
JOURNAL OF INTEGRAL EQUATIONS
AND APPLICATIONS
Volume 13, Number 4, Winter 2001

SOLUTIONS OF INTEGRO-DIFFERENTIAL
EQUATIONS ON THE HALF-AXIS WITH

RAPIDLY DECREASING NON-DIFFERENCE KERNELS

ANNA MITINA

ABSTRACT. The purpose of this paper is to investigate
the set of all solutions of the integro-differential equation
(1) and to obtain a convenient algorithm for calculation of
any solution. Both objectives are obtained in the case when
the integral kernel R1(x) is even and both kernels R1(x)
and R2(x) in the equation rapidly decrease as x approaches
infinity, although the integrals

φi(0) ≡
∫ ∞

−∞
Ri(x) dx, i = 1, 2

are not assumed to be small. To be sure that integrals in the
equation converge, the sought for solutions are supposed to
satisfy a condition of the type:

|y(x)| < const · eλx.

The asymptotic behavior of solutions as x → ∞ is defined
by the number φ1(0). If φ1(0) < 1, then there is a positive

number p� such that all solutions grow proportionally to ep�x

except specific ones which tend to zero as e−p�x. If φ1(0) = 1,
then all solutions grow as linear functions except the specific
ones which tend to a constant as x → ∞. If φ1(0) > 1, there
exists a purely imaginary number p� such that the asymptotic
behavior of solutions as x → ∞ is described by an oscillating
function which is a linear combination of two specific solutions

which behave as ei|p�|x and e−i|p�|x, respectively.

In all these cases the condition

y′(0) = µy(0)

is found which ensures a solution to be specific.

In many physical applications involving the considered
problem it is the coefficient µ which is important. To eval-
uate the parameter µ an asymptotic series convergent to µ is
found.
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1. Formulation of the problem. This paper deals with integro-
differential equations of the following type:

(1)
− d2y

dx2
+ y =

∫ ∞

0

R1(x− t)y(t) dt

+
∫ ∞

0

R2(x+ t)y(t) dt, x > 0.

Equations of this kind arise in various fields of physics. As such we
may mention radiative equilibrium of stars [5], anomalous skin- effect in
metals [4], [6] and [12], stationary neutron density in multiplying media
[1], [7] and [8], and wave propagation in acoustic and electrodynamic
waveguides [11], [13] and [14]. In all these fields of research there are
many particular problems which lead to the equation (1) with R2 ≡ 0.
These cases have been exhaustively treated with the standard Wiener-
Hopf technique. However, there are many problems which cannot be
simplified in this way. That is why equation (1) in its general form
deserves an independent investigation.

An existence and uniqueness theorem for the Cauchy problem was
proved in [10]. An integro-differential equation where the integrand is
the product of a differential operator on an unknown function and a
kernel of the same type as in (1), as well as systems of such equations
were considered in [2] and [3].

Boundary problems and asymptotic behavior of solutions are treated
in the present paper as well as in [7], [9] and [10].

This paper deals with both Cauchy and boundary problems for a spe-
cial class of equations of type (1) with a large parameter characterizing
the rate of decrease of the two kernels R1(x) and R2(x) as x approaches
infinity. These kernels are assumed to be rapidly decreasing although
the integrals

(2)
∫ ∞

0

|R1(t)| dt and
∫ ∞

0

|R2(t)| dt,

are not assumed to be small. As a convenient model of such functions
we consider

(3) R1(x) = νR
(0)
1 (νx) and R2(x) = νR

(0)
2 (νx)
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where ν is a large parameter. The functions R(0) are chosen in such a
way that, for some positive constants s0, c and C, the estimates

|R(0)
1 (x)| < ce−s0|x|, |R(0)

2 (x)| < Ce−s0x, x > 0

are true, so that

(4) |R1(x)| < cνe−s|x|, |R2(x)| < Cνe−sx, s = s0ν, x > 0.

Obviously the integrals (2) do not depend on the choice of ν.

We assume that the functions R1(x) and R2(x) are piecewise contin-
uous and R1 is even. Solutions y(x) are sought in the class of twice
differentiable functions which satisfy the following condition:

(5) |y(x)| ≤ ceλx, λ = νλ0

where λ0 is some fixed real number

(6) λ0 < s0.

This inequality takes care of convergence of the integrals in (1).

We make the following assumption

Assumption 1.1. The subspace of all solutions of equation (1) is at
least two-dimensional.

In what follows we assume that the parameter ν is large enough unless
the opposite is stated.

Introduction of a large parameter in the present paper allows us to
find properly defined Cauchy and boundary problems and obtain a
convenient algorithm for calculating approximate solutions of these two
problems.

In the next three Sections (2 to 4) the main results of the paper
are formulated in the form of five theorems. Their proofs are given in
Sections 5 to 8. The explicit formulae for approximate solutions both
of Cauchy- and boundary problems with error proportional to ν−1 are
given in the last section of the paper.
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2. Main results – General. To formulate the main results the
so-called characteristic function G(p) is needed. If φj , j = 1, 2, are
Fourier transforms of the two kernels (we put R2(−x) = R2(x)):

φj(α) =
∫ ∞

−∞
eixαRj(x) dx j = 1, 2,

then by the definition

(7) G(p) = 1− p2 − φ1(ip).

There is a simple relation between the function φj(α) and the Fourier
transform φ

(0)
j (α) of the kernels R(0)

j (x):

(8) φj(α) = φ
(0)
j

(
α

ν

)
, j = 1, 2.

The characteristic function as well as the Fourier transforms φj(p) are
analytic in any strip

(9) Π = {p : |� p| ≤ β, β = β0ν}
where β0 is an arbitrary positive number β0 < s0. The Fourier
transforms φ(0)

j (p) are analytic in the strip

(10) Π0 = {p : |� p| ≤ β0}.

Theorem 2.1. The strip Π contains exactly two zeros, p1 and p2 of
the characteristic function G(p). Moreover, p2 = − p1; p1 is positive if
φ1(0) < 1, p1 = 0 if φ1(0) = 1, and p1 is purely imaginary if φ1(0) > 1.

To find y(x) and its Laplace transform Y (p), � p = β, λ < β < s, we
use the following key theorem

Theorem 2.2. If φ1(0) �= 1, any solution of equation (1) in the class
of functions (5) satisfies the following equation:

(11) y(x) =
∑

k=1,2

Ak e
pkx −Ψ(x)
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where

(12)

Ak = − 1
G′(pk)

{
y′(0) + pky(0)

− 1
2πi

∫ β+i∞

β−i∞
Y (ζ)

[
φ1(iζ)
pk − ζ

+
φ2(iζ)
pk + ζ

]
dζ

}
,

k = 1, 2;

(13) Ψ(x) =
1
πi

∫ −σ+i∞

−σ−i∞

exη dη

G(η)

·
[
y′(0)− 1

2πi

∫ β+i∞

β−i∞
Y (ζ)[φ1(iζ)−φ2(iζ)]

ζdζ

η2−ζ2

]
,

and

(14) Y (p) =
∫ ∞

0

y(x)e−px dx, � p = β, 0 < σ < β, λ < β < s.

We assume that σ, λ and β are proportional to ν:

σ = νσ0, λ = νλ0, β = νβ0,

and λ0 < β0 < s0.

In the case φ1(0) = 1, relation (10) has to be replaced with

(15) y(x) = B1x+B2 −Ψ(x)

where

B1 = − 2
G′′(0)

{
y′(0) +

1
2πi

∫ β+i∞

β−i∞
Y (ζ)

φ1(iζ)−φ2(iζ)
ζ

dζ

}
,

(16)

B2 = − 2
G′′(0)

[
y(0) +

1
2πi

∫ β+i∞

β−i∞
Y (ζ)

φ1(iζ)+φ2(iζ)
ζ2

dζ

]
.

(17)
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3. Main results – Initial value problem.

Theorem 3.1. For any fixed pair of numbers y(0) and y′(0) equa-
tions (11) and (15) have exactly one solution each.

Thus, for sufficiently large ν, we obtain a properly defined initial value
problem for equation (11) and for equation (15) by fixing two values
y(0) and y′(0). The same is true for equation (1) under Assumption 1.1.
This is an immediate consequence of Theorems 2.2 and 3.1. The
subspace of all solutions of equation (1) coincides with that of equation
(11) or (15) if φ(0) �= 1 or φ(0) = 1, respectively. Thus, under
Assumption 1.1, equation (1) is equivalent either to equation (11) or
to equation (15).

To solve equation (11) we use it in a natural way to construct the
following iterative algorithm:

Y0(p) ≡ 0,(18)

yn+1(x) =
∑

k=1,2

Ak
n epkx −Ψn(x),(19)

Yn(p) =
∫ ∞

0

yn(x)e−px dx, � p = β,(20)

where Ak
n and Ψn(x) are obtained from (12) and (13), respectively, by

replacing Y (ζ) with Yn(ζ):

(21) A(k)
n = − 1

G′(pk)

{
y′(0) + pky(0)

− 1
2πi

∫ β+i∞

β−i∞
Yn(ζ)

[
φ1(iζ)
pk−ζ

+
φ2(iζ)
pk+ζ

]
dζ

}
, k=1, 2,

(22) Ψn(x) =
1
πi

∫ −σ+i∞

−σ−i∞

exηdη

G(η)

·
[
y′(0) +

1
2

∫ β+i∞

β−i∞
Yn(ζ)[φ1(iζ)− φ2(iζ)]

ζdζ

η2 − ζ2

]
.
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For equation (15) we construct a similar iterative process replacing (19)
with

(23) yn+1(x) = B(1)
n x+B(2)

n −Ψn(x)

where B
(k)
n , k = 1, 2, are obtained from (16) and (17):

B(1)
n = − 2

G′′(0)

{
y′(0) +

1
2πi

∫ β+i∞

β−i∞
Yn(ζ)

φ1(iζ)−φ2(iζ)
ζ

dζ

}
,

(24)

B(2)
n = − 2

G′′(0)

[
y(0) +

1
2πi

∫ β+i∞

β−i∞
Yn(ζ)

φ1(iζ)+φ2(iζ)
ζ2

dζ

]
.

(25)

The effectiveness of these algorithms is described by the following

Theorem 3.2. The sequence {yn(x)}∞1 converges to the solution
y(x) of the corresponding system in the following sense:

lim
n→∞ ||yn(x)−y(x)|| ≡ lim

n→∞max{|yn(x)−y(x)|e−βx} = 0, φ1(0) �= 1,

lim
n→∞max{|yn(x)− y(x)|(1 + x)−1} = 0, φ1(0) = 1,

lim
n→∞Ak

n = Ak, k = 1, 2,

lim
n→∞Bk

n = Bk, k = 1, 2,

lim
n→∞ |Ψn(x)−Ψ(x)|eσx = 0.

The sequence {Yn(p)}∞0 converges uniformly on the line �p = β. The
rate of convergence is as that of a geometrical sequence with ratio
proportional to ν.

Theorems 3.1 and 3.2 give the complete solution to the initial value
problem for integro-differential equation (1) and supply a practical
algorithm for evaluating its solution.
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4. Main results – Boundary problems. To define a boundary
problem properly one has to know the asymptotic behavior of the
general solution at x = ∞. The representation of y(x) in Theorem 2.2
allows us to see in great detail the asymptotic behavior of the solutions
of the problem as x → ∞. Asymptotic behavior of each of the three
terms in (11) or (15) is affected by the value of parameter ν in quite
a different way. As x → ∞ asymptotical behavior of the two terms
in the sum

∑
k=1,2 Ake

pkx in (11) is determined by the numbers p1

and p2 which approach ±√
1− φ1(0) respectively as ν → ∞, so these

terms change rather smoothly as ν increases. The asymptotic behavior,
x → ∞, of the sum of the first two terms in (15) is linear. The third
term Ψ(x) in relations (11) and (15) decreases as fast or faster than
e−νσ0x, x → ∞. As a consequence the asymptotic behavior of each
particular solution, y(x) of equation (1) is determined by the coefficients
A1 and A2 (or B1 and B2).

Now it is easy to define a boundary problem properly. The boundary
condition depends on the value of φ1(0).

In the case φ1(0) < 1, the number p1 is positive and the number p2

is negative. Therefore, in this case, all solutions grow as ep1x unless
A1 = 0. If A1 = 0 the solution approaches zero as e−p1x as x → ∞. It
means that the condition,

(26) y(x) is bounded on the entire positive half-axis,

makes the coefficient A1 equal to zero and leaves only a one-dimensional
set of solutions. In other words, adding this condition to equation
(11) we obtain a properly defined boundary problem. Of course, if we
substitute the last condition with the condition

|y(x)|eqx < ∞

where q is any number such that p2 < q < p1, the boundary problem
would still be properly defined and have the same set of solutions.

In the case φ1(0) = 1, condition (26) makes the coefficient B1 equal
to zero and leaves us with a one-dimensional set of solutions. Thus, it
is an appropriate boundary condition.

In the case φ1(0) > 1, the numbers p1 and p2 are imaginary, and,
according to Theorem 2.1, p2 = −p1. So, the asymptotical behavior of
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any solution is described by the relation

(27) |y(x)− A1e
p1x −A2e

p2x| −→ 0, x → ∞.

This relation with any pair of fixed coefficients A1 and A2 can be
regarded as an appropriate boundary condition. We see that in this
case there are infinitely many different boundary problems.

Two solutions whose asymptotic behavior is described by ei|p1|x and
e−i|p1|x, respectively, describe in many physical problems two waves
going in opposite directions. They are complex conjugate to each other
and, therefore, it is sufficient to find only one of them. We will consider
the solution that behaves asymptotically as e−i|p1|x, that is, the one
with A1 = 0. For this solution the boundary condition has the form

(28) |y(x)−A2e
p2x| −→ 0, x → ∞.

At first glance, a natural way to find an approximate solution of any of
the above described boundary value problems is to use approximate
solutions of the initial value problem with initial conditions which
make A1, or B1, equal to zero. Unfortunately, it could be done
only approximately. It means that the corresponding approximate
solution y(x) contains an unbounded component A1e

p1x (or B1x) and,
therefore, solves only the initial value problem but not the boundary
value problem with the boundary condition (26). Nevertheless, the
ratio y′(0)/y(0) for the solution y(x) of the boundary value problem
can be evaluated in this way with any degree of accuracy. To find the
approximate solution y(x) of the boundary problem with uniformly
small error we have to find another way.

For that purpose we derive a system of equations with the following
property: each solution of this system is a solution of the boundary
problem. This system can be solved by an iterative method since ν is
large. To obtain the system in the case φ1(0) �= 1, we set A1 = 0 in
(11) and (12) and get:

(29) y(x) = A2e
p2x −Ψ(x),

(30) y′(0) = − p1y(0)− 1
2πi

∫ β+i∞

β−i∞
Y (ζ)

[
φ1(iζ)
p1 − ζ

+
φ2(iζ)
p1 + ζ

]
dζ,
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and

(31) Y (p) =
∫ ∞

0

y(x)e−px dx, � p = β,

where A2 and Ψ(x) are given by (12) and (13), respectively. In the case
φ1(0) = 1, equations (29) and (30) of the system should be replaced
with

(32) y(x) = B2 −Ψ(x)

where B2 is given by (17), and

(33) y′(0) =
1
2πi

∫ β+i∞

β−i∞
Y (ζ)

φ1(iζ)− φ2(iζ)
ζ

dζ.

To find the solutions we use recurrent algorithms as in the case of the
initial value problem. In the case φ1(0) �= 1, the algorithm is given by:

(34) yn+1(x) = A(2)
n ep2x −Ψn(x),

and

(35) y′n(0) = −p1y(0)− 1
2πi

∫ β+i∞

β−i∞
Yn(ζ)

[
φ1(iζ)
p1 − ζ

+
φ2(iζ)
p1 + ζ

]
dζ

together with (18), (20) and (21) for k = 2 and (22).

In the case φ1(0) = 1, relation (34) should be replaced with

(36) yn+1(x) = B(2)
n −Ψn(x)

and relation (35) with

(37) y′n(0) =
1
2πi

∫ β+i∞

β−i∞
Yn(ζ)

φ1(iζ)− φ2(iζ)
ζ

dζ.

These recurrent relations define three sequences

(38) {yn(x)}∞1 , {Yn(p)}∞0 , {y′n(0)}∞0 .
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The following theorem justifies the introduction of these recurrent
relations.

Theorem 4.1. For any fixed initial value y(0), each of the two
systems (29) (31) and (31) (33) has a unique solution. These solutions
solve the respective boundary problems and could be found as limits
of the convergent sequences (38). The rate of convergence is at least
proportional to ν.

5. Zeros of the characteristic function. In this section we prove
Theorem 2.1, which reveals a simple structure of the set of zeros of the
function G(p).

We begin with some preliminary remarks. First, we recall that

φ
(0)
1 (α) =

∫ ∞

−∞
eixαR

(0)
1 (x) dx

and then we introduce the following notation:

m ≡ sup |φ(0)
1 (q)|, q ∈ Π0,

(see (10)). Due to (8) we have

(39) |φ1(p)| < m

for p ∈ Π (see (9)), and each zero p in the strip Π belongs to the circle
Q = {p| |p| ≤ r =

√
1 +m }.

Since the radius of this circle does not depend on the parameter ν,
we can assume that

β ≡ β0ν ≥ r,

so the circle Q lies in the strip Π and

|p| ≤ β if G(p) = 0.

The last inequality guarantees the convergence of the integral
∫ ∞

−∞
R(x) cosh(|p| |x|) dx
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for any p ∈ Q and, in particular, for any zero of G(p).

Theorem 5.1. For any two numbers zk, zk ∈ Q, k = 1, 2, the
absolute value of the fraction

(40)
φ1(z2)− φ1(z1)

z2
2 − z2

1

, z2
1 �= z2

2 ,

is less than the integral

K ≡
∫ ∞

0

R1(x)x2 cosh(|z|x) dx, z = max{|z1|, |z2|}.

Proof. R1(x) being an even function, we can write

φ1(iz) = 2
∫ ∞

0

R1(x) cosh(xz) dx.

Therefore,

φ1(iz2)− φ1(iz1) = 2
∫ ∞

0

R1(x){cosh(xz2)− cosh(xz1)} dx.

Using an elementary inequality

| cosh z2 − cosh z1| ≤ 1
2
|z2

2 − z2
1 | cosh |z|, |z| ≡ max{|z1|, |z2|},

the result follows.

Notice that, due to (4),

K ≤ 2c
(νβ0 −

√
1 +m)3

.

Therefore, if

(41) ν >
(1 +m)1/2

β0
+ (4c)1/3,
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then fraction (40) is less than a number d which is less than (1/2).
Summarizing, we have

(42)
φ1(z2)− φ1(z1)

z2
2 − z2

1

< d <
1
2
, z2

1 �= z2
2

for ν such as in (41). In what follows we always assume that condition
(41) is satisfied.

Now, let z1 and z2 be any two zeros of the characteristic function.
Then

φ1(iz2)− φ1(iz1) = z2
1 − z2

2 .

According to (42) this is possible only if z2
1 = z2

2 .

This proves that there are no more than two zeros of G(p) in Π.

Theorem 5.2. The characteristic function G(p) has at least one
zero in Π.

Proof. Consider the following numerical sequence zn, n = 0, 1, 2, . . . :

z0 = 0, 1− z2
n+1 = φ1(zn), 0 ≤ arg zn+1 < π, n = 1, 2, . . . .

Obviously,

zn ∈ Q and z2
n+2 − z2

n+1 = φ1(zn)− φ1(zn+1).

Theorem 5.1 yields inequality

|z2
n+2 − z2

n+1| ≤ d|z2
n+1 − z2

n|, d <
1
2
.

Thus, the sequence {zn}∞0 has a limit z which obviously is a zero of
the characteristic function G(z) and that completes the proof.

Notice that z2
1 = 1− φ1(0) and

(43) |z2 − z2
1 | < |z2

1 |.

Taking into consideration that the function R1(x) is even and real, we
conclude that G(p) has the following property: if p is a zero of the
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characteristic function so are the numbers −p, p̄ and −p̄. That shows
that each zero, p ∈ Π of G(p), is either real or purely imaginary. If
p = 0 is a zero of G(p) then φ1(0) = 1 and G(p) = p2, so p = 0 is the
double root of G(p) in Π.

Let φ1(0) > 1. Then, obviously, z2
1 is negative. Inequality (43) in that

case means that z2 = limn→∞ z2
n is also negative. Thus, if φ1(0) > 1,

the two zeros of G(p) in Π are purely imaginary. In the same way we
conclude that in the case φ1(0) < 1, the two zeros of G(p) in Π are
real. That completes the proof of Theorem 2.1.

6. Proof of Theorem 2.2. Our first step in proving the theorem
is to obtain a relation which is valid in the strip λ+ < Re p < β, where
λ+ = max{λ, 0}.
We begin with the Laplace transform of equation (1) and obtain the

following relation:

(44)

Y (p)(1−p2) + y′(0) + py(0) =
∫ ∞

0

e−px dx

∫ ∞

0

R1(x− t)y(t) dt

+
∫ ∞

0

e−px dx

∫ ∞

0

R2(x+ t)y(t) dt,

Re p > max{λ,−s}.
We also use two inversion formulae:

(45) Rj(x) =
1
2π

∫ iβj+∞

iβj−∞
φj(α)e−iαx dα, j = 1, 2,

valid if
−s < βj < s, j = 1, 2.

We chose β1 and β2 so that

β1 = −β2 = β, λ+ < β < s.

which makes the relations

(46)
∫ ∞

0

e−px dx

∫ ∞

0

R1(x− t)y(t) dt

=
1
2πi

∫ β+i∞

β−i∞
Y (ζ)

φ1(iζ)
p− ζ

dζ, � p > s,
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(47)
∫ ∞

0

e−px dx

∫ ∞

0

R2(x+ t)y(t) dt

=
1
2πi

∫ β+i∞

β−i∞
Y (ζ)

φ2(iζ)
p+ ζ

dζ, � p > s,

valid. Therefore, (44) could be rewritten in the following form:

(48)
Y (p)(1− p2) + y′(0) + py(0) =

1
2πi

∫ β+i∞

β−i∞
Y (ζ)Φ(p, ζ) dζ,

� p > β,

where

(49) Φ(p, ζ) =
φ1(iζ)
p− ζ

+
φ2(iζ)
p+ ζ

.

Integral (47) is analytic in the half-plane � p > −β; integral (46) is
analytic in the half-plane � p > β but can be analytically continued on
the strip λ+ < � p < β where it can be written as:

(50)
1
2πi

∫ β+i∞

β−i∞
Y (ζ)

φ1(iζ)
p− ζ

dζ + φ1(ip)Y (p), λ+ < � p < β.

Thus, in the strip λ+ < �p < β relations (48), (49) and (50) yield:

(51)
Y (p)(1− p2−φ1(ip)) + y′(0) + py(0)

=
1
2πi

∫ β+i∞

β−i∞
Y (ζ)Φ(p, ζ) dζ, λ+ < � p < β,

or

(52)
Y (p) =

1
G(p)

{
1
2πi

∫ β+i∞

β−i∞
Y (ζ)Φ(p, ζ) dζ − y′(0)− py(0)

}
,

λ+ < � p < β,

where G(p) is the function defined by (7). Now we have a relation with
the righthand side analytic in the strip λ+ < � p < β with the possible
exception of some poles at the zeros of the function G(p). Therefore,
the same is true for the function Y (p). Thus, (52) is valid in the strip
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λ+� p < β and shows that the Laplace transform Y (p) is an analytic
function on this strip with no other singularities than possible poles at
the zeros of G(p).

Now it is possible to derive a modified version of equation (52) using
the Wiener-Hopf technique.

Let σ1 > 0 and σ2 > σ1 be any two numbers in the strip λ+ < Re p <
β. In the strip σ1 < � p < σ2 the function (Φ(p, ζ)/G(p)) could be
represented in the form:

(53)

Φ(p, ζ)
G(p)

=
1
2πi

∫ σ2+i∞

σ2−i∞

Φ(η, ζ)
G(η)

dη

η − p
− 1

2πi

∫ σ1+i∞

σ1−i∞

Φ(η, ζ)
G(η)

dη

η − p

−
∑ Φ(pk, ζ)

G′(pk)
1

pk − p
, σ1 < � p < σ2,

where summation is over all zeros pk of G(p) in the strip σ1 ≤ � p ≤ σ2.
All zeros pk in (53) are not singular points of the function Y (p) since
they are in the half-plane � p > λ where Y (p) is analytic. It follows,
therefore, from equation (52) that for p = pk the following identity
holds:

(54)
1
2πi

∫ β+i∞

β−i∞
Y (ζ)Φ(pk, ζ) dζ − y′(0)− pky(0) = 0.

Similarly, we represent function (y′(0) + py(0))/G(p) in the form:

(55)

y′(0) + py(0)
G(p)

=
1
2πi

∫ σ2+i∞

σ2−i∞

y′(0) + ηy(0)
G(η)

dη

η − p

− 1
2πi

∫ σ1+i∞

σ1−i∞

y′(0) + ηy(0)
G(η)

dη

η − p

−
∑ y′(0) + pky(0)

G′(pk)
1

pk−p
, σ1 < � p < σ2.
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As we substitute (53) and (55) in (52) and combine terms which depend
on pk, we see that due to (54) these terms cancel out. Thus, we get:

(56)

Y (p) +
1

(2π)2

∫ β+i∞

β−i∞
dζY (ζ)

∫ σ1+i∞

σ1−i∞

Φ(η, ζ)
G(η)

dη

η − p

+
1
2πi

∫ σ1+i∞

σ1−i∞

y′(0) + ηy(0)
G(η)

dη

η − p

=
1

(2π)2

∫ β+i∞

β−i∞
dζY (ζ)

∫ σ2+i∞

σ2−i∞

Φ(η, ζ)
G(η)

dη

η − p

+
1
2πi

∫ σ2+i∞

σ2−i∞

y′(0) + ηy(0)
G(η)

dη

η − p
, σ1 < � p < σ2.

The lefthand side of this equation is analytic in the half-plane � p > σ1

while the righthand side is analytic in the half-plane � p < σ2. These
half-planes have a nonempty common strip

σ1 < � p < σ2.

It follows from Liouville’s theorem that the lefthand side of this equa-
tion identically equals zero in the half-plane � p > σ1, and the right-
hand side equals zero in � p < σ2. If we replace p with −p in the
righthand side of (56) we get a function which is identically equal to
zero in � p > −σ2:

(57)

1
(2π)2

∫ β+i∞

β−i∞
dζY (ζ)

∫ σ2+i∞

σ2−i∞

Φ(η, ζ)
G(η)

dη

η + p

+
1
2πi

∫ σ2+i∞

σ2−i∞

y′(0) + ηy(0)
G(η)

dη

η + p
= 0, � p > −σ2.

Restricting p to the half-plane � p > σ1 we can add the last equation
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to the lefthand side of (56) and obtain the desired modified equation:

(58)

Y (p) =
1

(2π)2

∫ β+i∞

β−i∞
dζ

· Y (ζ)
{∫ σ1+i∞

σ1−i∞

Φ(η, ζ)
G(η)

dη

η − p
−

∫ σ2+i∞

σ2−i∞

Φ(η, ζ)
G(η)

dη

η + p

}

+
1
2πi

{∫ σ1+i∞

σ1−i∞

y′(0) + ηy(0)
G(η)

dη

η − p

−
∫ σ2+i∞

σ2−i∞

y′(0) + ηy(0)
G(η)

dη

η + p

}
, � p > σ1.

We will use this equation for � p = β only. Notice that parameter
σ2 > λ in (58) could be chosen arbitrarily close to s.

Thus far we have not used the assumption that ν is large. But now
we will use it to be sure that the strip |� p| < β contains no more
than two zeros of G(p). Keeping in mind that ν is large (ν >> 1)
we transform equation (58) in order to obtain an equation with easily
identifiable order of terms as ν → ∞. With the help of the two obvious
identities

(59)
∫ σ2+i∞

σ2−i∞

Φ(η, ζ)
G(η)

dη

η + p
=

∫ −σ2+i∞

−σ2−i∞

Φ(−η, ζ)
G(η)

dη

p− η

and
(60)∫ σ1+i∞

σ1−i∞

Φ(η, ζ)
G(η)

dη

η − p
=

∫ −σ2+i∞

−σ2−i∞

Φ(η, ζ)
G(η)

dη

η − p

+ 2πi
∑
pk

Φ(pk, ζ)
G′(pk)

1
pk − p

, φ1(0) �= 1,

where summation is over all zeros pk of the function G(p) in the strip
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−σ2 < Re p < σ1, we get the following identity

(61)

∫ σ1+i∞

σ1−i∞

Φ(η, ζ)
G(η)

dη

η − p
−

∫ σ2+i∞

σ2−i∞

Φ(η, ζ)
G(η)

dη

η + p

=
∫ −σ2+i∞

−σ2−i∞
[Φ(η, ζ) + Φ(−η, ζ)]

dη

G(η)(η − p)

+ 2πi
∑
pk

Φ(pk, ζ)
G′(pk)(pk − p)

.

In a similar way we obtain

1
2πi

{∫ σ1+i∞

σ1−i∞

y′(0) + ηy(0)
G(η)

dη

η−p
−

∫ σ2+i∞

σ2−i∞

y′(0) + ηy(0)
G(η)

dη

η+p

}

=
1
πi

y′(0)
∫ −σ2+i∞

−σ2−i∞

dη

G(η)(η−p)
+

∑
pk

y′(0) + pky(0)
G′(pk)(pk − p)

.(62)

Noticing that

Φ(η, ζ) + Φ(−η, ζ) =
2ζ

η2 − ζ2
[φ1(iζ)− φ2(iζ)]

we rewrite (58) in the following final form

(63)

Y (p) =
1

2π2

∫ β+i∞

β−i∞
ζ dζY (ζ) [φ1(iζ)− φ2(iζ)]

·
∫ −σ2+i∞

−σ2−i∞

dη

G(η)(η − p)(η2 − ζ2)

− 1
2πi

∫ β+i∞

β−i∞
dζY (ζ)

∑
pk

Φ(pk, ζ)
G′(pk)

1
pk − p

+
y′(0)
πi

∫ −σ2+i∞

−σ2−i∞

dη

G(η)(η − p)

∑
pk

y′(0) + pky(0)
G′(pk)(pk − p)

,

� p = β, φ1(0) �= 1.
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In the case φ1(0) = 1, p1 = p2 = 0 and the last formula has to be
replaced with

Y (p) = − 1
2π2

∫ β+i∞

β−i∞
ζ dζY (ζ) [φ1(iζ)− φ2(iζ)]

·
∫ −σ2+i∞

−σ2−i∞

dη

G(η)(η − p)(η2 − ζ2)

+
1

2πip2G′′(0)

∫ β+i∞

β−i∞
Y (ζ)

φ1(iζ)(p+ ζ) + φ2(iζ)(p− ζ)
ζ2

dζ

(64)

− y′(0)
πi

∫ −σ2+i∞

−σ2−i∞

dη

G(η)(η − p)
+

y′(0) + py(0)
p2G′′(0)

,

� p = β, φ1(0) = 1.

Now that the value σ1 is no longer present, there is no reason to keep
index “2.” So we will write σ instead of σ2. Application of the inverse
Laplace transform operator to relations (63) and (64) yields relations
(11) and (15) of Theorem 2.2, respectively, if notations (12), (13), (16)
and (17) are used.

In these formulae all terms approach zero as ν → ∞ except the ones
proportional to y(0) and y′(0).

7. Proof of Theorems 3.1 and 3.2. To prove Theorem 3.1
we use the usual scheme of reasoning. Suppose {z1(x), Z1(p)} and
{z2(x), Z2(p)} are two solutions of equation (11) with the same initial
values

z1(0) = z2(0), z′1(0) = z′2(0).

Their difference {∆z(x),∆Z(p)} satisfies the following relations:

(65) ∆z(x) =
∑

k=1,2

∆Ake
pkx −∆Ψ(x)

where

(66)
∆Ak = − 1

G′(pk)
1
2πi

∫ β+i∞

β−i∞
∆Z(ζ)

[
φ1(iζ)
pk − ζ

+
φ2(iζ)
pk + ζ

]
dζ,

k = 1, 2,
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(67)

∆Ψ(x) =
1

2π2

∫ −σ+i∞

−σ−i∞

exηdη

G(η)

∫ β+i∞

β−i∞
∆Z(ζ) [φ1(iζ)−φ2(iζ)]

ζdζ

η2−ζ2
,

and

(68) ∆Z(ζ) =
∫ ∞

0

∆z(x)e−ζx dx, � ζ = β.

The functions ∆z(x) and ∆Z(ζ) belong to the spaces of continuous
functions {f} and {F} with finite norms:

‖f‖ = sup
x

|f(x)e−λx|, 0 ≤ x < ∞,

and
‖F‖ = sup

ζ
|F (ζ)|, � ζ = β.

Obviously,

‖∆z(x)‖ ≤
∑

k=1,2

|∆Ak|+ ‖∆Ψ(x)‖,

|∆Ak| ≤ ‖∆Z(ζ)‖ 1
|G′(pk)|

1
2π

∫ β+i∞

β−i∞

[ |φ1(iζ)|
|pk − ζ| +

|φ2(iζ)|
|pk + ζ|

]
|dζ|,

k = 1, 2,

‖∆Ψ(x)‖ ≤ ‖∆Z(ζ)‖ 1
2π2

∫ −σ+i∞

−σ−i∞

|dη|
|G(η)|

·
∫ β+i∞

β−i∞
|φ1(iζ)− φ2(iζ)| |ζdζ|

|η2−ζ2| ,

and
‖∆Z(ζ)‖ ≤ ‖∆z(x)‖ 1

β − λ
.

Therefore,

(69) ‖∆z(x)‖

≤ ‖∆z(x)‖
β − λ

{ ∑
k=1,2

1
|G′(pk)|

1
2π

∫ β+i∞

β−i∞

[ |φ1(iζ)|
|pk − ζ|+

|φ2(iζ)|
|pk + ζ|

]
|dζ|

+
1

2π2

∫ −σ+i∞

−σ−i∞

|dη|
|G(η)|

∫ β+i∞

β−i∞
|φ1(iζ)−φ2(iζ)| |ζdζ|

|η2−ζ2|
}
.
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The last relation shows that ‖∆z(x)‖ = 0 if the coefficient for
‖∆z(x)‖ in the righthand side is less than 1. It is easy to see that
this coefficient denoted by Q(ν) is given by

Q(ν) =
1

ν(β0 − λ0)

{ ∑
k=1,2

1
|G′(pk)|

1
2π

∫ β0+i∞

β0−i∞

[ |φ(0)
1 (iζ)|

|pk − νζ|

+
|φ(0)

2 (iζ)|
|pk + νζ|

]
|dζ|+ T (ν)

}
(70)

where

T (ν) ≡ ν

2π2

∫ −σ0+i∞

−σ0−i∞

|dη|
|1− ν2η2 − φ

(0)
1 (iη)|

·
∫ β0+i∞

β0−i∞
|φ(0)

1 (iζ)− φ
(0)
2 (iζ)| |ζdζ|

|η2 − ζ2| , φ1(0) �= 1.

Therefore, the inequality

(71) Q(ν) < 1

is a sufficient condition for the uniqueness of the solution. Clearly, it
is satisfied if the parameter ν is large enough because

lim
ν→∞Q(ν) = 0.

Theorem 3.1 is proven for the case φ1(0) �= 1. The case φ1(0) = 1
can be considered in much the same way. Equation (70) in this case
should be replaced with:
(72)

Q(ν) =
1

ν(β0−λ0)

{
1

νπλe|G′′(0)|
∫ β0+i∞

β0−i∞

|φ(0)
1 (iζ)−φ

(0)
2 (iζ)|

|ζ| |dζ|

+
1

νπ|G′′(0)|
∫ β0+i∞

β0−i∞

|φ(0)
1 (iζ) + φ

(0)
2 (iζ)|

|ζ2| |dζ|+T (ν)
}
,

φ1(0) = 1.
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To prove Theorem 3.2, we introduce differences

∆yn(x) = yn+1(x)− yn(x), n = 1, 2, . . . ,

and

∆Yn(ζ) = Yn+1(ζ)− Yn(ζ), n = 0, 1, 2, . . . .

According to (19)

(73) ∆yn(x) =
∑

epkx∆A
(k)
n−1 −∆Ψn−1(x), φ1(0) �= 1,

where

∆A
(k)
n−1 = − 1

G′(pk)
1
2πi

∫ β+i∞

β−i∞
∆Yn−1(ζ)

[
φ1(iζ)
pk−ζ

+
φ2(iζ)
pk+ζ

]
dζ,

k = 1, 2,(74)

(75)
∆Ψn−1(x) =

1
2π2

∫ −σ+i∞

−σ−i∞

exηdη

G(η)

·
∫ β+i∞

β−i∞
∆Yn−1(ζ)[φ1(iζ)− φ2(iζ)]

ζdζ

η2 − ζ2
,

and

(76) ∆Yn−1(ζ) =
∫ ∞

0

∆yn−1(x)e−ζx dx, � ζ = β.

These relations define an algorithm of obtaining ∆yn(x) if one starts
with ∆yn−1(x), which is precisely the same as that we have used
to estimate the righthand side of equation (65) starting with ∆z.
Therefore, we can write:

‖∆yn(x)‖ ≤ Q(ν)‖∆yn−1(x)‖.

Thus, the same condition Q(ν) < 1, which is sufficient for the unique-
ness, is also sufficient for the convergence of the sequence {yn(x)}∞n=1

and, consequently, convergence of the sequences {A(k)
n }∞n=1, k = 1, 2,
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and {Yn(p)}∞n=1. Letting n → ∞ in (19) and (20) we obtain the solution
of the initial value problem:

y(x) = lim
n→∞ yn(x),

Y (p) = lim
n→∞Yn(p).

The case φ1(0) = 1 can be treated in a similar way.

8. Proof of Theorem 4.1. The proof of Theorem 4.1 basically
repeats and combines the proofs of Theorems 3.1 and 3.2. The unique-
ness condition (71) obtained in the proof of Theorem 3.1 should be
replaced with the condition Q̂(ν) < 1 where

(77)

Q̂(ν) = Q(ν) +
1

β − λ

1
2π2

∫ −σ+i∞

−σ−i∞

|dη|
|G(η)|

·
∫ β+i∞

β−i∞

∣∣∣∣φ1(iζ)
p1 − ζ

+
φ2(iζ)
p1 + ζ

∣∣∣∣ |dζ| < 1

when φ1(0) �= 1, or with

(78)

Q̂(ν) = Q(ν)− 1
π(β0 − λ0)

∫ β0+i∞

β0−i∞

∣∣∣∣φ
(0)
1 (iζ)− φ

(0)
2 (iζ)

ζ
dζ

∣∣∣∣
·
{

1
ν2λe|G′′(0)| +

1
2

∫ σ0+i∞

σ0−i∞

∣∣∣∣ dη

1− η2 − φ
(0)
1 (iη)

∣∣∣∣
}

if φ1(0) = 1.

The same inequality implies the convergence of sequences (38) to
their respective limits y(x), Y (p), and y′(x) and guarantees that these
functions satisfy (11) (14), or (15) (17) in the case φ1(0) = 1.

9. Approximate solutions. The solutions obtained for problem
(1), (4), and (5)are difficult to apply to practical problems. We can
obtain useful approximate formulae as follows.
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For the case φ1(0) �= 1 we start with the exact relation (11) and find
expressions for Ak and Ψ(x) in the form:

Ak = Ãk +O
(

1
ν3

)
, k = 1, 2,(79)

Ψ(x) = Ψ̃(x) +O
(

1
ν3

)
e−σx,(80)

so that

(81) y(x) ≈
∑

k=1,2

Ãke
pkx − Ψ̃(x).

Using the iterative algorithm and ignoring terms of the order ν−3 we
get:

(82)

Ãk = − 1
G′(pk)

[
y′(0) + pky(0) +

2y(0)p1

νG′(p1)

∫ 0

−∞
t
[
R

(0)
1 (t)−R

(0)
2 (t)

]
dt

− y′(0) + pk(0)
G′(pk)

pk

ν2

∫ 0

−∞
t2

[
R

(0)
1 (t) +R

(0)
2 (t)

]
dt

]
,

(83) Ψ̃(x) = − y(0)p1

G′(p1)

∫ 0

−∞
t2

[
R

(0)
1 (t− νx)−R

(0)
2 (t− νx)

]
dt.

Notice that the kernel R2(x) contributes only to the terms which decay
with the growth of ν.

If φ1(0) = 1 the exact formula (15) gives the approximation:

(84) y(x) ≈ B̃1x+ B̃2 − Ψ̃(x)

where

(85)
B̃1 = − 2

G′′(0)

{
y′(0)− 1

ν

y(0)
G′′(0)

∫ 0

−∞
t
[
R

(0)
1 (t)−R

(0)
2 (t)

]
dt

+
y(0)
ν2

[
2

G′′(0)

∫ 0

−∞
t
[
R

(0)
1 (t)− R

(0)
2 (t)

]
dt

]2}
,
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(86) B̃2 = − 1
G′′(0)

[
2y(0) +

y′(0)
ν2G′′(0)

∫ 0

−∞
t2

[
R

(0)
1 (t)−R

(0)
2 (t)

]
dt

− 2y(0)
ν2G′′(0)

∫ 0

−∞
t2

[
R

(0)
1 (t) +R

(0)
2 (t)

]
dt

]
,

and

(87) Ψ̃(x) =
y(0)

ν2G′′(0)

∫ 0

−∞
t2

[
R

(0)
1 (t− νx)−R

(0)
2 (t− νx)

]
dt.

To obtain similar approximations for the solutions of the boundary
value problem we set Ã1 = 0 and B̃1 = 0. As a result we get
relationships between y′(0) and y(0) for both cases:

(88)

y′(0) =− p1y(0)
{
1 +

2
νG′(p1)

∫ 0

−∞
t
[
R

(0)
1 (t)−R

(0)
2 (t)

]
dt

− y′(0)+pk(0)
G′(pk)

pk

ν2

∫ 0

−∞
t2

[
R

(0)
1 (t)+R

(0)
2 (t)

]
dt+O

(
1
ν3

)}
,

φ1(0) �= 1,

(89)

y′(0) =y(0)
{

1
νG′′(0)

∫ 0

−∞
t
[
R

(0)
1 (t)−R

(0)
2 (t)

]
dt

− 1
ν2

[
2

G′′(0)

∫ 0

−∞
t
[
R

(0)
1 (t)−R

(0)
2 (t)

]
dt

]2

+O
(

1
ν3

)}
,

φ1(0) = 1.

Thus, in the case φ1(0) �= 1, an approximate solution of the boundary
value problem is given by (81) where Ã1 = 0, Ã2 is defined by (82)
with y′(0) replaced by (88), and Ψ̃(x) is defined by (83). In the case
φ1(0) = 1 we should use (84) where B̃1 = 0, B̃2 is defined by (86) and
(89), Ψ̃(x) is given by (87).
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