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THREE RESULTS FOR τ-RIGID MODULES

ZONGZHEN XIE, LIBO ZAN AND XIAOJIN ZHANG

ABSTRACT. τ -rigid modules are essential in the τ -tilting
theory introduced by Adachi, Iyama and Reiten. In this
paper, we give equivalent conditions for Iwanaga-Gorenstein
algebras with self-injective dimension at most one in terms
of τ -rigid modules. We show that every indecomposable
module over iterated tilted algebras of Dynkin type is τ -
rigid. Finally, we give a τ -tilting theorem on homological
dimension which is an analog to that of classical tilting
modules.

1. Introduction. In 2014, T. Adachi, O. Iyama and I. Reiten
[AIR] introduced τ -tilting theory to generalize the classical tilting
theory. τ -tilting theory is closely related to silting theory [AI, BZ]
and cluster tilting theory [KR, IY, BMRRT] which are popular in
the recent years. Therefore, τ -tilting theory has attracted widespread
attention. For the latest general results on τ -tilting theory, we refer to
[DIJ, DIRRT, EJR, IJY, IZ1, IZ2, J, K, W].

Note that τ -rigid modules are important objects and tools in
the τ -tilting theory. It is interesting to study the properties of τ -
rigid modules and find the indecomposable τ -rigid modules for a
given algebra. For the recent development of this topic, we refer to
[A1, A2, DIP, HZ, Mi, Z1, Z2, Zi1, Zi2]. We also focus on the
properties of τ -rigid modules.

For an algebra A, denote by modA the category of finitely generated
right A-modules. Recall that an algebra A is Iwanaga-Gorenstein, that
is, idAA <∞ and idAop A <∞. In this case, idAA = idAop A. Our
first main result gives some new equivalent conditions for an Iwanaga-
Gorenstein algebra A with idAA≤ 1 in terms of τ -rigid modules. We
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remark that this result was inspired by Osamu Iyama and Yingying
Zhang.

Theorem 1.1 (Theorems 2.6, 2.7). For an algebra A, the following are
equivalent:

(1) A is Iwanaga-Gorenstein with idAA≤ 1.
(2) Every classical cotilting module in modA is a classical tilting

module.
(3) DA is a τ -rigid module in modA.
(4) A is a τ−1-rigid module in modA.

We are also interested in algebras A satisfying every indecomposable
module in modA is τ -rigid. Easy examples of such algebras are
hereditary algebras of Dynkin type. We aim to find more examples in this
paper. Recall that Assem and Happel [AsH] introduced the following
notation of iterated tilted algebras of Dynkin type as a generalization
of tilted algebras of Dynkin type [HR]. Let Q be a finite, connected,
and acyclic quiver. An algebra Am (m≥ 1) is called an iterated tilted
algebra of type Q if the following three conditions are satisfied:

(1) A0 =KQ,
(2) Ti is a splitting classical tilting module in modAi and
(3) Ai+1 = EndAi Ti for 0≤ i≤m− 1.

Our second main result is the following:

Theorem 1.2 (Theorem 3.7). Let B be an iterated tilted algebra of
Dynkin type. Then every indecomposable module in modB is τ -rigid.

For a classical tilting module T in modA with B = EndA T , by
using the tilting theorem of Brenner and Butler [BB], one gets that
the homological dimension of N ∈ FacT gives an upper bound of the
homological dimension of HomA(T,N), where FacT (resp. SubT ) is
the subcategory of modA consisting of modules N generated (resp.
cogenerated) by T . It is natural to ask: Is there a similar result for
τ -tilting modules? We give a positive answer to this question and get
our third main result. We should remark that Buan and Zhou have
studied the global dimension of 2-term silting complexes in [BZ].
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Theorem 1.3 (Theorems 4.2, 4.3). Let A be an algebra, T be a τ -tilting
module in modA, B = EndA T and C = EndA τT

op.

(1) For any M ∈FacT with pdAM ≤1, pdB HomA(T,M)≤pdAM
holds.

(2) For any M ∈ FacT with ExtiA(T,M ⊕ T ) = 0 for any i ≥ 1,
pdB HomA(T,M)≤ pdAM holds.

(3) For any N ∈Sub τ T with idAN≤1, pdC HomA(N, τT )≤ idAN
holds.

(4) For any N ∈ Sub τ T with ExtiA(N ⊕ τT, τT ) = 0 for any i≥ 1,
pdC HomA(N, τT )≤ idAN holds.

The paper is organized as follows:

In Section 2, we study τ -rigid modules over Iwanaga-Gorenstein alge-
bras and show Theorem 1.1. In Section 3, we study the indecomposable
τ -rigid modules over iterated tilted algebras of Dynkin type and show
Theorem 1.2. In Section 4, we give the τ -rigid (resp. τ−1-rigid) version
of Wakamastu’s lemma and then give an upper bound for some special
modules over the endomorphism ring of τ -tilting (resp. τ−1-tilting)
modules.

Throughout this paper, all algebras are finite dimensional algebras
over an algebraically closed field K and D=HomK(−,K) is the standard
duality.

2. Gorenstein algebras and τ-rigid modules. In this section, we
aim to study Iwanaga-Gorenstein algebras in terms of τ -rigid modules.

For an algebra A, denote by gl.dimA the global dimension of A. For
a right A-module M , denote by pdAM (resp. idAM) the projective
dimension (resp. injective dimension) of M , denote by addAM the
subcategory of direct summands of finite direct sums of M and denote by
|M | the number of pairwise nonisomorphic indecomposable summands
of M . Firstly, we recall the definition of tilting (resp. cotilting) modules,
see [M] for details.

Definition 2.1. A module T ∈modA is called a tilting module, if it
satisfies

(1) pdA T ≤ n.
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(2) ExtiA(T, T ) = 0 for all i≥ 1.
(3) There exists an exact sequence 0→A→T0→T1→· · ·→Tn→ 0,

for all Ti ∈ addT , 0≤ i≤ n.

In particular, we call T in Definition 2.1 a classical tilting module
whenever n= 1. In this case, Definition 2.1(3) is equivalent to |T |= |A|.
Dually, one can define cotilting modules and classical cotilting modules.

We also need the following definitions in [AIR].

Definition 2.2. (1) We call T ∈modA τ -rigid if HomA(T, τT ) = 0,
where τ is the Auslander-Reiten translation. Moreover, T is
called τ -tilting if T is τ -rigid and |T |= |A|.

(2) We call T ∈modA τ−1-rigid if HomA(τ−1T, T ) = 0. Moreover,
T is called τ−1-tilting if T is τ−1-rigid and |T |= |A|.

Clearly, T is τ−1-rigid (resp. τ−1-tilting) module in modA if and
only if DT is τ -rigid (resp. τ -tilting) module in modAop.

Recall that T ∈modA is called faithful if the right annihilator of T
is zero. Now we can state the following proposition in [AIR].

Proposition 2.3. (1) Any faithful τ -rigid module T in modA is a
partial tilting A-module, that is, Ext1A(T, T ) = 0 and pdA T ≤ 1.

(2) Any faithful τ -tilting module in modA is a classical tilting A-
module.

Now we can state the properties of τ -rigid cotilting modules, which
is essential in the proof of the main result.

Proposition 2.4. (1) If a cotilting (resp. tilting) module T in
modA is τ -rigid, then T is a classical tilting A-module.

(2) If a tilting (resp. cotilting) module T in modA is τ−1-rigid,
then T is a classical cotilting A-module.

Proof. We only prove (1), since the proof of (2) is similar. Because
T is cotilting, T is faithful by [AsSS, Chapter VI, Lemma 2.2]. By
Proposition 2.3, any faithful τ -rigid module in modA is a partial tilting
A-module. Note that |T |= |A|, we are done. �
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For any X ∈modA, denote by FacX = {M |Xn �M for some n}.
The following proposition [AS, Proposition 5.8] are useful.

Proposition 2.5. For X and Y in modA, we have the following:

(1) HomA(X, τY ) = 0 if and only if Ext1A(Y,FacX) = 0.
(2) X is τ -rigid if and only if Ext1A(X,FacX) = 0.

For an algebra A, denote by P(A) the subcategory of finitely gener-
ated projective right A-modules and denote by I(A) the subcategory of
finitely generated injective right A-modules. Now we recall the following
result due to Happel and Unger [HU, Lemma 1.3]. We provide a new
proof for this result.

Theorem 2.6. For an algebra A, the following are equivalent:

(1) A is Iwanaga-Gorenstein.
(2) Every cotilting module in modA is tilting.
(3) Every tilting module in modA is cotilting.
(4) There exists a tilting-cotilting module in modA.

Proof. (1)⇒ (2) Assume that A is Iwanaga-Gorenstein and T is a
cotilting module in modA. Since T is self-orthogonal and idA T is finite,
we only need to show that every module in P(A) has a finite exact
coresolution in addT .

Denote by ⊥T = {M ∈modA | ExtiA(M,T ) = 0 for i≥ 1} and XT =

{X |0→X→T0
f0→T1→· · ·

fn→Tn+1→· · · , Ti∈addT, Im fn∈⊥T, n≥0}.
Since T is a cotilting A-module, we have that P(A) is contained in
XT = ⊥T .

Then there exists an exact sequence

0→ P → T0
f0→ T1→ · · · → Tn

fn→ Tn+1→ · · ·

for all A-module P ∈ P(A), where Ti ∈ addT and Xi = Im fi is
in XT for all i ≥ 0. Let idA P(A) ≤ r. Then Ext1A(Xr, Xr−1) =
Ext2A(Xr, Xr−2) = · · · = Extr+1

A (Xr, P ) = 0, hence the exact sequence
0→Xr−1→ Tr→Xr→ 0 splits, such that Xr−1 ∈ addT . This implies
that T is a tilting A-module.
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(2)⇒ (1) Assume that a module T in modA is a cotilting-tilting module.
By the definitions of cotilting and tilting modules every module in I(A)
has a finite exact resolution in addT and every module in P(A) has
a finite exact coresolution in addT . Since idA T and pdA T both are
finite, it follows immediately that both pdA I(A) and idA P(A) are
finite. Therefore A is Gorenstein.

Similarly, one can prove the equivalence of (1) and (3).

In the following we show the equivalence of (1) and (4).

(1)⇒ (4) Assume that A is Gorenstein. Then A is a tilting-cotilting
module.

(4)⇒ (1) is similar to (2)⇒ (1). �

Now we are in a position to show the main result in this section.

Theorem 2.7. For an algebra A, the following are equivalent:

(1) A is Iwanaga-Gorenstein with idAA≤ 1.
(2) DA is a τ -rigid module in modA.
(3) A is a τ−1-rigid module in modA.

Proof. We show the equivalence of (1) and (2). Similarly, one can
show the equivalence of (1) and (3).

(1)⇒ (2) For any M ∈ FacDA, there exists a short exact sequence

(2.1) 0→N → DAn→M → 0

Applying the functor HomA(DA,−) to the short exact sequence
(2.1) yields the following long exact sequence 0 → HomA(DA,N) →
HomA(DA,DAn)→HomA(DA,M)→Ext1A(DA,N)→Ext1A(DA,DAn)
→ Ext1A(DA,M) → Ext2A(DA,N) → Ext2A(DA,DAn) → · · · Then
Ext1A(DA,M)' Ext2A(DA,N) since DA is an injective A-module, and
pdA DA ≤ 1 since idAA ≤ 1. Thus Ext1A(DA,M) ' Ext2A(DA,N) = 0.
We have Ext1A(DA,FacDA) = 0, therefore DA is a τ -rigid A-module by
Proposition 2.5. Since |DA|= |A|, one gets DA is a τ -tilting A-module.

(2)⇒ (1) Since DA is τ -rigid and |DA|= |A|, DA is a τ -tilting A-module.
By [AsSS, Chapter VI, Lemma 2.2], DA is faithful. Then DA is a
classical tilting A-module by Proposition 2.3(2), and hence pdA DA≤ 1.
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Thus idAop A≤ 1. Note that idAA≤ 1 if and only if idAop A≤ 1, then
idAA≤ 1. �

The following corollary is immediate.

Corollary 2.8. For an algebra A, if one of the following conditions is
satisfied:

(1) every τ -tilting A-module is a τ−1-tilting A-module;
(2) every τ−1-tilting A-module is a τ -tilting A-module,

then A is Iwanaga-Gorenstein with idAA≤ 1.

Proof. We only prove (1) since the proof of (2) is similar. By
assumption we have that the τ -tilting module A is a τ−1-tilting module.
Then A is a Gorenstein algebra with idAA≤ 1 by Theorem 2.7(3). �

We should remark that the converse of Corollary 2.8 is not true in
general.

Example 2.9. Let A be the algebra given by the quiver

1
α // 2
β
oo

with relations αβ = βα= 0. Then the support τ -tilting quiver of A is
the following:

1
2 ⊕ 2

1

2 ⊕ 2
1

1
2 ⊕ 1

2 1

0

|| ""

�� ��

"" ||

One can show that 2 ⊕ 2
1 is τ -tilting but not τ−1-tilting.
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At the end of this section, we give an example to show that the
existence of τ -tilting-τ−1-tilting modules (even τ -rigid classical cotilting
modules) is not equivalent to 1-Gorensteiness in general.

Example 2.10. Let A be the algebra given by the quiver 1
α−→ 2

β−→ 3
with the relation αβ = 0. Then T = 1

2 ⊕ 2
3 ⊕ 2 is a τ -tilting-τ−1-tilting

module in modA (actually a classical tilting-cotilting module) but
gl.dimA= 2.

3. Iterated tilted algebras and τ-rigid modules. In this section,
we focus on the τ -rigid modules over iterated tilted algebras and show
every indecomposable module over an iterated tilted algebra of Dynkin
type is τ -rigid. Throughout this section, all tilting modules are classical
tilting modules.

Firstly, we need the notion of torsion pairs.

Definition 3.1. Let A be an algebra. A pair (T ,F) of full subcategories
of modA is called a torsion pair if the following conditions are satisfied:

(1) HomA(M,N) = 0 for all M ∈ T , N ∈ F .
(2) HomA(M,−)|F = 0 implies M ∈ T .
(3) HomA(−, N)|T = 0 implies N ∈ F .

To introduce the tilting theorem due to Brenner and Bulter, we also
need the following:

Definition 3.2. Let A be an algebra. Any tilting module T in modA
induces torsion pairs (T (T ),F(T )) in modA and (X (T ),Y(T )) in
modB with B = EndA T , where

T (T ) = {MA | Ext1A(T,M) = 0},
F(T ) = {MA |HomA(T,M) = 0},

X (T ) = {XB |HomB(X,DT ) = 0}= {XB |X ⊗B T = 0},
Y(T ) = {YB | Ext1B(Y,DT ) = 0}= {YB | TorB1 (Y, T ) = 0}.

Now we can state the tilting theorem of Brenner and Bulter [BB] as
follows:
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Theorem 3.3. Let A be an algebra, T be a tilting module in modA and
B= EndA T . Let (T (T ),F(T )) and (X (T ),Y(T )) be the induced torsion
pairs in modA and modB, respectively. Then T has the following
properties:

(1) BT is a tilting B-module, and the canonical K-algebra homomor-
phism A→EndB T

op defined by a 7→ (t 7→ ta) is an isomorphism.
(2) The functors HomA(T,−) and − ⊗B T induce quasi-inverse

equivalences between T (T ) and Y(T ).

(3) The functors Ext1A(T,−) and TorB1 (−, T ) induce quasi-inverse
equivalences between F(T ) and X (T ).

Recall that a torsion pair (T ,F) in modA is called splitting if for
any indecomposable M ∈modA either M ∈ T or M ∈ F holds. For a
tilting module TA with B = EndA T , TA is said to be splitting if the
induced torsion pair (X (T ),Y(T )) in modB is splitting. The following
propositions in [AsSS] are critical in the proof of the main result in
this section.

Proposition 3.4. [AsSS, VI, Corollary 5.7] For an algebra A, if
gl.dimA≤ 1, then every tilting module in modA is splitting.

Proposition 3.5. [AsSS, VI, Proposition 5.2] Let A be an algebra,
T be a splitting tilting module in modA, and B = EndA T . Then any
almost split sequence in modB lies entirely in either X (T ) or Y(T ), or
else it is of the form

0→HomA(T, I)→HomA(T, I/ soc I)

⊕Ext1A(T, radP )→ Ext1A(T, P )→ 0,

where P is an indecomposable projective A-module not lying in addT and
I is the indecomposable injective A-module such that P/ radP ∼= soc I.

Keeping the symbols as above, we can recall the following proposition.

Proposition 3.6. [AsSS, VI, Lemma 5.3] Let 0→ L→M →N → 0
be an almost split sequence in modB.

(1) If L,M,N ∈Y(T ), then 0→L⊗B T →M ⊗B T →N ⊗B T → 0
is almost split in T (T ).
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(2) If L,M,N ∈ X (T ), then 0 → TorB1 (L, T ) → TorB1 (M,T ) →
TorB1 (N,T )→ 0 is almost split in F(T ).

Let Q be a finite, connected, and acyclic quiver. Recall that an
algebra B is called an iterated tilted algebra of type Q if there is a series
of algebras A0 =KQ,A1, . . . , Am =B such that Ti is a splitting classical
tilting module over Ai and Ai+1 = EndAi

Ti for 0≤ i≤m− 1. Now we
are in a position to show the main result of this section.

Theorem 3.7. Let B be an iterated tilted algebra of Dynkin type Q.
Then every indecomposable module in modB is τ -rigid.

Proof. Assume that B =Am is the iterated tilted algebra of Dynkin
type Q with the corresponding splitting tilting modules Ti for 0≤ i≤
m− 1. We prove the assertion by induction on m.

If m= 1, then B =A1 = EndA0
T0 is a tilted algebra of Dynkin type.

Let N be any indecomposable module in modB. By Proposition 3.4,
N is either in X (T ) or in Y(T ).

If N is projective, then there is nothing to show. Now assume
that N is not projective. Then there is an almost split sequence
0 → L → M → N → 0. By Proposition 3.5, the exact sequence is
either in Y(T ), X (T ) or a connecting sequence.

(1) If 0→ L→M →N → 0 in Y(T ), then 0→ L⊗B T →M ⊗B T →
N⊗B T → 0 is Auslander-Reiten sequence in modA0 by Proposition 3.6.
Since A0 is the path algebra of a Dynkin quiver, A0 is a representation-
finite hereditary algebra. This implies every indecomposable module in
modA0 is directing and thus τ -rigid. By Theorem 3.3, HomB(N,L)'
HomA0(N ⊗B T, L⊗B T ) = 0, hence N is τ -rigid.

(2) If 0 → L → M → N → 0 in X (T ), then 0 → TorB1 (L, T ) →
TorB1 (M,T )→TorB1 (N,T )→ 0 is Auslander-Reiten sequence in modA0

by Proposition 3.6. As we showed in (1) every indecomposable
module in modA0 is τ -rigid. By Theorem 3.3, HomB(N,L) '
HomA0

(TorB1 (N,T ),TorB1 (L, T )) = 0, hence N is τ -rigid.

(3) If 0 → L → M → N → 0 is a connecting sequence, then N '
Ext1A0

(T, P (a))∈X (T ), L'HomA0(T, I(a))∈Y(T ) by Proposition 3.5.
Thus, HomB(N, τN) = HomB(N,L) = 0, N is τ -rigid.
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Now assume the assertion holds for B = Am. In the following we
show the assertion holds for B =Am+1.

By induction assumption, every indecomposable module in modAm
is τ -rigid. For any indecomposable module N ∈modB, if N is projective,
then there is nothing to show. We assume that N is not projective.
Since Tm is splitting, then N is either in Y(Tm) or in X (Tm). Putting
T = Tm in the proof of the case m= 1, one gets the desired result. �

Example 3.8. Let A0 = KQ be the algebra given by the quiver
Q : 1→ 2→ 3→ 4 and let T0 be the tilting module

1
2
3
4

⊕ 1 ⊕ 1
2 ⊕ 4

in modA0. Then

(1) A1 = EndA0 T0 is given by the quiver Q′ : 1
α1−→ 2

α2−→ 3
α3−→ 4

with the relation α2α3 = 0 and gl.dimA1 = 2.
(2)

T1 =
1
2
3
⊕ 2 ⊕ 3

4 ⊕ 4

in modA1 is a classical tilting module and A2 = EndA1
T1 is

given by the quiver Q′′ : 1
β1−→2

β2−→3
β3−→4 with relations β1β2 = 0

and β2β3 = 0.
(3) gl.dimA2 = 3 implies that A2 is iterated tilted but not tilted.
(4) The Auslander-Reiten quiver of A2 is as follows:

4

3
4

3

2
3

2

1
2

1

??

��

��

??

??

��

One can show that every indecomposable module in modA2 is τ -rigid.

4. τ-tilting modules and homological dimension. In this sec-
tion, we give the relationship between τ -tilting modules and homological
dimension, which is an analog of that of classical tilting modules (see
[AsSS, Lemma 4.1] for details).
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For an A-module M , denote by M⊥0 (resp. ⊥0M) the subcategory
consisting of N such that HomA(M,N) = 0 (resp. HomA(N,M) = 0).
Firstly, we introduce the following lemma known as Wakamastu’s
Lemma.

Lemma 4.1. (1) Let θ: 0→ Y → T ′
g−→ X be an exact sequence

in modA, where T is τ -rigid, and g: T ′→X is a right addT -
approximation. Then we have Y ∈ ⊥0(τT ).

(2) Let ϑ: Y
f−→ U → Z→ 0 be an exact sequence in modA, where

T is τ -rigid, U ∈ add τ T , and f : Y → U is a left (add τ T )-
approximation. Then we have Z ∈ T⊥0 .

Proof. (1) is given by Adachi, Iyama and Reiten in [AIR]. We only
prove (2).

Replacing Y by Ker f , we can assume that f is an injective. We
apply HomA(T,−) to ϑ and get the exact sequence

0 = HomA(T,U)→HomA(T,Z)→ Ext1A(T, Y )
Ext1A(T,f)−−−−−−−→ Ext1A(T,U)

where we have HomA(T,U) = 0 because U ∈ add τT . Since f :
Y → U is a left (add τ T )-approximation, the induced map (f, τT ):
HomA(U, τT ) → HomA(Y, τT ) is surjective. Then the induced map
HomA(U, τT ) → HomA(Y, τT ) of the maps modulo injectives is sur-
jective. By the Auslander-Reiten duality, the map Ext1A(T, f) :
Ext1A(T, Y )→ Ext1A(T,U) is injective. It follows that HomA(T,Z) = 0.

�

Dually, one can show Wakamastu’s Lemma in terms of τ−1-rigid
modules.

Recall from [AsSS, Chapter VI, Lemma 4.1], for an algebra A, T a
classical tilting module in modA and B = EndA T , if M ∈ FacT , then
pdB HomA(T,M)≤ pdAM holds. We prove an analog result in terms
of τ -tilting modules as follows.

Theorem 4.2. Let A be an algebra, T be a τ -tilting module in modA
and B = EndA T . For any M ∈ FacT , we have

(1) If pdAM ≤ 1 holds, then pdB HomA(T,M)≤ pdAM holds.
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(2) If ExtiA(T,M ⊕T ) = 0 holds for any i≥ 1, then

pdB HomA(T,M)≤ pdAM

holds.

Proof. (1) If pdAM = 0, then M ∈ FacT implies M ∈ addT . One
gets HomA(T,M) is a projective module in modB since HomA(T,−)
induces an equivalence between addT and addB.

Now, assume pdAM = 1. Since M ∈ FacT , by Lemma 4.1 we get a
short exact sequence

(4.1) 0→ L→ T0→M → 0

with L ∈ ⊥0(τT ) = FacT .

Recall that L∈ C ⊆modA is Ext-projective if Ext1A(L, C) = 0. In the
following we show L ∈ addT , that is, L is Ext-projective in FacT .

For any N ∈ FacT , applying the functor Hom(−, N) to the ex-
act sequence (4.1), we get a long exact sequence Ext1A(M,N) →
Ext1A(T0, N) → Ext1A(L,N) → Ext2A(M,N). Hence Ext1A(L,N) = 0
holds because of pdAM = 1 and N ∈ FacT . We are done.

Applying the functor HomA(T,−) to the sequence (4.1) again, we
get the assertion since Hom(T,−) is an equivalence between addT and
addB.

(2) If pdAM =∞, then there is nothing to show.

Now we can assume that pdAM = t < ∞. Since M ∈ FacT , by
Lemma 4.1 we get a short exact sequence 0→L→T0→M→ 0 with L∈
⊥0(τT ) = FacT , so Ext1A(T, L) = 0. Applying the functor HomA(T,−)
to the sequence (4.1), one gets Exti+1

A (T, L)' ExtiA(T,M) = 0 for any
i≥ 1 by assumption, and hence ExtiA(T, L) = 0 for any i≥ 1. Continuing
the similar process, we get the following long exact sequence

(4.2) · · · → Tn
fn−→ Tn−1→ · · · → T1

f1−→ T0
f0−→M → 0

with Ti ∈ addT and Li+1 = Ker fi ∈ ⊥0(τT ) = FacT for i ≥ 0 and
ExtjA(T, Li+1) = 0 for j ≥ 1 and i≥ 0.

Next we show that the exact sequence 0→Lt+1→ Tt→Lt→ 0 splits.
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Since pdAM = t < ∞, then Extt+1
A (M,Lt+1) = 0. On the other

hand, applying the functor HomA(−, Lt+1) to the sequence (4.2), one
gets 0 = Extt+1

A (M,Lt+1)'ExttA(L1, Lt+1)'· · ·'Ext1A(Lt, Lt+1) since
ExtiA(T,M) = 0 and Li ∈ FacT hold for any i ≥ 1. Hence we have a
long exact sequence.

(4.3) 0→ Tt
ft−→ Tt−1→ · · · → T1

f1−→ T0
f0−→M → 0.

Applying the functor HomA(T,−) to the exact sequence (4.3), we
have 0 → HomA(T, Tt) → HomA(T, Tt−1) → · · · → HomA(T, T1) →
HomA(T, T0)→ HomA(T,M)→ 0 and hence pdB HomA(T,M) ≤ t =
pdAM . �

For a module T in modA, we denote by SubT = {N | N �
Tn for some integer n}. Then we have the following on the injective
dimensions:

Theorem 4.3. Let A be an algebra, T be a τ -tilting module in modA
and C = EndA τT

op. For any N ∈ Sub τT , we have

(1) If idAN ≤ 1 holds, then pdC HomA(N, τT )≤ idAN holds.
(2) If ExtiA(τT ⊕N, τT ) = 0 holds for any i≥ 1, then

pdC HomA(N, τT )≤ idAN

holds.

Proof. Throughout the proof, we denote by U = τT .

(1) If idAN = 0, then N ∈ SubU implies N ∈ addU . One gets
HomA(N,U) is a projective C-module since HomA(−, U) induces a
duality between addU and addC.

Assume idAN = 1. Since N ∈ SubU , by Lemma 4.1 we get a short
exact sequence

(4.4) 0→N → U0→ L→ 0

where L ∈ T⊥0 = SubU . In the following we show L ∈ addU , that
is, Ext1A(N ′, L) = 0 holds for any N ′ ∈ SubU . Applying the functor
HomA(N ′,−) to the exact sequence (4.4), one gets the exact sequence
Ext1A(N ′, U)→Ext1A(N ′, L)→Ext2A(N ′, N). The assertion follows from
the facts U is Ext-injective and idAN = 1.
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(2) If idAN =∞, then there is nothing to show. So we can assume that
idAN = s <∞.

By Lemma 4.1 we get the following exact sequence

(4.5) 0→N
f0−→ U0

f1−→ U1 · · ·
fs−→ Us→ · · ·

with fi the minimal left addU -approximation. Denote by Li = Im fi,
then one gets ExtkA(Li, U) = 0 for any k ≥ 1 and i≥ 0.

In the following we show the exact sequence 0→Ls→Us→Ls+1→ 0
splits. Applying the functor HomA(Ls+1,−) to the exact sequence (4.5),
one gets 0 = Exts+1

A (Ls+1, N)'ExtsA(Ls+1, L1)' · · · 'Ext1A(Ls+1, Ls)
since idAN ≤ n. Hence we have the following exact sequence

0→N
f0−→ U0

f1−→ · · · fs−→ Us→ 0

Applying the functor HomA(−, U), one gets the assertion since

ExtkA(Li, U) = 0

holds for any k, i≥ 1. �

At the end of this section, we give an example to show our main
results.

Example 4.4. Let A be the algebra given by the quiver

Q : 1
α1 // 2
β2

oo
α2 // 3
β1

oo

with relations α1β2 = 0 and α2β1 = β2α1. Then

(1) A is an Auslander algebra and

T =
1
2
3
⊕

2
1 3
2
3

⊕ 2
1

is a τ -tilting module in modA.
(2) B = EndA T is given by the quiver

Q′ : 3
γ3 // 2

γ2 // 1
γ1
oo

with the relation γ1γ2 = 0 and gl.dimB = 2.
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(3) One can show M = 2
3 ∈FacT with pdAM = 1, HomA(T,M) =

S(2) in modB, and pdB HomA(T,M)≤ pdAM .
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