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ON THE FREDHOLM INDICES OF ASSOCIATED
SYSTEMS OF WIENER-HOPF EQUATIONS

A. BÖTTCHER, S.M. GRUDSKY AND I.M. SPITKOVSKY

ABSTRACT. Every matrix function A ∈ L∞
n×n(R) gener-

ates a Wiener-Hopf integral operator on L2
n(R+), the direct

sum of n copies of L2(R+). The associated Wiener-Hopf in-

tegral operator is the operator W (Ã) where Ã(x) := A(−x).
We discuss the connection between the Fredholm indices
Ind W (A) and Ind W (Ã). Our main result says that if A has
at most a finite number d of discontinuities on R ∪ {∞} and

both W (A) and W (Ã) are Fredholm, then

|Ind W (A) + Ind W (Ã)| ≤ d(n − 1);

conversely, given integers κ and ν satisfying |κ+ν| ≤ d(n−1),
there exist A ∈ L∞

n×n(R) with at most d discontinuities such

that W (A) is Fredholm of index κ and W (Ã) is Fredholm of
index ν.

1. Introduction and main results. Given a measurable subset Ω
of the real line R, we denote by Lp

n×n(Ω) and L
p
n(Ω) the n× n matrix

functions with entries in Lp(Ω) and the column vectors of height n with
components in Lp(Ω), respectively. For A ∈ L∞

n×n(R), the convolution
operator with the symbol A is the operator

C(A) : L2
n(R) −→ L2

n(R), f �−→ F−1AFf,

where F is the Fourier transform,

(Ff)(x) :=
∫
R

f(t)eixt dt, x ∈ R.

Let R+ = (0,∞). The compression of C(A) to L2
n(R+) is referred to

as the Wiener-Hopf operator with the symbol A and will be denoted
by W (A). Thus,

W (A) : L2
n(R+) −→ L2

n(R+), f �−→ PF−1AFf,
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P being the orthogonal projection of L2
n(R) onto L2

n(R+). For A in
L∞

n×n(R), we define Ã ∈ L∞
n×n(R) by

Ã(x) := A(−x), x ∈ R.

The Wiener-Hopf operator W (Ã) is called the associated operator of
W (A). A moment’s thought reveals that W (Ã) is unitarily equivalent
to the compression of C(A) to L2

n(R−), where R− = (−∞, 0).
If A is the Fourier transform of an L1 matrix function, A = Fk with

k ∈ L1
n×n(R), then W (A) and W (Ã) can be written in the form

(W (A)f)(t) =
∫ ∞

0

k(t− s)f(s) ds, t > 0,

(W (Ã)f)(t) =
∫ ∞

0

k(s− t)f(s) ds, t > 0.

The symbol A(x) = −sign x (n = 1) induces the Cauchy singular
integral operator on R+,

(W (A)f)(t) =
1
πi

∫ ∞

0

f(s)
s− t ds, t > 0,

and in the corresponding formula for W (Ã) we have to replace s− t by
t− s. Finally, if A(x) = eix (n = 1), then

(W (A)f)(t) =
{
f(t− 1) for t > 1,

0 for 0 < t < 1,
(1.1)

(W (Ã)f)(t) = f(t+ 1) for t > 0.(1.2)

It is well known that the answers to many questions on the operator
W (A) depend not only on the properties of W (A) itself but also on
the properties of the associated operator W (Ã). This is, for instance,
the case when studying the finite section method for W (A), see [4, 6]
or the Fredholm determinants of the truncations of W (A), see [18].
Moreover, questions on the connection between left and right Wiener-
Hopf factorizations of the matrix function A are always questions on
the relation between certain properties ofW (A) andW (Ã), see [5, 11].
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Recall that a bounded linear operator T : H → H is said to be
Fredholm if its range ImT is closed and the dimensions of the kernel
KerT := {f ∈ H : Tf = 0} and the cokernel CokerT := H/ImT are
finite. In that case the Fredholm index of T is

IndT := dimKerT − dimCokerT.

In the scalar case (n = 1), W (Ã) is the transpose operator of W (A)
and therefore W (A) is Fredholm of index κ if and only if W (Ã) is
Fredholm of index −κ. This paper concerns the connection between
the Fredholm indices of W (A) and W (Ã) in the matrix case, n ≥ 2.
To be more precise, we consider the following questions:

(a) Does the Fredholmness of W (A) imply that W (Ã) is also Fred-
holm?

(b) If W (A) and W (Ã) are Fredholm, does it follow that IndW (A)
is equal to −IndW (Ã)?

The answers to both questions are known to be in the affirmative in
case A belongs to certain classes of symbols, for example, if

A ∈ [C(Ṙ) +H∞
+ (R)]n×n ∪ [C(Ṙ) +H∞

− (R)]n×n ∪ PQCn×n,

see [4, 5, 11]. Here C(Ṙ) stands for the continuous functions on
R with finite and equal limits at ±∞, H∞

± (R) is the algebra of the
(nontangential) boundary values of analytic and bounded functions
in C± := {z ∈ C : ±Im z > 0} and PQC denotes the piecewise
quasicontinuous functions.

We will show that the two questions nevertheless have negative
answers for general A ∈ L∞

n×n(R), n ≥ 2.

Let AP be the C∗-algebra of all continuous almost periodic functions
on R, that is, the smallest closed subalgebra of L∞(R) which contains
the set ∪λ∈R{eλ} where eλ(x) := eiλx.

Proposition 1.1. There exist A ∈ AP2×2 such that W (A) is
invertible but W (Ã) is not Fredholm.

Thus the answer to question (a) is negative within APn×n, n ≥ 2.
If F ∈ APn×n and W (F ) is Fredholm, then W (F ) is automatically
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invertible, see [9] and [10]. Hence, for A ∈ APn×n the answer to
question (b) remains positive.

It is well known that much evil with Wiener-Hopf operators begins
with semi-almost periodic symbols, see, for example, [3, p. 61], that is,
with symbols in the smallest closed subalgebra SAP of L∞(R) which
contains AP ∪ C(R), where C(R) stands for the continuous functions
on R which have finite limits at −∞ and +∞. This experience is
supported by the following result, which shows that the answer to
question (b) is already negative within SAPn×n, n ≥ 2.

Proposition 1.2. There are A ∈ SAP2×2 such that W (A) is
Fredholm of index 0 and W (Ã) is Fredholm of index 1.

This proposition suggests to sharpen question (b) as follows:

(c) Given two integers κ and ν, is there a matrix function A such that
W (A) is Fredholm of index κ and W (Ã) is Fredholm of index ν?

An answer is given by the following theorem, which is the main result
of this paper. Notice that A ∈ L∞

n×n(R) is said to have at most k
discontinuities on R ∪ {∞} if there are x1, . . . , xk ∈ R ∪ {∞} such
that A is continuous on (R ∪ {∞})\{x1, . . . , xk}. We call a point
x0 ∈ R ∪ {∞} a harmless discontinuity of A if the matrix function A
is discontinuous at x0 and if there exist an open neighborhood U of x0

and a matrix function

B ∈ [C(Ṙ) +H∞
+ (R)]n×n ∪ [C(Ṙ) +H∞

− (R)]n×n

∪ PQCn×n ∪APn×n

such that B is continuous on U\{x0} and A|U = B|U . A discontinuity
which is not harmless will be called a severe discontinuity.

Theorem 1.3. If A ∈ L∞
n×n(R) has at most a finite number m

of harmless discontinuities and at most a finite number d of severe
discontinuities on R ∪ {∞} and both W (A) and W (Ã) are Fredholm,
then

|IndW (A) + IndW (Ã)| ≤ d(n− 1).

Conversely, given integers κ and ν satisfying |κ+ ν| ≤ d(n− 1), there
exist A ∈ L∞

n×n(R) with at most d severe discontinuities and no other
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discontinuities on R∪{∞} such that W (A) is Fredholm of index κ and
W (Ã) is Fredholm of index ν.

Here is an obvious consequence of Theorem 1.3.

Corollary 1.4. Given any natural number n ≥ 2 and any two
integers κ and ν, there exist A ∈ L∞

n×n(R) with at most finitely many
discontinuities such that W (A) is Fredholm of index κ and W (Ã) is
Fredholm of index ν.

As functions in SAP have at most a discontinuity at ∞, we also
arrive at the following straightforward consequence of Theorem 1.3,
which shows that Theorem 1.2 cannot be “improved.”

Corollary 1.5. There is no A ∈ SAP2×2 such that W (A) is
Fredholm of index 0 and W (Ã) is Fredholm of index 2.

Of course, Theorem 1.3 even implies that if A ∈ SAPn×n, W (A) is
Fredholm of index κ andW (Ã) is Fredholm of index ν, then necessarily
|κ+ ν| ≤ n− 1. This leads to the following question:

(d) Given integers κ and ν satisfying |κ+ν| ≤ n−1, is there a matrix
function A ∈ SAPn×n such that W (A) is Fredholm of index κ and
W (Ã) is Fredholm of index ν?

The answer is yes.

Theorem 1.6. If κ and ν are any integers subject to the condition
|κ + ν| ≤ n − 1, then there exist A ∈ SAPn×n such that W (A) is
Fredholm of index κ and W (Ã) is Fredholm of index ν.

The rest of the paper is devoted to the proofs of the results quoted
above. The simple proof of Proposition 1.1 is in Section 2. To prove
Theorem 1.3, we will have recourse to Wiener-Hopf factorization, and in
this context passage from the real line to the unit circle makes things
more comfortable. In Section 3 we therefore translate Theorem 1.3
into the language of Toeplitz operators, and then we give a proof of the
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Toeplitz analogue of the first assertion of Theorem 1.3.

The paper contains two proofs of the second part of Theorem 1.3. The
first of these proofs is given in Section 4. The approach of Section 4 is
based on the well-known Fredholm criterion for Wiener-Hopf operators
with piecewise continuous symbols. Proposition 4.4 in conjunction with
a few standard arguments implies the second part of Theorem 1.3. This
proposition does even more: it shows that we can find symbols A which
are analytic in the plane minus a finite number of points such that
W (A) and W (Ã) have prescribed indices. In other words, the symbols
we are looking for are in fact not as exotic as one might expect at the
first glance.

In Section 5 we first cite a Fredholm criterion and an index formula
for Wiener-Hopf operators with “Wiener” SAP symbols. This result
is then used to prove Theorem 1.6. Clearly, Theorem 1.6 and standard
localization techniques yield a second proof of the second assertion
of Theorem 1.3. Notice, however, that the machinery employed in
Section 5 is much heavier than the tools we are using in Section 4.
Finally, Proposition 1.2 is an obvious consequence of Theorem 1.6.

2. Almost periodic symbols. This short section contains the
proof of Proposition 1.1. We remark that this proposition is in fact a
triviality and that it is certainly known to specialists. However, we have
not found it explicitly in the literature, although it is already noted in
[16, p. 1736] that there are A ∈ L∞

2×2(R) such that W (A) is invertible
and W (Ã) is not Fredholm.

It is well known and easily seen that

(2.1) W (F−GF+) =W (F−)W (G)W (F+)

whenever F± ∈ [H∞
± (R)]n×n and G ∈ L∞

n×n(R). The collection of all
F± ∈ [H∞

± (R)]n×n for which F−1
± also belongs to [H∞

± (R)]n×n will
be denoted by G[H∞

± (R)]n×n. From (2.1) we infer in particular that

W (F±) is invertible if F± ∈ G[H∞
± (R)]n×n.

Proof of Proposition 1.1. Put

A(x) =
(
eix 1
0 e−ix

)
.
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Then A = A−A+ with

(2.2) A−(x) =
(

1 0
e−ix −1

)
, A+(x) =

(
eix 1
1 0

)
,

and since A± ∈ G[H∞
± (R)]2×2, we see that W (A) is invertible. On the

other hand, Ã = H−DH+ with

H−(x) =
(
1 0
0 1

)
,

D(x) =
(
e−ix 0
0 eix

)
,

H+(x) =
(
1 eix

0 1

)
.

As H± ∈ G[H∞
± (R)]2×2, the Fredholmness of W (Ã) would imply that

W (D) is Fredholm. However, from representations (1.1) and (1.2) we
infer that W (D) has infinite kernel and cokernel dimensions.

3. Toeplitz operators and Wiener-Hopf factorization. Our
proofs of Theorems 1.3 and 1.6 make use of Wiener-Hopf factorization,
and therefore it is convenient to pass from the real lineR to the complex
unit circle T or, equivalently, from Wiener-Hopf integral operators to
Toeplitz operators.

Let G be a matrix function in L∞
n×n(T). Denote by Gk ∈ Cn×n,

k ∈ Z, the Fourier coefficients of G. Further, let l2(Z+,Cn) stand for
the Cn-valued l2 space over Z+ := {0, 1, 2, . . . }. The operator induced
on l2(Z+,Cn) by the matrix

(3.1)



G0 G−1 G−2 · · ·
G1 G0 G−1 · · ·
G2 G1 G0 · · ·
· · · · · · · · · · · ·




is called the Toeplitz operator with the symbol G and is denoted by
T (G).

Given A ∈ L∞
n×n(R), define A# ∈ L∞

n×n(T) by

A#(t) = A
(
i
1 + t
1− t

)
, t ∈ T\{1}.
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Rosenblum and Devinatz were probably the first to observe that there
exists an isometric isomorphism U of L2

n(R+) onto l2(Z+,Cn) such
that

W (A) = U−1T (A#)U,

see, e.g., [4, p. 400]. This implies the following.

Lemma 3.1. The Wiener-Hopf integral operator W (A) is Fredholm
of index κ if and only if the Toeplitz operator T (A#) is Fredholm of
index κ.

If A ∈ L∞
n×n(R), we have (Ã)#(t) = A#(1/t) for t ∈ T. Thus, the

associated operator of the Toeplitz operator T (G) is defined as T (G̃)
with G̃(t) := G(1/t), t ∈ T. Notice that if T (G) is given by the matrix
(Gj−k)∞j,k=0, then T (G̃) has the matrix (Gk−j)∞j,k=0.

The following two theorems summarize a few basic and well-known
properties of Toeplitz operators. Theorem 3.2 (a) is due to Gohberg and
Krein, and Theorem 3.2 (c) is a version of the so-called local principle of
Simonenko. Theorem 3.3 is known from the work of Gohberg, Krupnik,
Douglas, Sarason, Coburn, Feldman and Karlovich. Full proofs are in
[4, 5, 11].

Theorem 3.2. (a) If G ∈ [C(T)]n×n, then T (G) is Fredholm if and
only if detG has no zeros on T. In that case, IndT (G) is minus the
winding number of detG about the origin.

(b) If G,H ∈ L∞
n×n(T) and if at each point of T at least one of the

matrix functions G and H is continuous, then T (GH)− T (G)T (H) is
a compact operator.

(c) Let G ∈ L∞
n×n(T) and suppose for each τ ∈ T there exist an open

subarc Γτ ⊂ T containing τ and a matrix function Gτ ∈ L∞
n×n(T)

such that G = Gτ on Γτ and T (Gτ ) is Fredholm. Then T (G) is also
Fredholm.

A matrix function G ∈ L∞
n×n(T) is said to have m harmless and d

severe discontinuities on T if G = A# where A has m harmless and d
severe discontinuities on R ∪ {∞}.
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Theorem 3.3. If G ∈ L∞
n×n(T) has at most finitely many harmless

discontinuities and both T (G) and T (G̃) are Fredholm, then IndT (G) =
−IndT (G̃).

Let Lp(T), 0 < p < ∞, be the usual Lebesgue space of complex
valued functions. Put

D+ := {z ∈ C : |z| < 1},
D− := {z ∈ C : |z| > 1} ∪ {∞}.

The Hardy space Hp
±(T), 0 < p <∞, is defined as the set of all analytic

functions f in D± for which

‖f‖p
p := sup

0<r±1<1

1
2π

∫ 2π

0

|f(reiθ)|p dθ <∞.

We remark that ‖ · ‖p is a norm for p ≥ 1. As usual, we identify
functions in Hp

±(T) with their (nontangential) boundary values on T.
We denote by G[Hp

±(T)]n×n the matrix functions F± in [Hp
±(T)]n×n

for which F−1
± also belongs to [Hp

±(T)]n×n.

Let R be the rational functions without poles on T. We think of R
as a subset of L2(T). For f ∈ R, the Cauchy singular integral

(Sf)(t) :=
1
πi

∫
T

f(τ )
τ − t dτ, t ∈ T

exists in the principal value sense, and it is well known that S extends
to a bounded operator on L2(T).

A right Wiener-Hopf factorization in L2(T) of a matrix function
G ∈ L∞

n×n(T) is a representation

G(t) = G−(t)M(t)G+(t), M(t) = diag (t�1 , . . . , t�n)

for almost all t ∈ T such that (1, . . . , (n are integers, G± are in
G[H2

±(T)]n×n and the operator G−1
+ SG+I is bounded on L2

n(T). No-
tice that if f ∈ Rn, then G−1

+ SG+f is a well-defined element of
L1

n(T). That G−1
+ SG+I is bounded on L2

n(T) means that the map
f �→ G−1

+ SG+f is actually a map of Rn into L2
n(T) which extends
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to a bounded linear operator of L2
n(T) into itself. In what follows we

abbreviate “right Wiener-Hopf factorization in L2(T)” simply to “L2

factorization.” The sum (1 + · · ·+ (n is referred to as the total index
of the given L2 factorization.

The following theorem goes back to Gohberg and Krein [7] and to
Simonenko [13, 14, 15]. Full proofs are also in [5] and [11].

Theorem 3.4. Let G ∈ L∞
n×n(T). The operator T (G) is Fredholm

of index κ if and only if G is invertible in L∞
n×n(T) and G has an L2

factorization with the total index −κ.

The next two results provide us with refinements of Theorem 3.4.
These results are also well known, see, e.g., [17], and we give proofs
only for the reader’s convenience.

Proposition 3.5. Let G be a matrix function in L∞
n×n(T) and

suppose that G extends to an analytic matrix function in some open set
U ⊂ C such that U ∩ T �= ∅. If G = G−MG+ is an L2 factorization,
then G± and G−1

± are analytic in U\{0}.

Proof. We have G+ =M−1G−1
− G almost everywhere on T. Define

Ψ(z) :=
{
G+(z) for z ∈ (D+ ∪T) ∩ U ,
M−1(z)G−1

− (z)G(z) for z ∈ (D− ∪ T) ∩ U .
The assertion will follow once we have shown that Ψ is analytic in
U\{0}.
To show that Ψ is analytic in U\{0}, we employ Morera’s theorem.

Thus, let δ be the positively oriented circumference of a triangle
∆ ⊂ U\{0}. If δ ⊂ D+ or δ ⊂ D−, then

∫
δ
Ψ(z) dz = 0 because

Ψ is analytic in D+ ∩ U and D− ∩ U . If δ intersects T, we can write
δ = δ+ ∪ δ−, where

δ+ = (δ ∩ D+) ∪ γ, δ− = (δ ∩D−) ∪ (−γ),
γ is the union of positively oriented subarcs of T and −γ is γ with the
opposite orientation. Clearly,

(3.2)
∫

δ+

Ψ(z) dz =
∫

δ+

G+(z) dz.
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The matrix function G+ ∈ [H2
+(T)]n×n ⊂ [H1

+(T)]n×n can be approx-
imated by analytic polynomials P+

m in the H1
+(T) norm as closely as

desired, and because ∫
δ+

P+
m(z) dz = 0,

it follows that (3.2) also equals zero. Analogously,

(3.3)
∫

δ−
Ψ(z) dz =

∫
δ−
M−1(z)G−1

− (z)G(z) dz,

and G−1
− ∈ [H2

−(T)]n×n ⊂ [H1
−(T)]n×n can be approximated in

[H1
−(T)]n×n by matrix functions of the form

P−
m(z) = p0 + p1z

−1 + · · ·+ pmz
−m

as closely as wanted. As M−1P−
mG is analytic in U\{0}, we get

∫
δ−
M−1(z)P−1

m (z)G(z) dz = 0,

which implies that (3.3) is also zero.

In summary,
∫

δ
Ψ(z) dz = 0 for every triangle curve δ = ∂∆ with

∆ ⊂ U\{0}. Hence, by Morera’s theorem, Ψ is analytic in U\{0}.

Every real number α > 0 can be uniquely written in the form
α = [α] + {α} where [α] is an integer and {α} ∈ [0, 1). We denote
by Cα the [α] times continuously differentiable function on T whose
[α]th derivative satisfies a Hölder condition with the exponent {α}.

Proposition 3.6. Let G ∈ L∞
n×n(T), let Γ ⊂ T be an open arc, and

suppose G is Cα, α > 0, on Γ. If T (G) is Fredholm, then G possesses
an L2 factorization G = G−MG+ such that G± and G−1

± are also Cα

on Γ.

Proof. The result is well known in the case where Γ = T. So assume
that Γ is a proper subarc of T, that is, Γ = {eiθ : η < θ < β} with
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β − η < 2π. Let γ ⊂ Γ be any arc of the form γ = {eiθ : η0 < θ < β0}
with η < η0 < β0 < β. We must show that G has an L2 factorization
G = G−MG+ such that G±, G−1

± are Cα on γ.

Since T (G) is Fredholm, the matrix function G is invertible in
L∞

n×n(T). Hence, we can find an n×n matrix function H whose entries
are Cα on all of T such that H|γ = G|γ and detH has no zeros on
T. As T (H) is Fredholm and as the proposition is true for Γ = T,
there is an L2 factorization H = H−NH+ with H±, H−1

± in Cα on T.
Theorem 3.4 gives us an L2 factorization G = G−MG+ with G±, G−1

±
in H2

±(T). Because H = G on γ, it follows that

(3.4) MG+H
−1
+ = G−1

− H−N on γ.

Put

Ψ(z) :=

{
M(z)G+(z)H−1

+ (z) for z ∈ D+\{0},
G−1

− (z)H−(z)N(z) for z ∈ D−\{∞},
and let Ψ be given by (3.4) on γ.

The matrix functions G+, G
−1
− , H

−1
+ , H− can be approximated in L2

by matrix functions of the form

P+
m(z) = p

+
0 + p+1 z + · · ·+ p+mzm,

P−
m(z) = p

−
0 + p−1 z

−1 + · · ·+ p−mz−m,

Q+
m(z) = q

+
0 + q+1 z + · · ·+ q+mzm,

Q−
m(z) = q

−
0 + q−1 z

−1 + · · ·+ q−mz−m,

respectively, as closely as desired. Since MP+
mQ

+
m and P−

mQ
−
mN are

analytic in D+\{0} and D−\{∞} and converge in L1 to MG+H
−1
+

and G−1
− H−N , respectively, we can employ Morera’s theorem as in the

proof of Proposition 3.5 to conclude that Ψ is analytic in C\{0}.
Because G+ =M−1ΨH+ on γ, we see that G+ is Cα on γ. Since G+

cannot have zeros on γ (Theorem 3.2), it follows that G−1
+ is also Cα

on γ. Finally, since G− = GG−1
+ M−1, we arrive at the conclusion that

G±
− are Cα on γ.

The following proposition is the Toeplitz analogue of the first part of
Theorem 1.3. Recall that G̃(t) = G(1/t) for t ∈ T.
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Proposition 3.7. If G ∈ L∞
n×n(T) has at most a finite number

m of harmless discontinuities and at most a finite number d of severe
discontinuities on T and if T (G) and T (G̃) are Fredholm, then

|IndT (G) + IndT (G̃)| ≤ d(n− 1).

Proof. By Theorem 3.3, there is nothing to prove for d = 0. Let us
now assume that G has exactly one discontinuity on T, namely a severe
discontinuity at t0 ∈ T. We can approximate G in L∞

n×n(T) as closely
as desired by matrix functions which are C1 on T\{t0}. Since both the
Fredholmness and the index are stable under uniform approximation,
we may a priori assume that G is C1 on T\{t0}. Applying Theorem 3.4
and Proposition 3.6 to G and G̃, we get factorizations

(3.5) G = G−MG+ = H+NH−

where G±1
+ , H±1

+ ∈ [H2
+(T)]n×n, G±1

− , H±1
− ∈ [H2

−(T)]n×n,

M(t) = diag (t�1, . . . , t�n), ( := (1 + · · ·+ (n = −IndT (G),
N(t) = diag (tλ1 , . . . , tλn), λ := λ1 + · · ·+ λn = IndT (G̃),

and G±1
+ , H±1

+ , G±1
− , H±1

− are C1 on T\{t0}. Taking the determinant
of (3.5), we obtain

detG−(t)t� detG+(t) = detH+(t)tλ detH−(t),

whence

(3.6) t�−λϕ+(t) = ϕ−(t), ϕ+ :=
detG+

detH+
, ϕ− :=

detH−
detG−

.

Obviously, detG±1
+ ∈ H2/n

+ (T) and detH±1
− ∈ H2/n

− (T). This shows
that ϕ± ∈ H1/n

± (T). Since ϕ±(z) �= 0 for z ∈ D± and ϕ± are nonzero
and continuous on T\{t0}, there are functions ψ± such that

(3.7) (ψ±(z))n = ϕ±(z) for z ∈ D± ∪ (T\{t0})
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and ψ± are analytic in D± and continuous on T\{t0}. Because
ϕ± ∈ H1/n

± (T) and hence

sup
0<r±1<1

∫ 2π

0

|ψ±(reiθ)| dθ = sup
0<r±1<1

∫ 2π

0

|ϕ±(reiθ)|1/n dθ <∞,

it results that ψ± ∈ H1
±(T). Analogously, one can show that ψ−1

± are
in H1(T).

Our aim is to prove that |(− λ| ≤ n− 1. Contrary to what we want,
let us assume that |( − λ| ≥ n. For the sake of definiteness, suppose
( − λ = n + α with an integer α ≥ 0 (the case ( − λ ≤ −n can be
reduced to the case considered here by passage to adjoint operators).
Let tα/n be any branch of the function which is continuous on T\{t0}.
From (3.6) and (3.7) we obtain

(t tα/nψ+(t))n = (ψ−(t))n for t ∈ T\{t0}.

Taking into account that t tn/αψ+(t) and ψ−(t) are continuous on
T\{t0}, we therefore get

t tα/nψ+(t) = cψ−(t) for t ∈ T\{t0},

where c ∈ C satisfies cn = 1. We now employ an old trick, namely, we
write

tα/n = (t− t0)α/n(1− t0/t)−α/n,

which is valid with appropriately chosen branches of (t − t0)α/n and
(1− t0/t)−a/n. It follows that

(3.8) t(t− t0)α/nψ+(t) = c(1− t0/t)α/nψ−(t) for t ∈ T\{t0}.

Since ψ± ∈ H1
±(T) and

(t− t0)α/n ∈ H∞
± (T), (t− t0/t)α/n ∈ H∞

− (T),

we see that the lefthand side of (3.8) belongs to H1
+(T), while the

righthand side of (3.8) is a function in H1
−(T). As H1

+(T) ∩H1
−(T) is

the set of all constant functions, the function

t(t− t0)α/nψ+(t) ∈ H1
+(T)
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must be constant. This function vanishes at the origin, whence

t(t− t0)α/nψ+(t) = 0 for t ∈ T\{t0},
which is impossible because ψ−1

+ ∈ H1
+(T). This contradiction com-

pletes the proof in the case where G has exactly one severe discontinuity
and no other discontinuities.

If G has exactly d severe discontinuities and exactly m harmless
discontinuities T, we can write

G = G1 · · ·GdGd+1 · · ·Gd+m

where each Gj has exactly one discontinuity on T, which is a severe
discontinuity for 1 ≤ j ≤ d and a harmless discontinuity for d + 1 ≤
j ≤ d +m. A simple application of Theorems 3.2 and 3.3 shows that
all T (Gj) and T (G̃j) are Fredholm together with T (G) and T (G̃). Also
by Theorem 3.2, the operators

T (G)−
d+m∏
j=1

T (Gj) and T (G̃)−
d+m∏
j=1

T (G̃j)

are compact. Consequently, from what was already proved, we get

|IndT (G) + IndT (G̃)| =
∣∣∣∣

d∑
j=1

IndT (Gj) +
d∑

j=1

IndT (G̃j)

+
d+m∑

j=d+1

IndT (Gj) +
d+m∑

j=d+1

IndT (G̃j)
∣∣∣∣

=
∣∣∣∣

d∑
j=1

IndT (Gj) +
d∑

j=1

IndT (G̃j)
∣∣∣∣

≤
d∑

j=1

|IndT (Gj) + IndT (G̃j)|

≤ d(n− 1).

Combining Lemma 3.1 and Proposition 3.7 we obtain the first asser-
tion of Theorem 1.3.
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4. Bounded symbols with prescribed total indices. We now
proceed to the proof of the second part of Theorem 1.3.

A matrix function F ∈ L∞
n×n(R) is said to be uniformly positive

definite if there is an ε > 0 such that (F (x)ζ, ζ) ≥ ε‖ζ‖2 for all ζ ∈ Cn

and almost all x ∈ R.

Theorem 4.1. A matrix function F ∈ L∞
n×n(R) is uniformly positive

definite if and only if it can be represented in the form F = H+H
∗
+ with

H+ ∈ G[H∞
+ (R)]n×n.

For a proof of this well-known fact, see [5] or [11].

Recall that C(R) is the set of all continuous functions g on R which
have finite limits g(±∞) at ±∞. The following well-known theorem
provides us with a Fredholm criterion and an index formula for Wiener-
Hopf operators with symbols in [C(R)]n×n.

Theorem 4.2. Let F ∈ [C(R)]n×n. For W (F ) to be Fredholm it is
necessary and sufficient that detF (x) �= 0 for all x ∈ R ∪ {±∞} and
that none of the eigenvalues ξ1, . . . , ξn of F−1(−∞)F (+∞) is located
on (−∞, 0]. If W (F ) is Fredholm, then

(4.1) IndW (F ) = − 1
2π

{arg detF}∞−∞ +
1
2π

n∑
j=1

arg ξj ,

where {arg detF}∞−∞ stands for the increment of any continuous branch
of the argument arg detF (x) of detF (x) as x moves from −∞ to +∞
and where arg ξj is the argument of ξj taken in (−π, π).

Proofs can be found in [4, 5, 11].

We know from Lemma 3.1 and Theorem 3.3 that if A ∈ [C(R)]n×n

and W (A) as well as W (Ã) are Fredholm, then

(4.2) IndW (A) + IndW (Ã) = 0.

It should be mentioned that this can also be easily deduced from
Theorem 4.2. Indeed, let ξj be the eigenvalues of A−1(−∞)A(+∞).
Since

Ã−1(−∞)Ã(+∞) = A−1(+∞)A(−∞),



FREDHOLM INDICES 17

the eigenvalues ξ̃j of Ã−1(−∞)Ã(+∞) are ξ̃j = 1/ξj , whence arg ξj =
− arg ξ̃j . From Theorem 4.2 we therefore obtain

IndW (A) = − 1
2π

{arg detA}∞−∞ +
1
2π

n∑
j=1

arg ξj ,

IndW (Ã) =
1
2π

{arg detA}∞−∞ − 1
2π

n∑
j=1

arg ξj ,

and addition of these two equalities gives (4.2).

The third main ingredient of our proof is the following beautiful result
by Ballantine [1, 2], also see [8, p. 295].

Theorem 4.3 (Ballantine). A matrix M ∈ Cn×n is the product of
four positive definite matrices in Cn×n if and only if

detM > 0 and M /∈
⋃
λ<0

{λIn},

where In is the n× n identity matrix.

The following result is the key to the proof of the second assertion of
Theorem 1.3.

Proposition 4.4. Let n ≥ 2 be a natural number, and let ν ∈
{−(n − 1), . . . , n − 1}. Then there exists an A ∈ L∞

n×n(R) which is
continuous on R and extends to an analytic function in C\{−i, i} such
that W (A) is invertible and W (Ã) is Fredholm of index ν.

Proof. Without loss of generality, assume ν ∈ {1, . . . , n−1}; the case
ν = 0 is trivial and the case ν ∈ {−1, . . . ,−(n − 1)} can be disposed
of by passage to adjoint operators. Let k := n − ν, and let M be the
n× n diagonal matrix

M := diag (e−2πik/n, . . . , e−2πik/n).

By Theorem 4.3, there are four positive definite matrices B(±∞),
C(±∞) such that

M = C−1(+∞)B−1(+∞)B(−∞)C(−∞).
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Define B,C ∈ [C(R)]n×n by

B(x) = (1− u(x))B(−∞) + u(x)B(+∞),
C(x) = (1− u(x))C(−∞) + u(x)C(+∞),

where u(x) := (π/2+arctanx)/π. Clearly, B and C extend to analytic
functions in C\{−i, i}. Since 0 ≤ u ≤ 1 on R, we also see that there is
an ε > 0 such that

(B(x)ζ, ζ) ≥ ε‖ζ‖2 and (C(x), ζ, ζ) ≥ ε‖ζ‖2

for all x ∈ R and all ζ ∈ Cn. From Theorem 4.1 we therefore deduce
the existence of B+, C+ ∈ G[H∞

+ (R)]n×n such that B = B+B
∗
+ and

C = C+C
∗
+. Taking into account Lemma 3.1 and Proposition 3.5, it is

easily seen that B+, C+ extend to analytic functions in C\{−i, i}.
For a real number δ ∈ (0, 1/2), define Λ ∈ [C(R)]n×n by

Λ(x) := diag
((

x− i
x+ i

)δ

, . . . ,

(
x− i
x+ i

)δ)
, x ∈ R.

The branch of ((x− i)/(x+ i))δ is chosen so that

Λ(−∞) = In and Λ(+∞) = e2πiδIn.

The operatorW (((x− i)/(x+ i))δ) is known to be invertible, and hence
W (Λ) is also invertible.

Put A := B∗
+ΛC+. Clearly, W (A) = W (B∗

+)W (Λ)W (C+) is invert-
ible, A is continuous on R, and A extends to an analytic function in
C\{−i, i}. Since

W (B̃+)W (Ã)W (C̃∗
+) =W (B̃+)W (B̃∗

+Λ̃C̃+)W (C̃∗
+)

=W (B̃+B̃
∗
+Λ̃C̃+C̃

∗
+)

=W (B̃Λ̃C̃),

W (Ã) is Fredholm if and only if W (B̃Λ̃C̃) is Fredholm, in which case
both operators have the same index.
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As B̃Λ̃C̃ ∈ [C(R)]n×n, the Fredholm properties of W (B̃Λ̃C̃) can be
studied with the help of Theorem 4.2. It is clear that det(B̃Λ̃C̃) does
not vanish on R ∪ {±∞}. Moreover,

− 1
2π

{arg det(B̃Λ̃C̃)}∞−∞ =
1
2π

{arg det(BΛC)}∞−∞

=
1
2π

{arg detB}∞−∞ +
1
2π

{arg det Λ}∞−∞(4.3)

+
1
2π

{arg detC}∞−∞

= 0 +
1
2π
n · 2πδ + 0 = nδ.

We have

(B̃Λ̃C̃)−1(−∞)(B̃Λ̃C̃)(+∞)

= (BΛC)−1(+∞)(BΛC)(−∞)
= C−1(+∞)Λ−1(+∞)B−1(+∞)B(−∞)Λ(−∞)C(−∞)
= C−1(+∞)e−2πiδInB

−1(+∞)B(−∞)InC(−∞)

= e−2πiδM = diag (e2πi(−k/n−δ), . . . , e2πi(−k/n−δ)).

The eigenvalues of this matrix are

ξ1 = · · · = ξn = e2πi(−k/n−δ).

Now choose δ ∈ (0, 1/2) so that −1 < −k/n − δ < −1/2 (recall that
k ∈ {1, . . . , n− 1}). Then 0 < 2π(−k/n− δ) + 2π < π, and hence the
argument arg ξj lying in (−π, π) is 2π(−k/n − δ) + 2π. This together
with (4.3) and Theorem 4.2 yields that W (B̃Λ̃C̃) is Fredholm and that

IndW (B̃Λ̃C̃) = nδ + n(−k/n− δ) + n = n− k = ν.

We are now in a position to complete the proof of Theorem 1.3.
Combining Proposition 4.4 and Lemma 3.1, we get matrix functions
G ∈ L∞

n×n(T) with at most a discontinuity at t0 = 1 such that T (G) is
invertible and thus Fredholm of index zero, whereas T (G̃) is Fredholm
with any prescribed index in {−(n− 1), . . . , n− 1}. On replacing G(t)
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by G(t/t0) with t0 ∈ T, which amounts to replacing the matrix (3.1)
by




G0 t0G−1 t20G−2 · · ·
t−1
0 G1 G0 t0G−1 · · ·
t−2
0 G2 t−1

0 G1 G0 · · ·
· · · · · · · · · · · ·




= D−1
t0



G0 G−1 G−2 · · ·
G1 G0 G−1 · · ·
G2 G1 G0 · · ·
· · · · · · · · · · · ·


Dt0

with Dt0 := diag (1, t0, t20, · · · ), we can achieve that G has its dis-
continuity at an arbitrarily given point t0 ∈ T. Using Lemma 3.1
to go back to the real line, we obtain A ∈ L∞

n×n(R) with at most
a discontinuity at a given point x0 ∈ R ∪ {∞} such that W (A) is
Fredholm of index zero and W (Ã) is Fredholm of prescribed index
ν ∈ {−(n − 1), . . . , n − 1}. Considering products A := A1 · · ·Ad in
which each Aj has at most one discontinuity and Aj , Ak have no com-
mon discontinuity for j �= k and taking into account Theorem 3.2, we
arrive at A ∈ L∞

n×n(R) with at most d discontinuities on R ∪ {∞}
for which W (A) is Fredholm of index zero and W (Ã) is Fredholm of
prescribed index ν ∈ {−d(n− 1), . . . , d(n− 1)}. Replacing A(x) by

A(x) diag
((

x+ i
x− i

)κ

, 1, . . . , 1
)
,

we get the desired A’s with

IndW (A) = κ

and
IndW (Ã) ∈ {−κ− d(n− 1), . . . ,−κ+ d(n− 1)}.

5. Semi-almost periodic symbols. In this section we prove
Theorem 1.6. For this purpose we have to recall some well-known
results on Wiener-Hopf operators with almost and with semi-almost
periodic symbols.
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Let APW denote the collection of all almost periodic functions f
with absolutely convergent Fourier series:

f(x) =
∑

j

fje
iλjx, λj ∈ R,

∑
j

|fj | <∞.

For F ∈ APWn×n, the matrix coefficient corresponding to λj = 0 is
referred to as the mean value of F and is denoted by M(F ); in other
terms,

M(F ) = lim
T→∞

1
2T

∫ T

−T

F (x) dx.

A matrix function F ∈ APWn×n is said to possess a right canonical
APW factorization if it can be represented in the form F = F−F+

where
F±F−1

± ∈ APWn×n ∩ [H∞
± (R)]n×n,

and is said to have a left canonical APW factorization if it can be
written in the form F = H+H− where

H±H−1
± ∈ APWn×n ∩ [H∞

± (R)]n×n.

It is well known that if a right canonical APW factorization of F
exists, then the factors F−, F+ are uniquely determined up to the
transformation F− �→ F−C, F+ �→ C−1F+ with an arbitrary in-
vertible matrix C ∈ Cn×n. Thus, if F has a right canonical APW
factorization F = F−F+, then the so-called right geometric mean
dr(F ) := M(F−)M(F+) is well defined. Analogously, in case F has
a left canonical APW factorization F = H+H−, the left geometric
mean is the well-defined matrix dl(F ) := M(H+)M(H−).

Theorem 5.1. For F ∈ APWn×n the following are equivalent:

(i) W (F ) is Fredholm;

(ii) W (F ) is invertible;

(iii) F has a right canonical APW factorization.

We denote by SAPWn×n the set of all matrix functions F of the form

F (x) = (1− u(x))Fl(x) + u(x)Fr(x) + F0(x)
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where u ∈ C(R) is a fixed function such that 0 ≤ u ≤ 1, u(−∞) = 0,
u(+∞) = 1, where Fl, Fr ∈ APWn×n, and where F0 ∈ [C(Ṙ)]n×n is
a matrix function for which F0(∞) is the zero matrix. The matrix
functions Fl and Fr are called the almost periodic representatives of
F at −∞ and +∞, respectively. One can show that SAPWn×n is a
dense subset of SAPn×n, see [12].

Theorem 5.2. Let F ∈ SAPWn×n. The operatorW (F ) is Fredholm
if and only if the following three conditions are satisfied:

(a) detF (x) �= 0 for all x ∈ R;

(b) Fl and Fr have right canonical APW factorizations;

(c) none of the eigenvalues ξ1, . . . , ξn of (dr(Fl))−1dr(Fr) lies on
(−∞, 0].
In that case the index of W (F ) is given by formula (4.1).

The scalar versions of Theorems 5.1 and 5.2 are due to Coburn,
Douglas, Gohberg, Feldman and Sarason. In the matrix case, these
theorems were established in [9] and [10].

We remark that Theorem 5.2 immediately gives the SAP version of
the first assertion of Theorem 1.3, that is, the inequality

|IndW (A) + IndW (Ã)| ≤ n− 1.

Indeed, since SAPWn×n is dense in SAPn×n, it suffices to prove the
inequality for A in SAPWn×n. In that case we obtain from Theorem 5.2
that

IndW (A) = − 1
2π

{arg detA}∞−∞ +
1
2π

n∑
j=1

arg ξj ,

IndW (Ã) =
1
2π

{arg detA}∞−∞ +
1
2π

n∑
j=1

arg ξ̃j ,

where arg ξj and arg ξ̃j are certain numbers in (−π, π). Adding these
two equalities we get

|IndW (A) + IndW (Ã)| < 1
2π
(nπ + nπ) = n,
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which completes the proof.

If F ∈ APWn×n is uniformly positive definite, then F has both a left
and a right canonical APW factorization, the geometric means dl(F )
and dr(F ) are positive definite matrices and, obviously,

detdl(F ) = detdr(F ) = exp
(
1
2π

∫ π

−π

log detF (eiθ) dθ
)
.

The following result shows that the equality of the determinants is the
only general relation between the left and right geometric means of
uniformly positive definite matrix functions in SAPWn×n.

Lemma 5.3. Given any two positive definite matrices Dl and Dr in
Cn×n for which detDl = detDr, there exists a 2π-periodic uniformly
positive definite matrix function F in APWn×n such that

(5.1) dl(F ) = Dl and dr(F ) = Dr.

Proof. It is again more convenient to pass from the real line to the
unit circle T. Let W denote the Wiener algebra of all functions g on
T with absolutely convergent Fourier series,

g(t) =
∑
n∈Z

gn(tn), t ∈ T with
∑
n∈Z

|gn| <∞,

and put W± := W ∩H∞
± (T). A right, respectively left, canonical W

factorization of G ∈Wn×n is a representation G = G−G+, respectively
G = K+K−, with G±, G−1

± in W±
n×n, respectively with K±,K−1

± in
W±

n×n. Given a right canonical W factorization of G = G−G+, we
define the right geometric mean dr(G) as G−(∞)G+(0). Notice that
the functions in W± extend to analytic functions in D±. We also
remark that the definition of dr(G) is independent of the particular
W factorization G = G−G+. Analogously, if G = K+K− is a
left canonical W factorization, the left geometric mean is defined by
dl(G) = K+(0)K−(∞).

We will construct a positive definite matrix functionG ∈Wn×n which
has left and right canonicalW factorizationsG = K+K− = G−G+ such
that

(5.2) dl(G)=K+(0)K−(∞)=Dl, dr(G)=G−(∞)G+(0)=Dr.
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Letting F (x) := G(eix), we get a 2π-periodic and uniformly positive
definite matrix function F ∈ APWn×n. Clearly,

F (x) = K+(eix)K−(eix) = G−(eix)G+(eix)

are canonical APW factorizations of F , and since

dl(F ) = M(K+(eix))M(K−(eix)) = K+(0)K−(∞),
dr(F ) = M(G−(eix))M(G+(eix)) = G−(∞)G+(0),

we arrive at (5.1).

To construct G, let U be a unitary matrix diagonalizing the marix
D

−1/2
l DrD

−1/2
l , that is,

D
−1/2
l DrD

−1/2
l = U∗ΛU.

Suppose we have a positive definite matrix function R for which

(5.3) dl(R) = I, dr(R) = Λ.

Then G := D
1/2
l U∗RUD1/2

l is a positive definite matrix function
satisfying (5.2). Indeed,

dl(G) = D
1/2
l U∗dl(R)UD

1/2
l = D1/2

l U∗UD1/2
l = Dl,

dr(G) = D
1/2
l U∗dr(R)UD

1/2
l = D1/2

l U∗ΛUD1/2
l

= D1/2
l D

−1/2
l DrD

−1/2
l D

1/2
l = Dr.

In other words, it suffices to construct a positive definite matrix
function R having property (5.3).

Observe that Λ = diag (λ1, . . . , λn) with λj > 0 and

λ1 · · ·λn = detΛ = det (D−1/2
l DrD

−1/2
l ) = 1.

We will be looking for R in the form

(5.4) R(z) = (I + zA)(I + zA)∗, |z| = 1,
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where A is a matrix all eigenvalues of which belong to D+. Then, of
course, (5.4) is a left canonical W factorization of R and dl(R) = I.
Suppose that at the same time

(5.5) R(z) = (Λ1/2 + zB)∗(Λ1/2 + zB), |z| = 1,

and Λ−1/2B has all its eigenvalues in D+. Then (5.5) delivers a right
canonical W factorization of R with dr(R) = Λ1/2Λ1/2 = Λ.

For (5.4) and (5.5) to hold simultaneously it is necessary and sufficient
that

I +AA∗ = Λ+B∗B and A = Λ1/2B,

which in turn leads to the equation

(5.6) I + Λ1/2BB∗Λ1/2 = Λ+B∗B.

Let B be the matrix of a weighted shift transformation,

B =




0 b1 0 · · · 0
0 0 b2 · · · 0

. . .
0 0 0 · · · bn−1

bn 0 0 · · · 0


 ,

with positive weights bj to be specified later. Then

BB∗ = diag (b21, . . . , b
2
n), B∗B = diag (b2n, b

2
1, . . . , b

2
n−1),

so that (5.6) takes the form

(5.7)
1 + λj+1b

2
j+1 = λj+1 + b2j , j = 1, . . . , n− 1,

1 + λ1b
2
1 = λ1 + b2n.

Choose a number ε ∈ (0, 1) smaller than all the products
∏k

j=2 λj ,
k = 2, . . . , n, and define bj by the recursive relation

(5.8)
b1 = (1− ε)1/2,

bj+1 = (1− λ−1
j+1(1− b2j ))1/2, j = 1, . . . , n.
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An easy induction argument shows that, with our choice of ε we have
1 − b2j < λj+1. Therefore, formula (5.8) indeed defines a sequence of
positive weights bj . Also (5.8) implies the first n−1 equalities in (5.7);
the last equality in (5.7) holds because 1 − b2n = (λ2 · · ·λn)−1(1 − b21)
and λ1 · · ·λn = 1.

Thus, we have found a solution B of (5.6). Letting A = Λ1/2B, we
get the two factorizations (5.5) and (5.6).

It remains to show that the eigenvalues of Λ±1/2B are all located in
D+. To this end, notice that Λ±1/2B are weighted shifts simultaneously
with B and that

det (Λ±1/2B) = detB = (−1)n−1b1 · · · bn.

Therefore, the eigenvalues of Λ±1/2B lie on the circle centered at the
origin and having radius r = (b1 · · · bn)1/n. But, according to (5.8), all
bj are smaller than 1. Hence, r < 1 as well.

Proof of Theorem 1.6. Pick any k ∈ {−(n−1), . . . , n−1}. Let J1 = J2

be the n× n Jordan block with the eigenvalue eiπk/n. By Ballantine’s
Theorem 4.3, there are four positive definite matrices H1, H2, H3, H4

such that
J1J2 = H−1

1 H2H
−1
3 H4.

Clearly,

1 = det (J1J2) = detH−1
1 detH2detH−1

3 detH4.

This implies that we can find α > 0 and β > 0 such that

det (αH1) = det (βH4), det (αH2) = det (βH3).

Put D1 = αH1, D2 = αH2, D3 = βH3, D4 = βH4. We then have

(5.9) J1J2 = D−1
1 D2D

−1
3 D4, detD1 = detD4, detD2 = detD3,

and letting X := D−1
3 D4J

−1
2 , we therefore get

(5.10) J1 = D−1
1 D2X, J2 = X−1D−1

3 D4.
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As the matrices D1, D2, D3, D4 are positive definite, we deduce from
the last two equalities of (5.9) and from Lemma 5.3 that there are
2π-periodic Fl, Fr ∈ APWn×n such that

dr(Fl) = D1, dl(Fl) = D4, dl(Fr) = D2, dr(Fr) = D3.

Put Al = Fl, Ar = FrX, choose any A0 ∈ [C(Ṙ)]n×n such that A0(∞)
is the zero matrix, and consider

A(x) = (1− u(x))Al(x) + u(x)Ar(x) +A0(x).

It is easily seen that A0 can be chosen so that detA(x) is nonzero for
all x ∈ R. By construction and by (5.10),

(dr(Al))−1dr(Ar) = D−1
1 D2X = J1

(dr(Ãl))−1dr(Ãr) = (dl(Ar))−1dl(Al) = X−1D−1
3 D4 = J2.

The eigenvalues ξj of J1 and ξ̃j of J2 are all equal to eiπk/n. Thus,
Theorem 5.2 implies that W (A) and W (Ã) are Fredholm and that

IndW (A) + IndW (Ã) = − 1
2π

{arg detA}∞−∞ +
1
2π

n∑
j=1

arg ξj

+
1
2π

{arg detA}∞−∞ +
1
2π

n∑
j=1

arg ξ̃j

=
1
2π
n · π k

n
+

1
2π
n · π k

n
= k.

Consequently, IndW (A)+ IndW (Ã) may assume any prescribed value
k between −(n− 1) and n− 1. On replacing A(x) by

A(x)diag
((

x− i
x+ i

)µ

, 1, . . . , 1
)

with appropriate integers µ we can finally obtain A in SAPn×n, and
even in SAPWn×n, such that IndW (A) and IndW (Ã) are any integers
κ and ν subject to the constraint |κ+ ν| ≤ n− 1.

Acknowledgments. The research of Böttcher and Grudsky into
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