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MAY MODULES OF COUNTABLE RANK

PATRICK W. KEEF

ABSTRACT. In a 1990 paper, W. May studied the question
of when isomorphisms of the endomorphism rings of mixed
modules are necessarily induced by isomorphisms of the
underlying modules. In so doing he introduced a class of mixed
modules over a complete discrete valuation domain; we later
renamed these modules after their inventor. The class of May
modules of countable torsion-free rank is particularly important.
A decomposition theorem is established for such modules. The
modules in this class are characterized in several ways. Finally,
an example is constructed showing that several of these ideas
do not extend to May modules of uncountable torsion-free rank.

1. Introduction. Throughout, all modules will be over a fixed
complete discrete valuation domain R, and p ∈ R will be a prime.
Our terminology and notation will generally follow that found in [2].

Suppose B is a submodule of M . We say B is

(a) full-rank if M/B is torsion;

(b) an NT-submodule if B is nice in M and M/B is totally projective;
and

(c) an NFT-submodule if it is free and an NT-submodule.

A module M is a May module if every full-rank free submodule
F ⊆M contains an NFT-submodule B ⊆ F . This class was studied
in [4] in the context of endomorphism rings of mixed modules. In [3],
these results were clarified and the class was named after its inventor.
With a few exceptions that were specifically described in [3], it was
shown that if M is a May module and N is any other module, then any
ring isomorphism of their endomorphism rings, E(M)→ E(N), will be
induced by an isomorphism of the underlying modules, M →N .
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Whenever we use the term rank we will always mean torsion-free
rank. May modules of finite rank were studied in [1]. In this paper we
are primarily concerned with May modules of countable rank. We begin
by reviewing the following statement, which we have slightly reworded
using our terminology.

Corollary 1.1 ([4], Corollary B). Suppose M is a reduced module of
countable rank and torsion T .

(1) M is a May module if and only if it has an NFT-submodule.

(2) If T is totally projective, then M is a May module.

Our objective is to investigate this class more thoroughly. First,
we will show that each such module has a natural decomposition
(Theorem 3.5). In addition, we will provide two distinct characterizations
of the modules in the class (Theorems 4.1 and 4.4).

In proving these results we will employ the language of valuated
modules and valuated vector spaces which we briefly review (see, for
example, [6]). A valuation on a module V is a function | | from
V to the ordinals (with ∞ adjoined) such that for every ordinal α,
V (α) := {x ∈ V : |x| ≥ α} is a submodule of V and pV (α) ⊆ V (α+ 1).
For simplicity, we will assume all valuated modules are reduced in the
sense that V (∞) = 0. If pV = 0, then V is a valuated vector space
(over the residue field R/pR). When we are only concerned about
module properties, we will often emphasize this by including the word
algebraic. So, for example, we can talk about valuated modules that
are algebraically free. By an isometry of valuated modules we mean an
algebraic isomorphism that preserves valuations.

Suppose V is a submodule of the reduced module M . We denote the
height function on M by hM . If for all x ∈ V we let |x|= hM (x), then
we clearly obtain a valuation on V . In this case we call M a realization
of V . If, in addition, V is an NT-submodule of M , then we say M is
an NT-realization of V . It is well-known that any valuated module has
an NT-realization (see [6], Theorem 1).

If V is a valuated module and x ∈ V , then the value sequence of x is
given by (|x|, |px|, |p2x|, . . . ). We say the value sequence has a gap at
|pkx| if |pkx|+ 1< |pk+1x|. We say V is:
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(a) non-gapped if every torsion-free element of V has no gaps in its
value sequence.

(b) finitely-gapped if every torsion-free element of V has only a finite
number of gaps in its value sequence.

(c) infinitely-gapped if every torsion-free element of V has an infinite
number of gaps in its value sequence.

(d) α-limiting if every torsion-free element of x ∈ V satisfies
supk<ω{|pkx|}= α. Similarly, we say V is limiting if it is α-limiting for
some α of countable cofinality.

If M is a realization of V with M/V torsion, it is elementary that
M (under the height valuation) will satisfy one of (b),(c) or (d) if and
only if the same can be said of V .

If V is a valuated module, then an algebraic direct sum decomposition
V =⊕i∈IWi is valuated if the value of any element of V is the minimum
of the values of its components. A basis {bi}i∈I of an algebraically free
valuated module B is called a decomposition basis if the corresponding
algebraic decomposition is actually valuated. The module M is a
Warfield module if it is an NT-realization of a valuated module with
a decomposition basis.

A valuated module B will be said to be a valuated-projective if it has
a decomposition basis and is non-gapped. The module M is balanced-
projective if it is an NT-realization of a valuated-projective module.
Clearly, a balanced-projective module is a (particularly simple) Warfield
module. Using different terminology, these classes were introduced in
[9] and [10]. Both classes can be completely described using cardinal
invariants. It is easy to see that a Warfield module will be a May module
(see [4], Corollary B(3)); so in particular, a balanced-projective module
will be a May module.

Summarizing the contents of the paper, Section 2 contains a review
of some background material, together with a remark or two about its
application to the specific case of May modules.

In Section 3 we describe a natural way to decompose an arbitrary
May module of countable rank. We first establish a useful result on
valuated decompositions (Lemma 3.2). Suppose P is an algebraically
free valuated module of countable rank, P (ν) = 0 and I = {α≤ ν : α is
a limit ordinal of countable cofinality}. Then there is a full-rank nice
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submodule E ⊆ P with a valuated decomposition E =⊕α∈IEα where
each Eα is α-limiting.

This valuated decomposition determines an algebraic decomposition
of May modules. We say the modules M1 and M2 are H-isomorphic if
there are totally projective modules H1 and H2 such that M1⊕H1

∼=
M2⊕H2; in this case we write M1

∼=HM2. If M1 and M2 have isometric
NFT-submodules, then M1

∼=H M2 (Lemma 3.3). If M is a May
module of countable rank, then M ∼=H

⊕
α∈IMα, where each Mα

is α-limiting (Theorem 3.5). In fact, the factors Mα will be unique up
to H-isomorphism.

We then consider the individual terms in this decomposition. We
show that each Mα is isomorphic to a sum Nα ⊕ Lα where Nα is
balanced-projective and Lα is infinitely gapped. Putting these together
for all α ∈ I shows that M ∼=H N ⊕L, where N is balanced-projective
and L is infinitely gapped (Corollary 3.12).

In particular, we characterize the two extreme cases in this analysis.
First, a finitely-gapped module M of countable rank is a May module
if and only if it is balanced-projective (Theorem 3.8). On the other
hand, a reduced infinitely-gapped module M of countable rank is a
May module if and only if its torsion submodule is totally projective
(Theorem 3.11). This is a partial converse of Corollary 1.1(2).

In Section 4 we deepen the connection between countable rank May
modules and balanced-projective modules. We verify that a reduced
module M of countable rank is a May module if and only if it has a
balanced-projective submoduleN such thatM/N is countably generated
(Theorem 4.1). Interestingly, it is not necessary to assume that N has
any particular properties as a submodule of M (such as being isotype
or nice). Since the balanced-projectives form a particularly tractable
class of modules, this characterization gives a fairly concrete view of
May modules of countable rank. It tells us, for example, that a reduced
module that is an extension of a May module of countable rank by
a quotient that is countably generated will also be a May module
(Corollary 4.3).

We give a second characterization of countable rank May-modules
(Theorem 4.4). In this result no reference is made to NFT-submodules
at all. In fact, the characterization is completely expressed using two
important classes of torsion-modules, namely the totally projective
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modules and their generalization, the S-modules.

In Section 5 we present some results on May modules of uncountable
rank. Suppose M is a May module of arbitrary rank with torsion T . We
identify two different situations in which T must be totally projective:
first, if M is limiting and infinitely-gapped (Theorem 3.10); and second,
if the length of M is countable (Theorem 5.1).

On the negative side, with the help of a little set theory, we construct
an example of a finitely-gapped May module of rank ω1 that is not
balanced-projective (Theorem 5.3). In other words, Theorem 3.8, which
was central to our discussion of May modules of countable rank, cannot
be extended to May modules of uncountable rank.

We conclude with a few open questions.

2. Preliminaries. In [3] it was verified that the torsion May mod-
ules are precisely the totally projective modules; the torsion-free May
module are precisely the free modules; and if α is an ordinal, then M is
a May module if and only if both pαM and M/pαM are May modules.
If B is an NFT-submodule of the May module M , then since both B
and M/B are reduced, so is M .

We mention a couple of important consequences of the fact that we
are assuming R is a complete discrete valuation domain. First, it is well
known that any countable rank torsion-free module will be isomorphic
to a direct sum F ⊕D, where F is free and D is divisible. Also, if M is
a module, then any finitely generated submodule of M will actually be
nice in M .

The following is the cornerstone of this investigation:

Lemma 2.1 ([4], Lemma 11). Suppose M is a reduced module of
countable rank and F is a free full-rank submodule with basis {bn}n<ω.
Then there is a sequence {mn}n<ω of non-negative integers such that
F ′ := 〈pmnbn : n < ω〉 is a nice submodule of M .

When applying Lemma 2.1, if F ⊆M is either non-gapped, finitely-
gapped, infinitely-gapped or α-limiting, then the nice submodule F ′⊆F
will likewise be, respectively, non-gapped, finitely-gapped, infinitely-
gapped or α-limiting. In addition, for any valuated decomposition of
F , by choosing bases for each term separately, we may assume that the
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decomposition of F leads to a corresponding decomposition of F ′. So, for
example, if {bn}n<ω is a decomposition basis for F , then {pmnbn}n<ω
is a decomposition basis for F ′.

In addition, if V is an algebraically free valuated module of countable
rank, then by considering an NT-realization M of V , if F ⊆ V is full-
rank, then we can find a submodule F ′ ⊆ F that is full-rank and nice
in V .

We next recall a useful result of Wallace.

Theorem 2.2 ([7], Theorem 1). Suppose G is a reduced torsion module
with a totally projective submodule H. If G/H is countably generated,
then G is also totally projective.

Because of the centrality of Corollary 1.1 to our discussions, we
include a proof based upon Lemma 2.1 and Theorem 2.2.

Proof. (Corollary 1.1) Regarding the first statement, it is obvious
that if M is a May module, then it has an NFT-submodule.

Conversely, suppose M is a countable rank module with an NFT-
submodule C. If F ⊆M is any free full-rank submodule of M , then we
need to find an NFT-submodule contained in F . Replacing F by F ∩C,
we may assume that F ⊆ C.

By Lemma 2.1 there is a full-rank nice submodule B ⊆ F . Observe
that C/B will be a countably generated nice submodule of M/B and
(M/B)/(C/B)∼=M/C is totally projective. There is a nice composition
series for C/B consisting of finitely generated submodules, and using
a nice composition series for M/C, extendible to a nice composition
series for M/B. Therefore, M/B is totally projective, so that B is an
NFT-submodule, completing the argument.

Regarding the second statement, suppose now that T is totally
projective. If F ⊆M is free and full-rank, then by Lemma 2.1, we can
find a nice, full-rank submodule B ⊆ F . Since M is reduced and B
is nice in M , we can conclude that M/B is also reduced. The map
x 7→ x+B gives an embedding of T into M/B. The cokernel of this
map is isomorphic to M/(T +B), which is the epimorphic image of
M/T . Therefore, the cokernel is countably generated, and Theorem 2.2
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implies that M/B is totally projective; i.e., B is an NFT-submodule
of M .

So by our first statement, M is a May module. �

We repeat for emphasis the important point contained in Corol-
lary 1.1(1): If a countable rank module has a single NFT-submodule,
then it is a May module, so that in fact, it has many such submodules.
We next sharpen this observation slightly.

Proposition 2.3. Suppose M is a May module of countable rank. Then
a submodule B ⊆M is an NFT-submodule if and only if it is nice, free
and full-rank.

Proof. Necessity being obvious, suppose B is nice, free and full-rank;
we need to show M/B is totally projective. Let A ⊆ B be an NFT-
submodule of M . Using an element of a nice system for M/A, there is a
countably generated nice submodule C/A⊆M/A containing B/A such
that (M/A)/(C/A)∼=M/C is totally projective. Clearly M/C has a nice
composition series, and since B is nice and C/B is countably generated,
C/B also has a nice composition series. Fitting these together gives a
nice composition series for M/B, completing the proof. �

We make note of the following elementary consequence.

Proposition 2.4. Suppose M is a May module of countable rank. Then
any summand of M is also a May module.

Proof. Suppose we have a decomposition M =K⊕L. By Lemma 2.1,
there are free, full-rank nice submodule B ⊆ K and C ⊆ L. By
Proposition 2.3, B ⊕ C is an NFT-submodule of M . As (K/B) ⊕
(L/C) ∼= M/(B⊕C), K/B and L/C are totally projective. Hence by
Corollary 1.1(1), K and L are May modules. �

We now review some well-known results regarding valuated vector
spaces. Suppose V is a λ-bounded valuated vector space (i.e., V (λ) = 0).
A subset U ⊆ V will be said to be < λ-bounded if there is a β < λ such
that U(β) = 0.

If λ is a limit ordinal of countable cofinality, we say V is λ-summable
if it is the ascending union of a sequence {Un}n<ω of < λ-bounded
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submodules. If V is the valuated direct sum of a collection of < λ-
bounded modules, then it is easy to verify that V is λ-summable. In
particular, if T is a torsion-module that is the direct sum of modules of
length strictly less than λ, then the socle T [p] is λ-summable. Therefore,
by classical results, if H is a pλ-bounded totally projective module, then
its socle H[p] is λ-summable.

If λ is a limit ordinal, then a torsion module T is said to be a Cλ-
module if for every ν < λ, T/pνT is totally projective. For example, any
totally projective module is a Cλ-module for any λ. Clearly, any torsion
module is a Cω-module.

We mention another useful result, due to Wallace, restated slightly
using our terminology. It was a generalization of an earlier result of
Megibben for countable limit ordinals ([5], Theorem A). This, in turn,
was a generalization of the classical “Kulikov criterion” for direct sums
of cyclic modules ([2], Theorem 3.5.1).

Proposition 2.5 ([8], Proposition 2.5). Let λ be a limit ordinal of
countable cofinality and T be a pλ-bounded Cλ-module. Then T is
totally-projective if and only if its socle T [p] is λ-summable.

The following application is valid for May modules of arbitrary rank.

Lemma 2.6. Suppose M is a May module whose length λ is a limit
ordinal of countable cofinality and T is the torsion submodule of M . If
T is a Cλ-module, then it is totally projective.

Proof. Let B be an NFT-submodule of M ; so M/B will be totally
projective. Since pλM = 0, M/B will be pλ-bounded, so that (M/B)[p]
is λ-summable. Let (M/B)[p] be the ascending union of Un, where
for each n < ω, Un(γn) = 0 for some γn < λ. If for each n < ω we let
Wn = {x ∈ T [p] : x+B ∈ Un}, then it follows that T [p] will be the
ascending union of the Wns. If x ∈Wn(γn), then x+B ∈ Un(γn) = 0;
i.e., Wn(γn)⊆ T [p]∩B = 0. Therefore, T [p] is also λ-summable, so that
T is totally projective by Proposition 2.5. �

We will now apply summability to another collection of modules.
The torsion module T is said to be an S-module if it is isomorphic to
the torsion submodule of a balanced-projective module. These were
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introduced by Warfield in [9] and [10] where they were completely
classified by cardinal invariants. An S-module decomposes into a direct
sum H ⊕ (⊕Ei), where H is totally projective and, for each i, there is
a limit ordinal λi of uncountable cofinality and a rank-one balanced-
projective module Ni with torsion Ei such that pλiNi∼= R; so pλiEi = 0.

The S-modules are closed under direct sums and summands, and if
α is any ordinal, then T is an S-module if and only if pαT and T/pαT
are S-modules. The following observation is a direct consequence of the
above discussion:

Lemma 2.7. If λ is a limit ordinal of countable cofinality, then any
pλ-bounded S-module has a λ-summable socle.

We make one more observation about λ-summable valuated vector
spaces. Suppose V is λ-bounded, x ∈ V and U ⊆ V is a < λ-bounded
subspace. Choose β <λ so that U(β) = 0. Consider U ′=U+〈x〉. Either
U ′ is also β-bounded, or we can find a u∈U such that β< |x+u| :=γ <λ.
In the latter case it easily follows that U ′(γ+ 1) = 0. In either case U ′

is also < λ-bounded.

By induction, the above implies that if F ⊆ V is finitely generated
and U is < λ-bounded, then U +F is also < λ-bounded. From this, we
can readily conclude the following:

Lemma 2.8. Suppose λ is a limit ordinal of countable cofinality, V
is a λ-bounded valuated vector space and W ⊆ V is subspace such that
V/W is countably generated. If W is λ-summable, then so is V .

3. Decomposing May modules of countable rank. We now
present a natural way to decompose May modules of countable rank.
If V is a valuated module and X ⊆ V , let X∗ = X \ {0} and |X| =
{|x| : x ∈ X}. So V is α-limiting if and only if for every torsion-free
x ∈ V , sup(|〈x〉∗|) = α. And recall that V is limiting if and only if it is
α-limiting for some α.

Lemma 3.1. If B is an algebraically free valuated module of finite rank,
then B is limiting if and only if |B∗| has order type ω (i.e., it can be
thought of as a strictly increasing sequence of ordinals).
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Proof. It being obvious that if |B∗| has order type ω, then B is
limiting, we assume that B is α-limiting. If β < α, then we need to
show that β ∩ |B∗| is a finite set. Suppose first that B(β) has smaller
rank than B. This means that B/B(β) is not a torsion module. So
we can find a y ∈B such that pky 6∈B(β) for all k < ω. This, however,
contradicts that B is α-limiting.

So we may assume B(β) has the same rank as B for all β < α. It
follows that each such B/B(β) is a finitely generated torsion module.
Therefore, since any composition series for B/B(β) must be finite, there
are only a finite number of distinct submodules of the form B(γ)⊆B
for some γ < β. As these submodules correspond to the elements of
β ∩ |B∗|, this set must be finite. �

Recall that if C ⊆B are valuated modules and C is nice in B, then
every coset b+C has an element bp of maximal value (i.e., it is proper
with respect to C). Setting |b+C|= |bp| makes B/C into a valuated
module. It is easy to check that |B|= |C| ∪ |B/C|.

The next result is the key to our analysis of countable rank May
modules. It will allow us to break them apart into submodules that are
limiting.

Lemma 3.2. Suppose P is an algebraically free valuated module of
countable rank with P (ν) = 0 and I = {α ≤ ν : α is a limit ordinal of
countable cofinality}. There is a nice full-rank submodule E ⊆ P with a
valuated decomposition E = ⊕α∈IEα such that each Eα is α-limiting,
and |E∗α| ∩ |E∗β |= ∅ for α 6= β ∈ I.

Proof. Let {bj}j<ω be a basis for P . By inducting on j < ω, we
construct, for each α ∈ I, an α-limiting submodule Eα,j of P satisfying
the following:

(1) Eα,0 ⊆ Eα,1 ⊆ Eα,2 ⊆ · · · ⊆ Eα,j .
(2) ⊕α∈IEα,j is a full-rank submodule of Pj := 〈b0, b1, . . . , bj〉.
(3) If α 6= β ∈ I, then |E∗α,j | ∩ |E∗β,j |= ∅.

For a given j < ω, since Pj has finite rank, (2) implies that Eα,j = 0
for all but finitely many α ∈ I. In addition, (3) implies that the sum in
(2) is valuated.
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Assume for a moment that we have constructed these submodules.
For each α ∈ I we let E′α := ∪j<ωEα,j and E′ := ⊕α∈IE′α. Applying
Lemma 2.1, we may assume Eα ⊆ E′α and E := ⊕α∈IEα ⊆ E′ is nice
and full-rank in P . It is straightforward to verify that our requirements
are satisfied.

Again, we proceed by induction on j. If j = 0, then let α :=
sup |〈b0〉∗| ∈ I. We just let Eα,0 = 〈b0〉 and Eβ,0 = 0 when α 6= β ∈ I.
Clearly, all our conditions will hold.

So suppose we have defined each Eα,j−1 for all α ∈ I; we will show
how to construct all the Eα,j .

Let U :=⊕α∈IEα,j−1 ⊆ Pj−1 and V := 〈bj〉+U . Since U is finitely
generated, it will be nice in V . Set γ := sup(|(V/U)∗|) ∈ I.

Recall Eα,j−1 = 0 for all but finitely many α ∈ I; and even if α 6= γ
and Eα,j−1 6= 0, by Lemma 3.1, |E∗α,j−1| has order type ω and supremum
α 6= γ. This mean that, after possibly replacing bj with pmbj for some
m < ω, we may assume that κ := |bj + U |V/U has the property that
γ 6= α ∈ I implies that |E∗α,j−1| ∩ [κ, γ) = ∅.

Let b ∈ bj +U be proper with respect to U ; so |b| = κ. We define
Eγ,j := Eγ,j−1 + 〈b〉, and if γ 6= α ∈ I, we set Eα,j := Eα,j−1.

Claim: |E∗γ,j | ⊆ |E∗γ,j−1| ∪ [κ, γ).

For any m< ω it is easy to see that

κ≤ |pmb| ≤ |pmb+Eγ,j−1|Eγ,j/Eγ,j−1
≤ |pmb+U |V/U < γ.

So that

|E∗γ,j |= |E∗γ,j−1| ∪ |(Eγ,j/Eγ,j−1)∗| ⊆ |E∗γ,j−1| ∪ [κ, γ),

which gives the Claim.

We now verify the three conditions in our induction. Condition (1)
is obvious for j, and condition (2) follows from the observation that
we have increased the rank of the sum by 1, so that it must remain
full-rank in Pj . So we need to verify condition (3).

Let α, β ∈ I with α 6= β. If α 6= γ 6= β, then it follows that

|E∗α,j | ∩ |E∗β,j |= |E∗α,j−1| ∩ |E∗β,j−1|= ∅.
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On the other hand, suppose α 6= γ = β. Since Eα,j = Eα,j−1 and
|E∗α,j−1| ∩ [κ, γ) = ∅, the Claim implies

|E∗α,j | ∩ |E∗β,j | ⊆ |E∗α,j−1| ∩ (|E∗γ,j−1| ∪ [κ, γ))

= (|E∗α,j−1| ∩ |E∗γ,j−1|)∪ (|E∗α,j−1| ∩ [κ, γ)) = ∅,

which gives (3).

Finally, we need to verify that each Eα,j remains α-limiting. If α 6= γ,
this follows because Eα,j = Eα,j−1. So consider α= γ.

As noted above, by (3) for this j, we know the sum in (2) is valuated.
Therefore, V/U is isometric to Eγ,j/Eγ,j−1, so that

|E∗γ,j |= |E∗γ,j−1| ∪ |(Eγ,j/Eγ,j−1)∗|= |E∗γ,j−1| ∪ |(V/U)∗|

has order type ω and supremum γ, completing the proof. �

The following is our primary tool for building H-isomorphisms.

Lemma 3.3. (a) If M1 and M2 are NT-realizations of isometric
submodules C1 ⊆M1 and C2 ⊆M2, then M1

∼=H M2.

(b) If M1
∼=H M2, then M1 is a May module if and only if M2 is a

May module.

Proof. (a): Suppose φ : C1 → C2 is an isometry. We can clearly
find totally projective modules H1 and H2 such that the relative Ulm
invariants of C1 in M1⊕H1 agree with the relative Ulm invariants of
C2 in M2⊕H2. This implies M1⊕H1

∼=M2⊕H2, completing the proof
of (a).

(b): Suppose H is totally projective. It is easy to check M is a May
module if and only if M ⊕H is a May module. Therefore M1 is a May
module if and only if M1⊕H1

∼=M2⊕H2 is a May module if and only
if M2 is a May module. �

Combining Lemma 3.3(b) with Proposition 2.4 gives the following:

Corollary 3.4. If M1 is a countable rank May module, M1
∼=HM2 and

N is a summand of M2, then N is a May module.
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This brings us to our main decomposition theorem.

Theorem 3.5. Suppose M is a May module of countable rank, pνM = 0
and I = {α≤ ν :α is a limit ordinal of countable cofinality}. Then M ∼=H⊕

α∈IMα, where each Mα is an α-limiting May module. Furthermore,
this decomposition is unique in the sense that if M ∼=H

⊕
α∈IM

′
α is

another such decomposition, then for all β ∈ I, Mβ
∼=H M ′β.

Proof. We first establish the existence of this decomposition. Let
P ⊆M be an NFT-submodule. Find E =⊕α∈IEα⊆P as in Lemma 3.2.
By Proposition 2.3, E is also an NTF-submodule of M . If for each
α ∈ I we let Mα be some NT-realization of Eα, then

⊕
α∈IMα will be

another NT-realization of E. By Lemma 3.3(a), M ∼=H

⊕
α∈IMα. By

Corollary 3.4, each Mα is a May module.

Turning now to uniqueness, suppose we have totally projective
modules H,H ′ and an isomorphism H ⊕

⊕
α∈IMα→H ′⊕

⊕
α∈IM

′
α.

Absorbing the totally projective terms into one of the others in these
decompositions, we may assume H = H ′ = 0 and the isomorphism is
actually an equality. Call the resulting module M .

Fix some β ∈ I; we want to show Mβ
∼=H M ′β . For each α ∈ I, let

Eα⊆Mα be an NFT-submodule; so E =⊕α∈IEα is an NFT-submodule
of M . Let J={α∈I :α>β}. Note that for each α∈J , Eα(β) is full-rank
in Mα; replacing Eα by Eα(β), we may assume E(β) =⊕α∈JEα.

Similarly, for each α ∈ I, let E′α ⊆ M ′α be an NFT-submodule.
Using Lemma 2.1, we may clearly assume E′ := ⊕α∈IE′α ⊆ E and
E′(β) =⊕α∈JE′α.

Note that if x∈E, then x∈Eβ⊕E(β) if and only if supn<ω |pnx| ≥β;
similarly for x ∈ E′. It follows that E′β ⊕ E′(β) will be full-rank in

Eβ ⊕E(β).

Therefore, under the obvious map M →M/pβM , E′β maps isometri-
cally to a nice full-rank submodule of the image of Eβ . It follows that
we can consider E′β to be an NFT-submodule of both Mβ and M ′β . So

by Lemma 3.3(a), Mβ
∼=H M ′β . �

We now analyze some of the terms in the above decomposition a bit
more. We noted before that if M is an α-limiting module and α is not of
the form β+ω, then M must be infinitely gapped. The next observation
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shows that if α is of this form, then we can split M into a part that is
valuated-projective and another part that is infinitely-gapped.

Lemma 3.6. Suppose α= β+ω and M is an α-limiting May module
of countable rank. Then there is a decomposition M =N ⊕L, where N
is balanced-projective and L is infinitely gapped.

Proof. Suppose first that β = 0. If T is the torsion submodule of M ,
then M/T =N ′⊕D, where N ′ is free (and hence balanced-projective)
and D is divisible. It follows that M = N ⊕ L, where N ∼= N ′ and
L/T =D. If L were not infinitely-gapped, it would be possible to find
a torsion-free x ∈ L such that 〈x〉 is pure in L. But since R is complete,
this cyclic submodule would be a summand, which contradicts that D
is divisible. Therefore, L must be infinitely-gapped.

Suppose now that β > 0. So as above, there is a decomposition
pβM ∼= Nβ ⊕ Lβ . Note that M/pβM will be a torsion May module,
i.e., it is totally projective. It easily follows from the theory of totally
projective modules that the decomposition pβM =Nβ ⊕Lβ extends to
a decomposition M =N ⊕L, as required. �

Suppose Eα is one of the terms in Lemma 3.2. If α is not of the form
β+ω, we already know that Eα is infinitely gapped. Suppose then that
α is of this form. Consider an NT-realization Mα of Eα; Lemma 3.6
implies that Eα has a full-rank nice submodule of the form Bα⊕Cα,
where Bα is valuated-projective and Cα is infinitely gapped. Splicing
this all together for all α gives the following:

Corollary 3.7. If P is an algebraically free valuated module of countable
rank, then there is a nice full-rank submodule E ⊆ P with a valuated
decomposition E = B ⊕ C, where B is valuated-projective and C is
infinitely-gapped.

We note in passing that Corollary 3.7 depends heavily on the
assumption that R is a complete discrete valuation ring. To see why
this is true, suppose for example that R is the integers localized as
some prime. We think of R as a subring of the p-adic integers, R.
Let P be any submodule of R of (R-)rank 2, where for each y ∈ P ,
we let |y| = hR(y). Since R is torsion-free, it is immediate that P
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is non-gapped. If E ⊆ P satisfied Corollary 3.7, we would have to
have E = B is valuated-projective and rank 2. On the other hand,
this contradicts the fact that for any n < ω, E(n)/E(n+ 1) embeds in
R(n)/R(n+ 1)∼= R/pR∼=R/pR.

This brings us to an important step in our discussions. At a later
point we will show that it does not generalize to modules of uncountable
rank.

Theorem 3.8. Suppose M is a module of countable rank. Then M is
balanced-projective if and only if it is a finitely-gapped May module.

Proof. If M is balanced-projective, then it is clearly a finitely-gapped
May module.

Conversely, suppose M is a finitely-gapped May module of countable
rank. Let P be some NFT-submodule of M . Now, let B⊕C ⊆ P be
as in Corollary 3.7. Since M is finitely-gapped, we can conclude that
C = 0. By Proposition 2.3, M is an NT-realization of B, so that it is
balanced-projective. �

If M is a module and B ⊆M is a submodule, then the purification of
B is the submodule N such that N/B is the torsion submodule of M/B.
To avoid repetition, we include the following argument as a separate
statement.

Lemma 3.9. Suppose M is a module, P is a free, full-rank submodule
of M with a valuated decomposition P =B⊕C, where C is infinitely-
gapped. If N is the purification of B and λ is an ordinal, then the
natural map N/pλN →M/pλM restricts to an isomorphism on their
torsion submodules.

Proof. Since M/N is torsion-free, N is an isotype submodule of M .
This easily implies that the map is injective.

Suppose x+pλM is a torsion element of M/pλM . It follows that we
can find k < ω such that pkx∈ pλM . Since P is full-rank, after possibly
increasing k, we may assume that pkx= b+ c ∈ P (λ) =B(λ)⊕C(λ).

Since C is infinitely-gapped, after again possibly increasing k, we
may assume |c| ≥ λ+ k. Let y ∈ pλM satisfy pky = c.
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Clearly, x+pλM=x−y+pλM . And since pk(x−y)=(b+c)−c=b∈B,
we can conclude that x− y ∈ N . This implies that our map is also
surjective on the torsion and completes the argument. �

Interestingly, the next result is actually valid for May modules of
arbitrary rank.

Theorem 3.10. If M is a limiting and infinitely-gapped May module
with torsion T , then T is totally projective.

Proof. Let C be an α-limiting NFT-submodule of M . Note that
pαM∩C=0, so that pαM will be a torsion May module, i.e., pαM =pαT
is totally projective. Therefore, T will be totally projective if and only if
T/pαT is totally projective. And since T/pαT is the torsion submodule
of the May module M/pαM , we may assume pαM = 0, i.e., M is
pα-bounded.

Suppose λ<α. Since M is α-limiting it follows that C(λ) is full-rank
in M . In particular, this implies that M/pλM is torsion. Therefore, by
Lemma 3.9 (with B = 0), it follows that T/pλT ∼=M/pλM is a torsion
May module, i.e., it is totally projective. Therefore, T is a Cα-module,
and by Lemma 2.6, T is totally projective. �

Theorem 3.8 applies when C = 0 in Corollary 3.7. On the other hand,
the following partial converse to Corollary 1.1(2) applies when B = 0.

Theorem 3.11. If M is a reduced infinitely-gapped module of countable
rank with torsion T , then M is a May module if and only if T is totally
projective.

Proof. If T is totally projective, then by Corollary 1.1(2), M is a
May module.

Conversely, assume M is a May module. As in Theorem 3.5, there is
a totally projective module H and an isomorphism M ⊕H ∼=

⊕
α∈IMα,

where each Mα is α-limiting.

Since M is infinitely-gapped, so is each Mα. By Theorem 3.10, the
torsion submodule of each Mα is totally projective. Therefore, T ⊕H
is totally projective, implying that T is totally projective, as well. �



MAY MODULES OF COUNTABLE RANK 2629

By considering NT-realizations of the terms in Corollary 3.7, we can
conclude:

Corollary 3.12. If M is a May module of countable rank, then
M ∼=H N⊕L, where N is a finitely-gapped May module (i.e., a balanced-
projective) and L is an infinitely-gapped May module (i.e., its torsion
submodule is totally projective).

The following shows that even for Warfield modules, in results like
Theorem 3.5 or Corollary 3.12, though a given May module of countable
rank will be H-isomorphic to such a direct sum, it may not actually be
isomorphic to one.

Example 3.13. There is a Warfield module of rank 2 that is not the
direct sum of a balanced-projective module and an infinitely-gapped May
module.

Proof. Let 〈x〉 be a valuated-projective module such that |x|=ω and
let 〈y〉 be an ω-limiting infinitely-gapped valuated module. Let P be
the valuated direct sum 〈x〉⊕ 〈y〉. It is a standard construction in the
theory of Warfield modules that there is an NT-realization M of P that
is not isomorphic to the direct sum of two modules of rank 1. �

The problem in Example 3.13 is that there are not enough non-zero
relative Ulm invariants of P in M for such a decomposition to occur.

4. Characterizations of May modules of countable rank. In
this section we present two such characterizations. We begin with:

Theorem 4.1. Let M be a reduced module of countable rank. Then M
is a May module if and only if it has a balanced-projective submodule
N ⊆M such that M/N is countably generated.

Proof. Suppose first that we are given the balanced-projective sub-
module N ⊆ M . Using the height valuation on N , let B ⊆ N be a
valuated-projective NFT-submodule. We can extend this to a full-rank
free submodule P := B⊕C ⊆M . It should be noted that if N is not
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isotype in M , then on B the height valuation from N may be differ-
ent than the height valuation from M . In addition, using the height
valuation from M , we are not assuming this sum is valuated.

Applying Lemma 2.1, we may assume P is nice in M and B will
remain a valuated-projective NFT -submodule of N .

Since M is reduced and P ⊆ M is nice, it follows that M/P is
reduced. In addition, the totally projective module N/B naturally
embeds in M/P . Since the cokernel of this embedding is isomorphic to
M/(P +N), which is the epimorphic image of M/N , it is necessarily
countably generated. So by Theorem 2.2, M/P is totally projective.

It follows that P is an NFT-submodule of M , so that by Corol-
lary 1.1(1), M will be a May module.

Conversely, suppose M is a May module. As usual, find an NFT-
submodule P ⊆M which is a valuated sum P = B ⊕C, where B is
valuated-projective and C is infinitely gapped. Let N be the purification
of B.

Since M/N is torsion-free, it follows that N is an isotype submodule
of M and B is nice and valuated-projective in N . Since C maps to an
essential submodule of M/N , we can conclude that M/N is countably
generated.

Clearly, P/B∼=C is an infinitely-gapped nice, free submodule of M/B.
Since (M/B)/(P/B)∼=M/P is totally projective, by Corollary 1.1(1),
M/B is a May module. By Theorem 3.10, the torsion of M/B will
necessarily be totally projective. Since this torsion is, in fact, N/B, it
follows that B is an NFT-submodule of N .

Therefore, N will be balanced-projective, completing the proof. �

For future reference, we note one point made in the last result.

Corollary 4.2. Suppose M is a reduced module of countable rank,
P ⊆M is a free, nice, full-rank submodule with a valuated decomposition
P =B⊕C where B is valuated-projective and C is infinitely gapped. If
N is the purification of B, then M is a May module if and only if N is
balanced-projective.

It is perhaps surprising that in Theorem 4.1 the submodule N is not
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assumed to have any special properties, such as being nice or isotype
in M .

Corollary 4.3. Suppose L is a reduced module of countable rank with
a May submodule M . If L/M is countably generated, then L is also a
May module.

Proof. Suppose N ⊆M is as in Theorem 4.1. Since L/M and M/N
are countably generated, so is L/N . So again using Theorem 4.1, L is a
May module. �

Observe the parallel between Corollary 4.3 and Wallace’s Theorem
(Theorem 2.2). In fact, Wallace’s Theorem is simply the torsion case of
Corollary 4.3.

We now present a second characterization of May modules of
countable rank that does not involve NFT-submodules or balanced-
projective modules, but only certain torsion modules.

We first point out a simple idea. If P is a countably generated full-
rank submodule of M and λ is a limit ordinal of uncountable cofinality,
then there is an ordinal β < λ such that P (β) = P (λ). From this it
is easy to see that P (λ) is full-rank in pβM , and in particular, that
pβM/pλM will be torsion.

This brings us to our second characterization of countable rank May
modules.

Theorem 4.4. Suppose M is a reduced module of countable rank with
torsion T . Then M is a May module if and only if (a) T is an S-module;
and (b) for every limit ordinal λ of uncountable cofinality, there is an
ordinal β < λ such that pβM/pλM is totally projective.

Proof. Suppose P =B⊕C and N are as in Corollary 4.2. so M is a
May module if and only if N is a balanced-projective.

We claim that M satisfies (a) and (b) if and only if N does. Note
that N and M have the same torsion, namely T , so the equivalence of
(a) for the two modules is trivial.

Considering (b), if λ is a limit ordinal of uncountable cofinality, then
we can find a β < λ such that pβM/pλM and pβN/pλN are torsion. By
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Lemma 3.9, N/pλN →M/pλM is an isomorphism on their torsions, so
that pβN/pλN ∼= pβM/pλM . Therefore, condition (b) is also equivalent
for the two modules.

Therefore, there is no loss of generality in assuming that C = 0 and
M =N is finitely-gapped.

Suppose first that M is balanced-projective. It follows by definition
that T is an S-module.

Turning now to condition (b), suppose λ is a limit ordinal of
uncountable cofinality. Find β < λ such that pβM/pλM is torsion.
Since this quotient will also be balanced-projective, it must be totally
projective.

Conversely, suppose (a) and (b) hold. We prove that M is balanced-
projective by induction on the length of T , which we denote by µ. So
assume the result holds for every finitely-gapped reduced module of
countable rank satisfying (a) and (b) whose torsion submodule has
strictly smaller length.

Claim 1: If ν < µ is an ordinal, then M/pνM is balanced-projective.

Observe that pνM/pνT =X ⊕D, where X is free and D is divisible
and torsion-free. Therefore, there is a decomposition M/pνT =M ′⊕D.
The torsion submodule of M ′ is T/pνT , and so it is an S-module of
length ν < µ.

In addition, pνM ′ ∼=X and M ′/pνM ′ ∼=M/pνM . Therefore, if λ≤ ν
has uncountable cofinality, then there is a β < λ such that

pβM ′

pλM ′
∼=
pβ(M ′/pνM ′)

pλ(M ′/pνM ′)
∼=
pβ(M/pνM)

pλ(M/pνM)
∼=
pβM

pλM

is totally projective.

It follows from induction that M ′ is balanced-projective. Therefore,
M/pνM ∼=M ′/pνM ′ is also balanced-projective.

Suppose that 0<γ≤ω and ν+γ=µ. It follows that pνT is a separable
S-module, i.e., it is a direct sum of cyclics. So by Corollary 1.1(2), pνM
will be a finitely-gapped May module, i.e., a balanced-projective. So,
by Claim 1, M will be one, as well.

Next, if µ is a limit ordinal of uncountable cofinality, by hypothesis, we
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can find β<µ so that pβM/pµM is totally projective. Since T∩pµM =0,
pµM will be reduced, countable-rank and torsion-free, i.e., it is a free
module. This implies that pβM is a balanced-projective module. And,
again by Claim 1, M will be one, as well.

Therefore, it suffices to consider the case where µ is a limit ordinal of
countable cofinality that is not of the form µ= ν+ω (i.e., it is a limit
of limit ordinals).

Again, we may assume B is a nice, full-rank, valuated-projective
submodule of M . Replacing B by B+pµM , there is no loss of generality
in assuming pµM ⊆ B, so that M/B is pµ-bounded; we need to show
that it is totally projective.

Claim 2: M/B is a Cµ-module.

Let ν < µ be a limit ordinal. We must show that

(M/B)/pν(M/B) = (M/B)/([B+ pνM ]/B)

∼=M/[B+ pνM ]∼= (M/pνM)/([B+ pνM ]/pνM)

is totally projective.

By Claim 1, M/pνM is balanced-projective. There is clearly a
valuated decomposition B =B1⊕B2 where B1(ν) = 0 and B2 ⊆ pνM .
Therefore, B := [B+ pνM ]/pνM ∼=B1 and is nice, free and full-rank in
M/pνM . By Proposition 2.3, B is an NFT-submodule of M/pνM . So
our quotient is totally projective, completing the verification of Claim 2.

Claim 3: The homomorphism T [p]→M/B given by x→x+B preserves
values.

If this failed, we could find x∈T [p], y ∈B such that |x|= |y|< |x+y|.
It follows that |py|= |p(x+ y)| ≥ |x+ y|+ 1> |y|+ 1 = |py|, which is a
contradiction.

We now complete the proof. By Claim 3, T can be viewed as an
isotype submodule of M/B. Since T is an S-module, by Lemma 2.7, T [p]
will be µ-summable. In addition, it is clear that (M/B)/T is countably
generated. By Lemma 2.8, this implies that (M/B)[p] is µ-summable.
Therefore, by Claim 2 and Proposition 2.5, M/B is totally projective,
as required. �
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As an application, it is possible to use Theorem 4.4 to give a different
proof of Proposition 2.4.

5. May modules of uncountable rank. May modules of uncount-
able ranks are clearly much more complicated than those of countable
rank. Theorem 3.10 and the following do give us some information
regarding their torsion submodules. The proof uses the famous result,
due to Hill, that any isotype submodule of a totally projective module
of countable length is also totally projective.

Theorem 5.1. Suppose M is a May module of arbitrary rank with
torsion T . If M has countable length, then T is totally projective.

Proof. We induct on the length of M , which we denote by λ.

If λ= α+ 1, it follows that pαM = pαT is torsion. And by induction,
M/pαM is also a May module of length α < λ. Therefore, its torsion
T/pαT is totally projective, so the same holds for T .

So assume λ is a limit ordinal. Whenever α < λ, M/pαM is a
May module, so its torsion Ťα is totally projective. Since T/pαT is
isomorphic to an isotype submodule of Ťα, by Hill’s Theorem we can
conclude that T/pαT is also totally projective.

Therefore, T is a Cλ-module. So by Lemma 2.6, T is totally projective,
as required. �

Corollary 5.2. If M is a May module of arbitrary rank with torsion
T , then T is a Cω1-module.

Proof. For every countable λ < ω1, M/pλM will be a May module,
so that by Theorem 5.1, its torsion, Ťλ, will be totally projective. Since
T/pλT can be viewed as an isotype submodule of Ťλ, T/pλT will also
be totally projective. �

In the main result of this section we will use a little bit of set theory –
namely the prediction principle ♦(ω1). There are many equivalent ways
to express ♦(ω1); the following will be convenient for our purposes:

♦(ω1) - If L⊆ ω1 is the collection of countable limit ordinals, then there
is a set of functions {gξ : ξ→ ω : ξ ∈ L} with the property that for any
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possible function g : ω1→ ω, there is an ξ ∈ L such that g(β) = gξ(β)
for all β < ξ (in other words, g restricts to gξ on ξ).

This statement is true, for example, in any model of the constructible
universe, but is independent of the standard axioms of set theory.

Theorem 3.8 clearly had a central position in our investigation of
May modules of countable rank. The following shows that it cannot be
proven to hold for May modules of uncountable rank.

Theorem 5.3. Assuming ♦(ω1), there is a finitely-gapped May module
M with pωM = 0 and rank ω1 that is not balanced-projective.

Proof. Fundamental to our construction is the following idea, in
which we introduce some convenient, albeit non-standard, terminology.

Definition 5.4. The valuated module B will be said to be 2-closed if
it is algebraically free, finitely-gapped and every non-zero y ∈B satisfies
the following:

(2a) |py| ≤ |y|+ 2;

(2b) hB(y) = 0 implies |y|= 0.

Clearly, being 2-closed is inductive in the sense that if B is an
algebraically free valuated module that is the ascending union of a
collection of 2-closed submodules, then B itself will be 2-closed. We
note the following consequence:

(2c) If B is 2-closed and y ∈B is non-zero, then |y| ≤ 2hB(y)< ω.

Suppose hB(y) =m; it follows that y = pmy′, where hB(y′) = 0. So by
(2b) we have |y′|=0. Therefore, by (2a), |y|= |pmy′|≤ |y′|+2m=2hB(y).

Here is the key step in proving Theorem 5.3:

Lemma 5.5. Assuming ♦(ω1), there is a 2-closed valuated module Bω1

of rank ω1 such that no full-rank submodule of Bω1
is non-gapped, i.e.,

whenever S is a full-rank submodule of Bω1 , there is a non-zero y ∈ S
such that |py|> |y|+ 1.
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Before verifying this lemma, we show how it implies Theorem 5.3.
Let M be an NT-realization of Bω1 ; so M is finitely-gapped. Since
Bω1(ω) = 0, we can also view M/pωM as an NT-realization of Bω1 , so
there is no loss of generality in assuming that pωM = 0. We need to
show that M is a May module.

Let {bi}i<ω1
be an algebraic basis for Bω1

. If f is any function from
ω1 to ω, then let Pf = 〈pf(i)bi : i ∈ ω1〉 ⊆Bω1 . We claim that any such
Pf must be nice in Bω1

, and hence nice in M . To that end, suppose
x ∈ Bω1

is not an element of Pf . Since Bω1
/Pf is algebraically the

direct sum of bounded cyclic modules, it follows from (2c) that

sup{|x+ y| : y ∈ Pf} ≤ sup{2hBω1
(x+ y) : y ∈ Pf}= 2hBω1/Pf

(x+Pf ),

which must be finite. Therefore, the first collection of values must have
a maximal element, so x+Pf must have a proper element with respect
to | |.

To show M is a May module, let F be any full-rank submodule of
M . Clearly, there is a function f0 from ω1 to ω such that Pf0 ⊆ F . We
know that Pf0 is nice in M , so it will suffice to show that M/Pf0 is
totally projective.

There is clearly an ordinal λ and a collection of functions {fν}ν≤λ
such that {Pfν}ν≤λ is a smoothly increasing chain starting with Pf0 ⊆F ,
ending with Pfλ = Bω1 , and satisfying Pfν+1/Pfν

∼= R/pR whenever
ν < λ. It follows that for each ν ≤ λ, Pfν is nice in Bω1 (and so it is nice
in M), so that Pfν/Pf0 is nice in Bω1

/Pf0 (and so it is nice in M/Pf0).
Therefore, {Pfν/Pf0}ν≤λ gives a nice composition series for Bω1

/Pf0 .
Extending this using a nice composition series for M/Bω1

gives a nice
composition series for M/Pf0 , showing that it is totally projective, as
required. Therefore, M is a May module.

We now show that M is not a balanced-projective module. If, in
fact, M were balanced-projective, then it would be an NT-realization
of a full-rank non-gapped submodule Q. However, letting S =Q∩Bω1

would contradict the statement of Lemma 5.5.

We now turn to proving Lemma 5.5. We will build up Bω1
inductively

using ♦(ω1). As we do so, the following is the key step:

Lemma 5.6. Suppose B is a 2-closed valuated module of countable
rank and X is a full-rank submodule of B that is valuated-projective; so
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there is an isometry

X ∼= 〈x1〉⊕ 〈x2〉⊕ 〈x3〉⊕ · · ·

which we will assume is an equality. Let B̌ be an algebraically free
module of the form 〈x0〉⊕B, which contains the full-rank free submodule
X̌ := 〈x0〉⊕X. There is a valuation on B̌ extending the valuation on
B such that

(A) B̌ is also 2-closed;

(B) For every j < ω there is an element x ∈X such that

|p(pjx0 +x)|> |pjx0 +x|+ 1,

that is, pjx0 +x has a gap in its value sequence.

As will be seen, the algebraic decompositions X̌ = 〈x0〉 ⊕X and
B̌ = 〈x0〉⊕B will not be valuated; in fact, this would make it impossible
to satisfy condition (B).

Before we get into the technical details involved in proving Lemma 5.6,
we show how it leads to a proof of Lemma 5.5, and so to a proof of
Theorem 5.3.

Fix an algebraic decomposition Bω1 := ⊕i<ω1〈bi〉. If λ ≤ ω1, let
Bλ = ⊕i<λ〈bi〉 ⊆ Bω1

, so {Bλ}λ≤ω1
is a smoothly ascending chain.

If f is any function from ω1 to ω, then we have already defined
Pf := 〈pf(i)bi : i ∈ ω1〉 ⊆Bω1

. Similarly, if fξ is a function from ξ < ω1

to ω, then we let Pfξ := 〈pfξ(i)bi : i ∈ ξ〉 ⊆Bξ.

We start with a collection of functions {gξ}ξ∈L as in ♦(ω1). Our
strategy will be to inductively define a valuation | | on Bλ, where in
each case Bλ will be 2-closed. Certainly, if λ= 0, then B0 = 0 has only
one valuation. Next, suppose λ > 0 and this has been done for all ξ < λ.
First, if λ is a limit ordinal, then the valuation on Bλ will be uniquely
determined by the equation Bλ = ∪ξ<λBξ; since 2-closure is inductive,
this Bλ will also be 2-closed.

So now suppose λ= ξ+ 1 is a successor ordinal.

Case 1: ξ is 0 or a successor ordinal.
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In this situation, we just give the height valuation to 〈bξ〉 and let Bλ
be the valuated sum 〈bξ〉⊕Bξ. It is routine to show this Bξ will also
be 2-closed.

Case 2: ξ is a limit ordinal.

Since Pgξ ⊆ Bξ is a finitely-gapped valuated module of countable
rank, it follows from Corollary 3.6 that there is a full-rank submodule
X ⊆ Pgξ that is valuated-projective. Therefore, X is isometric to a

valuated direct sum
⊕ω

k=1〈xk〉. If we use x0 = bξ, it follows from
Lemma 5.6 (with B = Bξ) that we can extend | | to a valuation on

B̌ :=Bλ = 〈bξ〉⊕Bξ = 〈x0〉⊕Bξ making it 2-closed and with the property
that for every j < ω there is a x∈X ⊆Pgξ such that pjbξ+x= pjx0 +x
has a gap in its value sequence.

Continuing this construction for all λ < ω1, we arrive at our
Bω1

= ∪λ<ω1
Bλ, which will once again be 2-closed.

We now verify that Lemma 5.5 holds, which will imply Theorem 5.3.
Let S be a full-rank submodule of Bω1

. It is easy to construct a function
g :ω1→ω such that Pg⊆S. By ♦(ω1), there is a limit ordinal ξ such that
g(β) =gξ(β) for all β<ξ. Therefore, we are in Case 2 of our construction
and we let X ⊆ Pgξ be as in that argument. If we let j = g(ξ)<ω, then

pjx0 = pjbξ ∈ S, x ∈X ⊆ Pgξ ⊆ Pg ⊆ S and pjx0 + x ∈ S has a gap in
its value sequence. This verifies Lemma 5.5 and completes the proof of
Theorem 5.3.

So we now need to complete the construction in Lemma 5.6. This is
where things get a bit technical. First, after possibly replacing each xk
(k= 1, 2, . . . ) by pmkxk for some mk, there is clearly no loss of generality
in assuming that there is a sequence of positive integers 0<j1<j2< . . . ,
such that |xk|= 2jk; we also set j0 = 0.

We will define a function v from B̌ to the (finite) ordinals that agrees
with | | on B and then show that it is a valuation with the required
properties.

We need to identify some important elements yj ∈ X̌ ⊆ B̌. For j < ω,
let

yj =
∑

{k:jk≤j}

pj−jkxk = pjx0 +x, where x ∈X ⊆B. (†)

Our approach to defining v is to set v(yj) = 2j and to demand that
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each yj be a proper element of yj +B = pjx0 +B. Clearly, if y ∈ B̌ \B,
then y = αyj +w, where j < ω, α ∈R is a unit and w ∈B; in fact, j, α
and w are uniquely determined by y. So we are defining v by setting

v(y) = min{v(yj), |w|}= min{2j, |w|}.

Having defined our extension, we need to verify that it is, in fact, a
valuation on B̌ and that (A) and (B) hold.

We start with a straightforward observation. If j < ω, then let k < ω
be the smallest value such that j <jk. Consider pyj =yj+1−(yj+1−pyj).
The second term is in B and equals

yj+1− pyj =

{
0, if j+ 1 6= jk,

xk, if j+ 1 = jk.

In either case, |yj+1−pyj |≥2(j+1) = 2j+2 and v(pyj) = 2j+2 =v(yj+1).

More generally, if m< ω we will have

yj+m− pmyj =(yj+m− pyj+m−1) + p(yj+m−1− pyj+m−2)

+ · · ·+ pm−1(yj+1− pyj),

which again implies that |yj+m− pmyj | ≥ 2j+ 2.

To show that v is a valuation, we first show that B̌[n] := {y ∈ B̌ :
v(y)≥ n} is a submodule for all n<ω. Suppose j is the smallest integer
such that v(yj) = 2j≥n. We verify that B̌[n] agrees with the submodule
〈yj〉+B(n), where B(n) = {z ∈B : |z| ≥ n}.

Clearly, if y ∈B, then v(y)≥ n if and only if y ∈B(n). So suppose
y ∈ B̌ \ B. Then v(y) ≥ n if and only if for some m < ω and unit
α ∈ R we have y ∈ αyj+m +B(n). Since |yj+m − pmyj | ≥ 2j + 2 ≥ n,
yj+m− pmyj ∈B(n). Therefore, v(y)≥ n if and only if for some m<ω
and unit α∈R we have y∈αpmyj+B(n). And clearly, this is equivalent
to y ∈ 〈yj〉+B(n).

To complete our verification that v is a valuation we must show
that pB̌[n] ⊆ B̌[n + 1]. Continuing the above notation, we know
that pB(n) ⊆ B(n+ 1) ⊆ B̌[n+ 1], and pyj = yj+1 − (yj+1 − pyj) ∈
〈yj+1〉+B(2j+ 2)⊆ B̌[n+ 1], so that pB̌[n]⊆ B̌[n+ 1], as required.
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Having shown that v is, in fact, a valuation, we will write |y|= v(y)
for all y ∈ B̌.

We now turn to showing (A), i.e., that B̌ is 2-closed. First, we show
that B̌ is finitely-gapped. If 0< k < ω, consider the submodule

Zk = 〈pjkx0〉⊕ 〈x1〉⊕ 〈x2〉⊕ · · · ⊕ 〈xk−1〉 ⊆ X̌.

It is easily seen that for every y ∈ B̌ there is an m< ω and a 0< k < ω
such that pmy ∈ Zk. Therefore, to show that B̌ is finitely-gapped, it
suffices to show that Zk is non-gapped.

Let y be in Zk. Since X is non-gapped, we may assume y = αyj +w,

where j≥ jk, α is a unit and w∈X. In our decomposition X̌=
⊕ω

i=0〈xi〉,
the xk component of y is zero (since y ∈ Zk). And if we look at the
expression for yj in (†), the xk component of αyj is αpj−jkxk. This
implies that the xk component of w will be −αpj−jkxk. Next,

| −αpj−jkxk|= (j− jk) + 2jk = j+ jk ≤ 2j,

which implies that |w| ≤ 2j. This means |y|= min{2j, |w|}= |w|. And
since w ∈X, we have |pw|= |w|+ 1≤ 2j+ 1< 2j+ 2 = |pyj |. Therefore,

|py|= |pαyj + pw|= |pw|= |w|+ 1 = |y|+ 1,

so that B̌ is finitely-gapped, as stated.

We now consider (2a) in Definition 5.4; so suppose 0 6= y∈ B̌. If y∈B,
we already know that |py| ≤ |y|+ 2. So we may suppose y = αyj +w,
where α is a unit and w ∈B. Since |pαyj |= 2j+2 = |αyj+1|, both αpyj
and αyj+1 are proper elements of py+B. Therefore,

|py|= |αpyj+pw|= min{2j+ 2, |pw|} ≤min{|αyj |+ 2, |w|+ 2}
= min{|αyj |, |w|}+ 2 = |y|+ 2.

Next, considering condition (2b), suppose we have a non-zero y ∈ B̌
such that hB̌(y) = 0; we need to show |y| = 0. If y ∈ B, then
since B is 2-closed, this follows directly. And if y 6∈ B, then express
y = pjαx0 + z ∈ 〈x0〉⊕B with j ∈ ω, α ∈R is a unit and z ∈B. Since
hB̌(y) = 0, either j = 0 or hB(z) = 0. First, if j = 0, then since y0 = x0,
we would have

|y|= |αx0 + z|= |αy0 + z|= min{0, |z|}= 0.
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So suppose j > 0 and hB(z) = 0. Since z ∈B, we can conclude |z|= 0.
In addition, |pjαx0| ≥ j > 0 = |z|; so |y| = |pjαx0 + z| = 0. Therefore,
(2b) follows.

Finally, turning to (B), given j < ω, consider yj = pjx0 + x where
x ∈ X, as in (†). Since we know |yj | = 2j and |pyj | = 2j + 2, (B)
is immediate. This completes the proof of Lemma 5.6, and hence of
Theorem 5.3. �

In fact, M is a pω-bounded balanced-projective module if and only
if it is a direct sum of cyclics; so what we have constructed is a finitely-
gapped May module of length ω that fails to be a direct sum of cyclics.

To construct examples of May modules of uncountable rank, one easy
technique is to look at sufficiently large Warfield modules. Similarly,
any uncountable direct sum of countable rank May modules will also be
a May module. It is easy to see that a finitely gapped module in either
of these classes would have to be balanced-projective. In particular, the
module M constructed in Theorem 5.3 is neither a Warfield module,
nor a direct sum of countable rank May modules.

The module M is also a counter-example to the natural generalization
of Theorem 4.1. To see this, suppose N ⊆M is balanced-projective
and M/N is countably generated. Since pωN ⊆ pωM = 0, N must be
a direct sum of cyclics. This, in turn, would imply that M =N1⊕C,
where N1 is a direct sum of cyclics and C is countably generated.

Since C is countably generated and reduced, it follows from Corol-
lary 1.1(2) that it is a May module. Since it is clearly finitely-gapped,
C, and hence N1 ⊕ C = M , is balanced-projective, contrary to its
construction.

6. Questions. We conclude with a few open questions. Let M be a
May module of arbitrary rank with torsion T .

Question 1: Can we conclude that T is an S-module? (cf., Theorem 4.4)

Question 2: If N is a summand of M , can we conclude that N is a May
module? (cf., Proposition 2.4)

Question 3: Is M ∼=H N ⊕L, where N is a finitely-gapped May module
and L is an infinitely-gapped May module? (cf., Corollary 3.12)
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Now suppose M and N are May modules of countable rank. The
following are variations on famous questions posed by Kaplansky.

Question 4: If M is H-isomorphic to a summand of N and N is H-
isomorphic to a summand of M , can we conclude that M ∼=H N?

Question 5: If M ⊕M ∼=H N ⊕N , can we conclude that M ∼=H N?
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