposed in geophysics, e.g., Ramm [9, 10].
The same integral equation is discussed by Lavrent’ev [6], Bukhgeim
[1] and Serikbaev [11].

In this paper, we transform the integral equation into a Cauchy
problem for Laplace’s equation, which has been studied extensively.
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The uniqueness in the integral equation is derived directly from the
uniqueness in the solution of a Cauchy problem for Laplace’s equation.
Next we discuss stability in solving the integral equation. For this,
our estimation requires some additional hypotheses such as that the
solution of the integral equation should have some extra smoothness.
Otherwise, the estimation will fail. In [11], under suitable hypotheses,
an estimate for a similar integral equation is obtained. By using Payne’s
results on the conditional stabilizing estimation of a Cauchy problem
for an elliptic equation, a logarithmic conditional estimate is obtained.
The key of our proof is to extend the conditional estimation in a Cauchy
problem for Laplace’s equation up to the boundary. Our method can
be used to distinguish the discontinuous points of the solution of the
integral equation, see Remark 4.2, and also for the original inverse
problem. This research is in progress.

This paper is organized as follows. In Section 2 we will introduce
some notations and pose the problem in a simplified manner. In
Section 3 we transform the integral equation into a Cauchy problem
for Laplace’s equation by adding one variable. Then our main results
are stated as Theorems 3.1 3.3 and proved. In the last section, we
prove a conditional stabilizing estimate for the original problem in [3]
by means of Theorem 3.2 and we also give some remarks on our method.

2. Notations and problems. Let D1 and D be bounded domains
in R3 and x = (x1, x2, x3) ∈ R3. Without loss of generality for our
problem, we can assume that D and D1 are simply connected domains
in R3 and D is compactly contained in the ball BR = {x ∈ R3| |x| <
R}. Throughout this paper, we assume that D1 ∩ BR = ∅. Wn,p(Ω)
and Wn,p

0 (Ω) are the usual Sobolev spaces, Lp =W 0,p.

In [3], the problem of identifying steel reinforcement bars in concrete
is transformed into the following first kind integral equation with
analytic kernel: ∫

D

k(x− y)µ(y) dy = f(x), x ∈ D1

where the kernel is

k(x) =
3

16π2

(
x2

|x|8 + 4
x2

1x2

|x|10
)
, x ∈ R3 \ {0}.



CONDITIONAL STABILIZING ESTIMATION 41

By simple calculation, the kernel function k can be written in the
form of

k(x) = Lx

(
1

|x|2
)
, for x ∈ R3 \ {0}

where x = (x1, x2, x3), |x|2 = x2
1+x

2
2+x

2
3 and Lx is a partial differential

operator defined by

Lx = − 1
256π2

∂

∂x2
∆2

x − 1
512π2

∂

∂x2

∂2

∂x2
1

∆x

where ∆x is the Laplace operator with respect to x.

Since D ∩D1 = ∅, the above integral equation can be rewritten as

Lx

∫
D

1
r2
xy

µ(y) dy = f(x), x ∈ D1

where rxy =
√
(x1 − y1)2 + (x2 − y2)2 + (x3 − y3)2.

The original integral equation is then reduced to

(2.1)
∫

D

1
r2
xy

µ(y) dy = f(x), x ∈ D1.

On the basis of the results for (2.1), in Section 4 we will study the
original integral equation.

Our present problem is then: given f(x) defined on D1, can we get a
conditional estimate for the solution of the equation (2.1)?

Since D ∩ D1 = ∅, the kernel (1/r2
xy) is an analytic function with

respect to x and y. From the theory of ill-posed problems, see [5, 13],
our problem is severely ill-posed and its numerical treatment is difficult.

3. Results and proofs. First we transform our problem into a
Cauchy problem for Laplace’s equation in a four-dimensional space.

We define a new function in the four-dimensional space R3 ×R by

(3.1) G(x, ξ) =
∫

D

1
r2
xy + ξ2

µ(y) dy, (x, ξ) ∈ R3 ×R.



42 J. CHENG AND M. YAMAMOTO

It is easy to verify that the kernel function g(x, y, ξ) = 1/(r2
xy +

ξ2) with respect to (x, ξ) ∈ R4 satisfies the following equation and
boundary conditions:(

∆x +
∂2

∂ξ2

)
g(x, y, ξ) = 0, R4 \ {x = y, ξ = 0}

g(x, y, 0) =
1
r2
xy

, x 	= y

∂g

∂ξ
(x, y, 0) = 0, x 	= y

where ∆x = ∂2/∂x2
1 + ∂2/∂x2

2 + ∂2/∂x2
3.

Henceforth, let Ω̂ = R4 \ {D × {ξ = 0}}. Then by (2.1), the
above properties of g(x, y, ξ) and D ∩ D1 = ∅, we find the function
G(x, ξ) satisfies the following Laplace’s equation and Cauchy boundary
conditions (

∆x +
∂2

∂ξ2

)
G(x, ξ) = 0, (x, ξ) ∈ Ω̂(3.2)

G(x, 0) =
∫

D

1
r2
xy

µ(y) dy ≡ f(x), x ∈ D1(3.3)

∂G

∂ξ
(x, 0) = 0, x ∈ D1.(3.4)

Notice that the boundary value (3.3) is nothing but the right side of
our integral equation (2.1).

Next we will establish the relation between the function G(x, ξ) and
the solution µ(y) of the integral equation.

Lemma 3.1. For x ∈ D and µ ∈ Lp(D), p > 1, we have, for ξ > 0,

(3.5)
∂G(·, ξ)

∂ξ
−→ −ω4µ(·) in Lp(D) as ξ → +0

where ω4 is the area of the unit sphere in R4.

Proof. Since G(x, ξ) is the single layer potential for Laplace’s operator
on the boundary D × {ξ = 0} in R4, the conclusion (3.5) follows
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straightforwardly from the potential theory, e.g., [2, 5] for a Hölder
continuous function µ. For µ ∈ Lp(D), we can derive (3.5) by Lp

boundedness of the double layer potential operator, e.g., [12] and
density of the space of Hölder continuous functions in Lp(D).

On the basis of the above result, our problem for the integral equation
can be treated as a Cauchy problem (3.2) (3.4) for Laplace’s equation.
So our problem can be formulated as

Problem. Given a function f(x) defined on D1, find a harmonic
function G(x, ξ) which satisfies the equations (3.2) (3.4). Then by
(3.5), the solution of the original integral equation can be found from
limξ→+0(∂G(x, ξ)/∂ξ), x ∈ D.

Therefore we can directly prove the uniqueness for the integral equa-
tion (2.1).

Theorem 3.1. There is at most one solution µ(x) in Lp(D), p > 1,
to the equation (2.1).

Proof. Since the equation is a linear equation, when proving the
uniqueness, we can assume f(x) = 0. By using the uniqueness in the
Cauchy problem (3.2) (3.4), e.g., [7], we know that G(x, ξ) = 0, ξ > 0.
From Lemma 3.1, we obtain µ(x) = 0.

Next we give some results on a Cauchy problem for Laplace’s equation
which will be used for our estimates below.

Lemma 3.2. Let Ω be an n-dimensional domain which is bounded
by a closed surface S, and Σ a part of S, W (z) a function defined in Ω
which satisfies

∆W (z) = 0, z ∈ Ω

and

|W (z)| ≤ M1, z ∈ Ω
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with a constant M1 > 0.

Then, for a given point ẑ inside Ω, the following inequality holds:

Max {|W (ẑ)|, |∇W (ẑ)|} ≤ K0M
2(1−δ)
1 [ε1 + ε2]δ

where δ ∈ (0, 1) and K0 are constants which depend on Σ and d(ẑ, S),
the distance between ẑ and S, and

ε1 =
∫

Σ

W 2 dσ,

ε2 =
∫

Σ

(
∂W

∂z1

∂W

∂z1
+
∂W

∂z2

∂W

∂z2
+
∂W

∂z3

∂W

∂z3

)
dσ =

∫
Σ

|∇W |2 dσ.

The proof can be found in Payne [7, p. 37].

It should be remarked that, if d(ẑ, S) tends to zero, then δ will tend
to zero and the constant K0 may be unbounded. This result is not
enough for our use, because the solution µ(x) is the boundary value of
the ξ-derivative of the harmonic function G(x, ξ). So we need to obtain
an estimate up to the boundary for the Cauchy problem.

Remark 3.1. The same estimation holds for ∂2W (ẑ)/∂zi∂zj and
higher derivatives of W at ẑ, [7, p. 43].

Henceforth we assume
(3.6) µ ∈ L1(D), ‖µ‖L1(D) ≤ M.

Here M > 0 is an a priori given constant.

We apply Lemma 3.2 to get estimates for the functions (∂G/∂ξ)(x, ξ),
(∂2G/∂ξ2)(x, ξ) and (∂3G/∂ξ3)(x, ξ).

Lemma 3.3. Let

g1(x) =
∂G

∂ξ
(x, 1), x ∈ BR

g2(x) =
∂2G

∂ξ2
(x, 1), x ∈ BR

g3(x, ξ) =
∂G

∂ξ
(x, ξ), (x, ξ) ∈ ∂BR × {0 ≤ ξ ≤ 1}.
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Then we have

‖gj‖L∞(BR), ‖g3‖C3(∂BR×[0,1]) ≤ M2

( ∫
D1

(|f(x)|2 + |∇f(x)|2) dx
)δ

.

where j = 1, 2; M2 > 0 and δ ∈ (0, 1) are constants which depend
on D1 and d(∂BR, D), the distance between ∂BR and D. (Since D is
compactly contained in BR, d(∂BR, D) is a positive constant.)

Lemma 3.4. Let

h1(x) =
∂2G

∂ξ2
(x, 1), x ∈ BR

h2(x) =
∂3G

∂ξ3
(x, 1), x ∈ BR

h3(x, ξ) =
∂2G

∂ξ2
(x, ξ), (x, ξ) ∈ ∂BR × {0 ≤ ξ ≤ 1}.

Then we have

‖hj‖L∞(BR), ‖h3‖C3(∂BR×[0,1]) ≤ M3

( ∫
D1

(|f(x)|2 + |∇f(x)|2) dx
)δ1

where j = 1, 2; M3 > 0 and δ1 ∈ (0, 1) are constants which depend on
D1 and d(∂BR, D).

Remark 3.2. In Lemmas 3.3 and 3.4, the functions g2(x) and h1(x)
are the same. For our convenience, we use the different notations.

For proofs of these lemmas, we can first verify that

|G(x, ξ)| ≤ M4{d((x, ξ), D × {ξ = 0})}−2, (x, ξ) ∈ Ω̂

with some constant M4 > 0. Here d((x, ξ), D × {ξ = 0}) is the
distance from (x, ξ) to D × {ξ = 0} and (x, ξ) ∈ Ω̂ implies that
d((x, ξ), D×{ξ = 0}) > 0. In fact, this can be proved directly from the
expression of G(x, ξ). Therefore we can apply Lemma 3.2 and obtain
Lemmas 3.3 and 3.4.
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Next we get an estimate for the Cauchy problem of Laplace’s equa-
tion. In this estimation, we can explicitly express the constants which
depend on the distance between the points and the boundary. We set
Γ = ∂BR × {0 ≤ ξ ≤ 1}.

Lemma 3.5. Consider the Cauchy problem for Laplace’s equation
in the domain BR × {0 < ξ < 1}:

∆w(x, ξ) = 0 in BR × {0 < ξ < 1}
w(x, ξ) = a3(x, ξ), (x, ξ) ∈ Γ
w(x, 1) = a1(x), x ∈ BR

∂w

∂ξ
(x, 1) = a2(x), x ∈ BR.

If w ∈ C3(BR×(0, 1]), ‖w(·, 0)‖L2(BR) ≤ C1, ‖ai‖L2(BR) ≤ C2, i = 1, 2,
and ‖a3‖C3(Γ) ≤ C3 with constants C1, C2 and C3, then we have

‖w(·, ξ)‖L2(BR) ≤ C(‖a1‖L2(BR) + ‖a2‖L2(BR) + ‖a3‖C3(Γ))ξ

where the constant C depends on Ci, 1 ≤ i ≤ 3, but not on ξ.

Proof. Let Ξ be a bounded domain in R4 with C3-boundary such
that ∂BR × {0 ≤ ξ ≤ 1} ⊂ ∂Ξ. Since a3 ∈ C3(Γ), by results on unique
solvability of the boundary value problems for elliptic equations and the
maximum principle, e.g., [4, 8], we can construct a harmonic function
v0(x, ξ) in Ξ such that

v0(x, ξ) = a3(x, ξ), x ∈ Γ(3.7)

and

‖v0‖C1(Ξ) ≤ C̃‖a3‖C3(Γ)(3.8)

where C̃ > 0 is a constant which depends on Ξ.

Let w1(x, ξ) = w(x, ξ)− v0(x, ξ). We see that

∆w1(x, ξ) = 0, x ∈ BR × {0 < ξ < 1}
w1(x, ξ) = 0, x ∈ ∂BR × {0 ≤ ξ ≤ 1}
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w1(x, 1) = a1(x)− v0(x, 1),
∂w1

∂ξ
(x, 1) = a2(x)− ∂v0

∂ξ
(x, 1), x ∈ BR.

Let us set â1(x) = a1(x) − v0(x, 1), â2(x) = a2(x) − (∂v0/∂ξ)(x, 1),
x ∈ BR. We then have

‖â1‖L2(BR) ≤ ‖a1‖L2(BR) + C4‖a3‖C3(Γ)(3.9)
‖â2‖L2(BR) ≤ ‖a2‖L2(BR) + C4‖a3‖C3(Γ).(3.10)

For α ∈ H2(BR), we define a function Ψ(ξ) by

(3.11) Ψ(ξ) =
∫

BR

α(x)w1(x, ξ) dx, 0 < ξ ≤ 1.

Since w1 is a harmonic function in BR × {0 < ξ ≤ 1} and vanishes
on ∂BR × {0 ≤ ξ ≤ 1}, by Green’s formula Ψ(ξ) satisfies

(3.12)

d2Ψ(ξ)
dξ2

= −
∫

BR

∆xα(x)w1(x, ξ) dx

−
∫

∂BR

∂w1(x, ξ)
∂n

α(x) dx, 0 < ξ ≤ 1.

Let us choose α = α(x) such that

∆xα(x) = −λα(x), x ∈ BR(3.13)
α(x) = 0, x ∈ ∂BR(3.14)

‖α‖L2(BR) = 1(3.15)

where ∆x = (∂2/∂x2
1) + (∂2/∂x2

2) + (∂2/∂x2
3).

Then the equation (3.12) can be transformed to

(3.16)
d2Ψ(ξ)
dξ2

= λΨ(ξ), 0 < ξ ≤ 1.

Moreover the initial conditions for Ψ(ξ) are

Ψ(1) =
∫

BR

α(x)â1(x) dx,(3.17)

dΨ
dξ
(1) =

∫
BR

α(x)â2(x) dx.(3.18)
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The problem (3.13) (3.15) is an eigenvalue problem for Laplace’s
equation on the ball BR. We enumerate the eigenvalues repeatedly
according to their multiplicities:

0 < λ0 ≤ λ1 ≤ λ2 ≤ · · ·

and denote the solution of (3.13) (3.15) with λ = λn by αn, n ≥ 0.

The solution of the equation (3.16) with initial conditions (3.17) and
(3.18) can be written as

(3.19) Ψ(ξ) = c exp(
√
λ(ξ − 1)) + d exp(−

√
λ(ξ − 1))

where

c =
1
2

( ∫
BR

α(x)â1(x) dx+

∫
BR

α(x)â2(x) dx√
λ

)

d =
1
2

( ∫
BR

α(x)â1(x) dx−
∫

BR
α(x)â2(x) dx√

λ

)
.

For λ = λn, we denote the function Ψ(ξ) by Ψn(ξ) and c, d by cn,
dn.

We notice that {αn(x)|n ≥ 0} is complete in L2(BR) and Ψn(ξ) is
the Fourier coefficient by (3.11), and for fixed ξ ∈ (0, 1], we have

w1(·, ξ) =
∞∑

n=0

(w1(·, ξ), αn)L2(BR)αn =
∞∑

n=0

Ψn(ξ)αn in L2(BR).

For ξ ∈ (0, 1], we write Ψn(ξ) as

Ψn(ξ) = cn exp(
√
λn(ξ − 1)) + dn exp(−

√
λn(ξ − 1))

≡ Ψ(1)
n (ξ) + Ψ(2)

n (ξ)

and we set

w
(1)
1 (x, ξ) =

∞∑
n=0

Ψ(1)
n (ξ)αn(x)

=
∞∑

n=0

cne
√

λn(ξ−1)αn(x)
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and

w
(2)
1 (x, ξ) =

∞∑
n=0

Ψ(2)
n (ξ)αn(x)

=
∞∑

n=0

dne
√

λn(1−ξ)αn(x).

Then w1 can be written as

w1(x, ξ) = w
(1)
1 (x, ξ) + w

(2)
1 (x, ξ).

We first estimate w(2)
1 . By the Parseval equality, we have

‖w(2)
1 (·, ξ)‖2

L2(BR) =
∞∑

n=0

|Ψ(2)
n (ξ)|2

=
∞∑

n=0

|dn|2 exp(−2
√
λn(ξ − 1))

=
∞∑

n=0

|dn|2ξ(dn exp(
√
λn))2(1−ξ).

The Hölder inequality yields

‖w(2)
1 (·, ξ)‖2

L2(BR) ≤
( ∞∑

n=0

d2
n

)ξ( ∞∑
n=0

(dn exp(
√
λn))2

)1−ξ

, 0 ≤ ξ ≤ 1.

We rewrite this as

(3.20)
‖w(2)

1 (·, ξ)‖L2(BR) ≤ ‖w(2)
1 (·, 1)‖ξ

L2(BR)‖w(2)
1 (·, 0)‖1−ξ

L2(BR),

0 ≤ ξ ≤ 1.

On the other hand, from the expressions for cn and dn, noting (3.9)
and (3.10), we obtain

‖w(2)
1 (·, 1)‖2

L2(BR) =
∞∑

n=0

d2
n ≤ C(‖â1‖L2(BR) + ‖â2‖L2(BR))

≤ C(‖a1‖L2(BR) + ‖a2‖L2(BR) + ‖a3‖C3(Γ))2(3.21)

‖w(1)
1 (·, 1)‖2

L2(BR) =
∞∑

n=0

c2n ≤ C(‖â1‖L2(BR) + ‖â2‖L2(BR))

≤ C(‖a1‖L2(BR) + ‖a2‖L2(BR) + ‖a3‖C3(Γ))2.(3.22)
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Here and henceforth C > 0 denotes a generic constant which is
independent of ξ.

Therefore, since ξ − 1 ≤ 0, for w(1)
1 , by (3.22) we have

(3.23)
‖w(1)

1 (·, ξ)‖L2(BR) ≤ ‖w(1)
1 (·, 1)‖L2(BR)

≤ C(‖a1‖L2(BR) + ‖a2‖L2(BR) + ‖a3‖C3(Γ)).

For ‖w(2)
1 (·, 0)‖L2(BR), using the assumption ‖w(·, 0)‖L2(BR) ≤ C1, and

by (3.8) and (3.22), we have

‖w(2)
1 (·, 0)‖L2(BR) ≤‖w1(·, 0)‖L2(BR)+‖w(1)

1 (·, 0)‖L2(BR)

≤‖w(·, 0)‖L2(BR)+‖v0(·, 0)‖L2(BR)+‖w(1)
1 (·, 1)‖L2(BR)

≤C1 + 2‖a3‖C3(Γ)(3.24)

+ C(‖a1‖L2(BR)+‖a2‖L2(BR)+‖a3‖C3(Γ)) ≡ M5.

Therefore, by (3.20), (3.21) and (3.24), we have

‖w(2)
1 (·, ξ)‖L2(BR) ≤‖w(2)

1 (·, 1)‖ξ
L2(BR)‖w(2)

1 (·, 0)‖1−ξ
L2(BR)

≤M5(‖a1‖L2(BR)+‖a2‖L2(BR)+‖a3‖C3(Γ))ξ.(3.25)

By (3.23) and (3.25), we have the conclusion

‖w1(·, ξ)‖L2(BR) ≤ ‖w(1)
1 (·, ξ)‖L2(BR) + ‖w(2)

1 (·, ξ)‖L2(BR)

≤ C(‖a1‖L2(BR) + ‖a2‖L2(BR) + ‖a3‖C2(Γ))ξ.

By recalling w = w1 + v0 and (3.8), the proof is complete.

Applying Lemma 3.5, we can get estimates for ∂G(x, ξ)/∂ξ and
∂2G(x, ξ)/∂ξ2.

Lemma 3.6. Let q > 3. If µ(x) is in W 2,q
0 (D), then

(3.26) sup
0<ξ≤1

∥∥∥∥∂2G(·, ξ)
∂ξ2

∥∥∥∥
L∞(BR)

≤ M6‖∆µ‖Lq(BR).



CONDITIONAL STABILIZING ESTIMATION 51

Here the constant M6 depends on q, but does not depend on µ. Here
and henceforth for µ ∈ W 2,q

0 (D), by taking the 0-extension of µ to BR,
we assume µ ∈ W 2,q

0 (BR).

Proof. Let p satisfy (1/p) + (1/q) = 1. Then 1 ≤ p < 3/2. We recall
that

g(x, y, ξ) = (|x− y|2 + ξ2)−1.

We will show that there exists M7 > 0 such that

‖g(x, ·, ξ)‖Lp(BR) ≤ M7, x ∈ D1, ξ ∈ (0, 1).

In fact, since 1 ≤ p < 3/2, we obtain

∫
|y|≤R

(
1

|x− y|2 + ξ2
)pdy =

∫
|x+ξz|≤R

(
ξ3

ξ2p(|z|2 + 1)p

)
dz

≤ ξ3−2p

∫
|z|≤(R+|x|)/ξ

1
(|z|2 + 1)p

dz

= C5ξ
3−2p

∫ (R+|x|)/ξ

0

r2dr

(r2 + 1)p

≤ C5ξ
3−2p

∫ 1

0

r2dr

(r2 + 1)p

+ C5ξ
3−2p

∫ (R+|x|)/ξ

1

r2dr

(r2 + 1)p
.

The first term is bounded, since 3 − 2p ≥ 0 and ξ is bounded. By
3− 2p > 0, the second term can be estimated as

ξ3−2p

∫ (R+|x|)/ξ

1

r2dr

(r2 + 1)p
≤ ξ3−2p

∫ (R+|x|)/ξ

1

r2−2p dr

= ξ3−2p 1
3− 2p

((R+ |x|)3−2pξ2p−3 − 1)

=
1

3− 2p
((R+ |x|)3−2p − ξ3−2p) < ∞.
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In addition, for ξ ≥ 0, since the kernel function g(x, y, ξ) satisfies
∆xg(x, y, ξ) + (∂2g(x, y, ξ)/∂ξ2) = 0, we have

∂2G

∂ξ2
(x, ξ) =

∫
BR

µ(y)
∂2g(x, y, ξ)

∂ξ2
dy

= −
∫

BR

µ(y)∆xg(x, y, ξ) dy.

Since µ ∈ W 2,q
0 (BR), by using the integration by parts, we have

∂2G

∂ξ2
(x, ξ) = −

∫
BR

µ(y)∆xg(x, y, ξ) dy

= −
∫

BR

µ(y)∆yg(x, y, ξ) dy

= −
∫

BR

∆yµ(y)g(x, y, ξ) dy.

Therefore, we get

|∂
2G

∂ξ2
(x, ξ)| ≤

∫
BR

|g(x, y, ξ)∆yµ(y)| dy

≤
( ∫

BR

|g(x, y, ξ)|p dy
)1/p( ∫

BR

|∆yµ(y)|q dy
)1/q

= ‖g(x, ·, ξ)‖Lp(BR)‖∆µ‖Lq(BR).

and the lemma is proved.

Now we state our main theorem.

Theorem 3.2. Suppose µ(y) is the solution of the equation (2.1),
and let q > 3. If µ ∈ W 2,q

0 (D) and ‖∆µ‖Lq(D) ≤ M0, where M0 is a
given constant, then we have the following conditional estimate for µ

‖µ‖L2(BR) ≤ C
1

| ln(1/ε)|
where ε =

∫
D1

|f(x)|2 dx + ∫
D1

|∇f(x)|2 dx. The constant C depends
on M0.
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Proof. Without loss of generality, we may assume that ε < 1. By
Lemma 3.1, for x ∈ D, we have

(3.27)
∂G(x, ξ)

∂ξ
−→ −ω4µ(x), ξ → +0.

It follows that

−ω4µ(x) =
∂G(x, ξ)

∂ξ
−

∫ ξ

0

∂2G(x, ρ)
∂ρ2

dρ.

So we have

ω4‖µ‖L2(BR) ≤
∥∥∥∥∂G(·, ξ)∂ξ

∥∥∥∥
L2(BR)

+
∥∥∥∥

∫ ξ

0

∂2G(·, ρ)
∂ρ2

dρ

∥∥∥∥
L2(BR)

≤
∥∥∥∥∂G(·, ξ)∂ξ

∥∥∥∥
L2(BR)

+
∫ ξ

0

∥∥∥∥∂2G(·, ρ)
∂ρ2

∥∥∥∥
L2(BR)

dρ.

We use Minkowski’s inequality, [12, p. 271], in the last inequality.

Since ‖∂G(·, 0)/∂ξ‖L2(BR) is bounded, by Lemmas 3.3 3.5, we have∥∥∥∥∂G(·, ξ)∂ξ

∥∥∥∥
L2(BR)

≤ C6ε
δξ

where δ ∈ (0, 1) is chosen in Lemma 3.3. In view of Lemma 3.6,
we can obtain sup0<ξ≤1 ‖∂2G(·, ξ)/∂ξ2‖L∞(BR) ≤ M0M6 and applying
Lemmas 3.3 3.5, we have∥∥∥∥∂2G(·, ρ)

∂ρ2

∥∥∥∥
L2(BR)

≤ C7ε
δ1ρ

where δ1 ∈ (0, 1) is chosen in Lemma 3.4. Therefore,

‖µ‖L2(BR) ≤ C6ε
δξ + C7

∫ ξ

0

εδ1ρ dρ

≤ C6ε
δ +

C7

δ1

(
− 1
ln ε

+
εδ1ξ

ln ε

)

≤ C

(
− 1
ln ε

)
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with a constant C independent of µ. Thus the theorem is proved.

Next we will show that under certain conditions the estimate in our
theorem may be the best possible estimate.

Theorem 3.3. Consider the following Cauchy problem for Laplace’s
equation on the domain BR × {0 < ξ < 1}

∆u = 0, BR × {0 < ξ < 1}(3.28)
u = 0, ∂BR × {0 ≤ ξ ≤ 1}(3.29)
u = g1, BR × {ξ = 1}(3.30)

∂u

∂ξ
= g2 BR × {ξ = 1}.(3.31)

If ‖u(·, 0)‖L2(BR) ≤ M8 and ‖∂u(·, 0)/∂ξ‖L2(BR) ≤ M8 with some
constant M8 > 0, then we have

‖u(·, 0)‖L2(BR) ≤ C
1

| ln(1/ε)|
where C is a constant which depends on M8, and we set ε =
‖g1‖2

L2(BR) + ‖g2‖2
L2(BR). Moreover, this is the best possible estimate.

Proof. The first part can be proved by the same way as the proof of
Theorem 3.2. We omit it here.

We will prove the second part. If this is not the best possible estimate,
then we can assume that the following estimate holds for u(x, 0):

(3.32) ‖u(·, 0)‖L2(BR) = o

(
1

ln(1/ε)

)

for all u 	= 0 satisfying (3.28) (3.31) and ‖u(·, 0)‖L2(BR) ≤ M8,
‖∂u(·, 0)/∂ξ‖L2(BR) ≤ M8 with some constant M8 > 0.

Let
un(x, ξ) =

1√
λn

e−
√

λnξαn(x)

where αn(x) and λn are defined in the proof of Lemma 3.5, see also
(3.13) (3.15).
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Then we have

‖un(·, ξ)‖L2(BR) =
1√
λn

e−
√

λnξ,

∥∥∥∥∂un

∂ξ
(·, ξ)

∥∥∥∥
L2(BR)

= e−
√

λnξ

‖un(·, 0)‖L2(BR) =
1√
λn

.

Therefore we have

ε =
(

1√
λn

+ 1
)
e−

√
λn .

So we have

‖un(·, 0)‖L2(BR) ln
1
ε
=

√
λn − ln((1/

√
λn) + 1)√

λn

−→ 1,

n → ∞.

This contradicts (3.32), completing the proof.

Remark 3.3. It should be noticed that Theorem 3.3 indicates the best
possible estimate only for the Cauchy problem (3.28) (3.31), not for µ.
However this theorem suggests that the estimate in Theorem 3.2 is the
best possible.

4. Discussion of the inverse problem of detecting reinforce-
ment bars. In this section we will show the uniqueness and a con-
ditional stabilizing estimate for the problem in [3] by means of The-
orem 3.2. Furthermore, we give some remarks on our problems and
method.

4.1. Uniqueness. By our method, we can give an alternative proof
of uniqueness in Lp(D) (p > 1) for the linearized inverse problem in [3]
as follows.

We can define H(x, ξ) as

H(x, ξ) = −Lx

∫
D

1
r2
xy + ξ2

µ(y) dy
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and the relation between H(x, ξ) and µ(y) is∫
R3

ψ(x)
∂H(x, ξ)

∂ξ
dx −→ −ω4

∫
R3

Lxψ(x)µ(x) dx, ξ → +0

where ψ(x) is an arbitrarily rapidly decreasing function, e.g., [14].

Similarly to (3.2) (3.4), we can verify that H(x, ξ) satisfies the
following equations.

∆H(x, ξ) = 0, (x, ξ) ∈ R4 \ {D × {ξ = 0}}
H(x, 0) = f(x), x ∈ D1

∂H

∂ξ
(x, 0) = 0, x ∈ D1.

If f(x) = 0, from the uniqueness of the Cauchy problem for Laplace’s
equation, we have

H(x, ξ) = 0, (x, ξ) ∈ R4 \ {D × {ξ = 0}}.
So we have ∫

R3
Lxψ(x)µ(x) dx = 0.

Since the support set of µ(x) is contained in BR, we have that, for any
rapidly decreasing function ψ(x) in R3,

(4.1)
∫

R3
Lxψ(x)µ(x) dx =

∫
BR

Lxψ(x)µ(x) dx = 0.

Finally we will show that µ(x) = 0, x ∈ BR.

From the expression of Lx, we have

Lx = L1L2L2

where L1 = −1/256π(∂/∂x2), L2 = ∆x + 1/2(∂2/∂x2
1) and L3 = ∆x.

Let the fundamental solutions for L2 and L3 be E2 and E3, respec-
tively. For any given function ψ̂(x) ∈ C∞(BR1), where R1 > R, we
construct a rapidly decreasing function ψ(x) such that

Lxψ(x) = ψ̂(x), x ∈ BR.
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Suppose that ρ(x) ∈ C∞
0 (R3), 0 ≤ ρ(x) ≤ 1 satisfies

ρ(x) = 1, |x| ≤ R

ρ(x) = 0, |x| ≥ R1.

Let

ψ(x) = ρ(x)
∫

R3
ρ(z)E3(x, z)

∫
R3

E2(z, y)ψ1(y) dy dz

where
ψ1(y) = −256πρ(y)

∫ y2

0

ψ̂(y1, σ, y3) dσ.

It is easy to verify ψ(x) ∈ C∞
0 (R3) and

Lxψ(x) = ψ̂(x), x ∈ BR.

Therefore, from (4.1), we can find that µ(x) = 0, x ∈ BR.

4.2. Stabilizing estimate. We turn to the conditional stability for
the original integral equation

(4.2) Lx

∫
D

1
r2
xy

µ(y) dy = f(x), x ∈ D1.

In this case we have to assume more regularity on µ:

µ ∈ W 7,q
0 (BR)(4.3)

‖∆Lxµ‖Lq(BR) ≤ M9(4.4)

where q > 3 and M9 > 0 are constants.

Then we have

Theorem 4.1. Under (4.3) and (4.4), if µ is the solution of the
integral equation (4.2), then

(4.5) ‖µ‖W 4,2(BR) ≤ C
1

| ln(1/ε)|
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where ε =
∫

D1
|f(x)|2 dx + ∫

D1
|∇f(x)|2 dx and C is a constant which

depends on M9.

Proof. Similarly to the proof of Theorem 3.2, we may assume that
ε < 1. Since

−Lx
1
r2
xy

= Ly
1
r2
xy

, x ∈ D1, y ∈ D.

By (4.2), we have∫
D

−Ly

(
1
r2
xy

)
µ(y) dy = f(x), x ∈ D1.

Recalling (4.3) and the definition of Ly, and applying integration by
parts, we obtain ∫

D

1
r2
xy

Lyµ(y) dy = f(x), x ∈ D1.

Therefore, by (4.2) and (4.3), we can apply Theorem 3.2 for (Lyµ)(y),
not µ(y), so that

(4.6)
∥∥∥∥
(
∆2 +

1
2
∂2

∂x2
1

∆
)
φ

∥∥∥∥
L2(BR)

≤ C
1

ln(1/ε)

where φ(x) = (∂µ(x)/∂x2), x ∈ BR.

We set

φ̃ =
(
∆+

1
2
∂2

∂x2
1

)
φ.

By (4.3) and (4.6), we see that

‖∆φ̃‖L2(BR) ≤ C
1

ln(1/ε)

φ̃|∂BR
= 0.

Therefore, by the regularity properties of elliptic equations, e.g.,
Theorems 8.12 and 8.13 in [4] , we obtain

‖φ̃‖W 2,2(BR) ≤ C
1

ln(1/ε)
,
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namely, ∥∥∥∥
(
∆+

1
2
∂2

∂x2
1

)
φ

∥∥∥∥
W 2,2(BR)

≤ C
1

ln(1/ε)
.

By (4.3), we have φ|∂BR
= 0. Applying the regularity of elliptic

equations, we get

‖φ‖W 4,2(BR) ≤ C
1

ln(1/ε)
.

Next we get the estimate for µ. For any point x = (x1, x2, x3) ∈ BR,
we have a point (x1, x̃2, x3) ∈ ∂BR. Then we have

(4.7) µ(x) =
∫ x2

x̃2

φ(x1, z, x3) dz.

Applying the estimate for φ, we have

‖µ‖W 4,2(BR) ≤ C
1

ln(1/ε)

and the proof is complete.

4.3. Remarks.

Remark 4.1. From our treatment, we know that the local values of
function µ(x) can be obtained pointwise from G(x, ξ). It is possible
to get some local conditional estimate for µ(x), in the case where the
global estimation will fail. Here “global estimate” means a uniform one
for all x ∈ D.

Remark 4.2. Our treatment also can distinguish discontinuous points
of µ.

Let D = Br, r < R, and µ ∈ C∞(D), µ(x0) 	= 0 and µ(x) = 0,
|x| > r, where x0 = (r, 0, 0). By Lemma 3.1, we have

∂G((x1, 0, 0), ξ)
∂ξ

−→ 0, x1 > r

∂G((x1, 0, 0), ξ)
∂ξ

−→ −ω4µ(x1, 0, 0), x1 < r,
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as ξ −→ +0. (Since µ ∈ C∞(D), the convergence is pointwise, e.g.,
[5]).

If we define gξ(x1) = ∂ G((x1, 0, 0), ξ)/∂ξ, then we have

gξ(x1) −→ ĝ(x1), ξ −→ +0

where ĝ(x1) = −ω4µ(x1, 0, 0), x1 < r and ĝ(x1) = 0, x1 > r.
Since µ(x1, 0, 0) 	= 0, ĝ(x1) has a jump at x1 = r. It can be
seen that, for x1 = r, limξ→+0(∂gξ(x1)/∂x1) is unbounded, i.e.,
limξ→+0(∂2G(x, ξ)/(∂x1∂ξ))|(r,0,0) is unbounded. Moreover for other
points x1 	= r in the neighborhood of x1 = r, it can be proved that
limξ→+0(∂gξ(x1)/∂x1) = −ω4(∂µ(x1, 0, 0)/∂x1) which is bounded.

This means that, at a discontinuous point x0, if ξ is small enough, the
value ∇(∂G(x0, ξ)/∂ξ) is greater than the value ∇(∂G(x, ξ)/∂ξ) for the
continuous points x 	= x0. So we can find the locations of discontinuous
points from values at the points on the plane ξ = ζ, where ζ is small
enough. Since these points are interior points for the Cauchy problem
we consider, we can have the Hölder estimate for these points. So it
is possible to develop a numerical technique for locating discontinuities
in this way.
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