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THE ASCENDING CHAIN CONDITION
ON PRINCIPAL IDEALS IN COMPOSITE
GENERALIZED POWER SERIES RINGS

JUNG WOOK LIM AND DONG YEOL OH

ABSTRACT. Let D ⊆ E be an extension of commutative
rings with identity, I a nonzero proper ideal of D, (Γ,≤) a
strictly totally ordered monoid such that 0≤ α for all α ∈ Γ,

and Γ∗ = Γ \ {0}. Let D+ [[EΓ∗,≤]] = {f ∈ [[EΓ,≤]] | f(0) ∈D}
and D+ [[IΓ∗,≤]] = {f ∈ [[DΓ,≤]] | f(α) ∈ I for all α ∈ Γ∗}. In

this paper, we give some conditions for the rings D+ [[EΓ∗,≤]]

and D+ [[IΓ∗,≤]] to satisfy the ascending chain condition on
principal ideals.

0. Introduction.

0.1. Generalized power series rings. Let (Γ,≤) be an ordered
monoid, i.e., Γ is a monoid and ≤ is a compatible order relation with the
monoid operation: if α1, α2, β ∈ Γ, then α1 ≤α2 implies α1 +β ≤α2 +β.
We say that an ordered monoid (Γ,≤) is artinian if every decreasing
sequence of elements of Γ is finite, and (Γ,≤) is narrow if every subset
of pairwise order-incomparable elements of Γ is finite. An ideal of Γ is
a nonempty subset I of Γ such that I ⊇ α+ I := {α+ γ|γ ∈ I} for each
α ∈ Γ. An ordered monoid (Γ,≤) is called a strictly ordered monoid if
for α1, α2, β ∈ Γ, α1 < α2 implies that α1 +β < α2 +β.
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Let R be a commutative ring with identity and (Γ,≤) a strictly
ordered monoid. We denote by [[RΓ,≤]] the set of all mappings f : Γ→R
such that supp(f) :={α∈Γ|f(α) 6=0} is an artinian and narrow subset of
Γ. (The set supp(f) is called the support of f .) With pointwise addition,
[[RΓ,≤]] is an (additive) abelian group. Moreover, for every α ∈ Γ and
f, g ∈ [[RΓ,≤]], the set Xα(f, g) := {(β, γ)∈Γ×Γ|α= β+γ, f(β) 6= 0, and
g(γ) 6= 0} is finite [9, 1.16]; thus, this allows us to define the operation
of convolution:

(fg)(α) =
∑

(β,γ)∈Xα(f,g)

f(β)g(γ).

It is easy to see that [[RΓ,≤]] is a commutative ring (under these
operations) with unit element e, namely, e(0) = 1 and e(α) = 0
for all α ∈ Γ∗, which is called the ring of generalized power series
of Γ over R. The elements of [[RΓ,≤]] are called generalized power
series with coefficients in R and exponents in Γ. It is well known
that R is canonically embedded as a subring of [[RΓ,≤]], and Γ is
canonically embedded as a submonoid of [[RΓ,≤]] \ {0} by the mapping
α ∈ Γ 7→ eα ∈ [[RΓ,≤]], where eα(α) = 1 and eα(γ) = 0 for every
γ ∈ Γ\{α}. Also, if f, g ∈ [[RΓ,≤]], then supp(f +g)⊆ supp(f)∪ supp(g)
and supp(fg)⊆ supp(f) + supp(g).

For 0 6= f ∈ [[RΓ,≤]], we denote by π(f) the set of minimal elements in
supp(f). Note that π(f) is a nonempty finite set consisting of pairwise
order incomparable elements. If π(f) consists of only one element α,
then we write π(f) = α and call it the order of f . If (Γ,≤) is totally
ordered and 0 6= f ∈ [[RΓ,≤]], then supp(f) is a nonempty well-ordered
subset of Γ; thus, π(f) always consists of only one element. For the
sake of convenience, we define π(0) =∞ by adjoining an element ∞ to
Γ with properties that, for all α ∈ Γ, α <∞ and α+∞=∞=∞+α.

Let D ⊆ E be an extension of commutative rings with identity, I a
nonzero proper ideal of D, (Γ,≤) a nonzero strictly ordered monoid
and Γ∗ = Γ \ {0}. Set

D+ [[EΓ∗,≤]] = {f ∈ [[EΓ,≤]]|f(0) ∈D}
and

D+ [[IΓ∗,≤]] = {f ∈ [[DΓ,≤]]|f(α) ∈ I for all α ∈ Γ∗}.
Then

D (D+ [[IΓ∗,≤]] ( [[DΓ,≤]]⊆D+ [[EΓ∗,≤]]⊆ [[EΓ,≤]];
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thus, D+ [[IΓ∗,≤]] and D+ [[EΓ∗,≤]] provide information about algebraic
structures of subrings of generalized power series rings and power series
type rings between two generalized power series rings, respectively. We
note that, if Γ = Nn0 with the product order or lexicographic order,
where N0 is the set of nonnegative integers, then D + [[EΓ∗,≤]] and
D + [[IΓ∗,≤]] are isomorphic to D + (X1, . . . , Xn)E[[X1, . . . , Xn]] and
D+ (X1, . . . , Xn)I[[X1, . . . , Xn]], respectively.

The notation and terminology used in this paper are standard. For
more on generalized power series, the reader may refer to [8, 10].

0.2. Rings satisfying the ascending chain condition on princi-
pal ideals. Finiteness conditions have, for many years, been important
tools in commutative algebra and algebraic geometry due to their use
in producing many theorems and applications. For example, a relation
between the ascending chain conditions on ideals and finite generated-
ness of ideals in rings permits an interesting measure of the size and
behavior of such rings.

Recall that a commutative ring R satisfies the ascending chain
condition on principal ideals (ACCP) if there does not exist an infinite
strictly ascending chain of principal ideals of R. As a semigroup version,
we say that a monoid Γ satisfies the ascending chain condition on
principal ideals (ACCP) if there does not exist an infinite strictly
ascending chain of principal ideals of Γ.

In [7], Liu showed that, for an integral domain D and a strictly
totally ordered monoid (Γ,≤), [[DΓ,≤]] satisfies ACCP if and only
if D and Γ satisfy ACCP. In [3, 4], Dumitrescu, et al., and Hizem
investigated several chain conditions in special pullbacks of the forms
D + (X1, . . . , Xn)E[[X1, . . . , Xn]] and D + (X1, . . . , Xn)I[[X1, . . . , Xn]],
where D⊆E is an extension of commutative rings (or integral domains)
and I is a nonzero proper ideal of D.

The purpose of this article is to study the ACCP property on special
kinds of pullbacks, which are the so-called composite generalized power
series rings D+[[EΓ∗,≤]] and D+[[IΓ∗,≤]] when (Γ,≤) is a nonzero strictly
totally ordered monoid with 0≤ α for all α ∈ Γ. In fact, we show that

(1) D+ [[EΓ∗,≤]] is an integral domain satisfying ACCP if and only
if
⋂
n≥1 a1 · · · anE = (0) for each sequence (an)n≥1 of nonzero nonunits

of D and Γ satisfies ACCP;
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(2) if D is an integral domain satisfying ACCP and Γ satisfies ACCP,
then D+ [[IΓ∗,≤]] satisfies ACCP;

(3) if E is présimplifiable, then D+ [[EΓ∗,≤]] satisfies ACCP if and
only if

(a) U(E)∩D = U(D),
(b) for each sequence (en)n≥1 of E with the property that, for

each n≥ 1, en = en+1dn for some dn ∈D, e1E ⊆ e2E ⊆ · · · is
stationary, and

(c) Γ satisfies ACCP; and

(4) if D is a présimplifiable ring satisfying ACCP and Γ satisfies
ACCP, then D + [[IΓ∗,≤]] satisfies ACCP. As corollaries, we recover
several known results [3, Proposition 1.2], [4, Propositions 4.6, 4.18,
4.21], [7, Theorem 3.2].

1. Main results. We start with full descriptions of units of compos-
ite generalized power series rings. Recall that, for a commutative ring
R with identity and a strictly ordered monoid (Γ,≤) with 0≤ α for all
α ∈ Γ, f is a unit in [[RΓ,≤]] if and only if f(0) is a unit in R [9, 2.3].

Lemma 1.1. Let D ⊆ E be an extension of commutative rings with
identity and (Γ,≤) a nonzero strictly totally ordered monoid with 0≤ α
for all α ∈ Γ. Then the following assertions hold.

(i) A generalized power series f ∈ D+ [[EΓ∗,≤]] is a unit if and
only if f(0) is a unit in D.

(ii) Let I be a nonzero proper ideal of D. Then f ∈D+ [[IΓ∗,≤]] is
a unit if and only if f(0) is a unit in D.

Proof. (i) This equivalence directly follows from an easy evaluation
and [9, 2.3].

(ii) If f is a unit in D + [[IΓ∗,≤]], then there exists an element
g ∈D+ [[IΓ∗,≤]] such that fg = 1; thus, f(0)g(0) = 1. Hence, f(0) is a
unit in D. Conversely, if f(0) is a unit in D, then we can find a suitable
g∈ [[DΓ,≤]] such that fg= 1 [9, 2.3]. Now, we claim that g∈D+[[IΓ∗,≤]].
If g ∈D, then we have nothing to prove; thus, we assume that g 6∈D.
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Let α be the smallest positive element in supp(g). Then we have

0 = (fg)(α) =
∑

(α1,α2)∈Xα(f,g)

f(α1)g(α2) = f(0)g(α) + f(α)g(0);

thus, g(α) =−(f(α)g(0))/f(0) ∈ I. Let γ ∈ supp(g) \ {0}. Note that

0 = (fg)(γ) =
∑

(0,γ)6=(γ1,γ2)∈Xγ(f,g)

f(γ1)g(γ2) + f(0)g(γ);

hence,

g(γ) =−
∑

(0,γ)6=(γ1,γ2)∈Xγ(f,g) f(γ1)g(γ2)

f(0)
∈ I

since f(γ1) ∈ I for γ1 ∈ Γ∗. Therefore, g ∈D+ [[IΓ∗,≤]], and thus, f is a
unit in D+ [[IΓ∗,≤]]. �

1.1. When E is an integral domain. Recall that, if R is an integral
domain, then R satisfies ACCP if and only if

⋂
n≥1 a1 · · · anR= (0) for

each infinite sequence (an)n≥1 of nonzero nonunits of R [3, Remark 1.1].
As in the integral domain case, it was shown that Γ satisfies ACCP if
and only if

⋂
n≥1(α1 + · · ·+αn + Γ) = ∅ for each sequence (αn)n≥1 in

Γ∗ [6, Lemma 3.1] (or [7, Lemma 2.1]).

Theorem 1.2. Let D ⊆ E be an extension of integral domains and
(Γ,≤) a nonzero strictly totally ordered monoid with 0≤ α for all α ∈ Γ.
Then D+ [[EΓ∗,≤]] satisfies ACCP if and only if⋂

n≥1

a1 · · · anE = (0)

for each sequence (an)n≥1 of nonzero nonunits of D, and Γ satisfies
ACCP.

Proof. (⇒) Let (an)n≥1 be an infinite sequence of nonzero nonunits
of D. Then by Lemma 1.1(i), (an)n≥1 is also an infinite sequence of

nonzero nonunits of D+ [[EΓ∗,≤]]. Since D+ [[EΓ∗,≤]] satisfies ACCP,⋂
n≥1

a1 · · · an(D+ [[EΓ∗,≤]]) = (0)
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[3, Remark 1.1]. Let e ∈
⋂
n≥1 a1 · · · anE and α ∈ Γ∗. Then

eXα ∈
⋂
n≥1

a1 · · · an(D+ [[EΓ∗,≤]]);

hence, e= 0. Thus, ⋂
n≥1

a1 · · · anE = (0).

If α1 + Γ ( α2 + Γ ( · · · is an infinite ascending chain of principal
ideals of Γ, then Xα1(D+ [[EΓ∗,≤]]) (Xα2(D+ [[EΓ∗,≤]]) ( · · · is also
an infinite ascending chain of principal ideals of D+ [[EΓ∗,≤]], which is
absurd. Hence, Γ satisfies ACCP.

(⇐) Let (fn)n≥1 be an infinite sequence of nonzero nonunits of

D+ [[EΓ∗,≤]], set αn = π(fn) and let Λ = {αn|n= 1, 2, . . .}.
Case 1. Λ∩Γ∗ is infinite. By considering a subsequence of (fn)n≥1

with nonzero orders, we may assume that αn ∈ Γ∗ for all n≥ 1. If

0 6= g ∈
⋂
n≥1

f1 · · · fn(D+ [[EΓ∗,≤]]),

then for each n≥ 1, we can find an element φn ∈D+ [[EΓ∗,≤]] such that
g = f1 · · · fnφn. Note that

π(g) =

n∑
i=1

π(fi) +π(φn) =

n∑
i=1

αi +π(φn)

for all n≥ 1; hence, we have π(g) ∈
⋂
n≥1(α1 + · · ·+αn + Γ), which is a

contradiction to the fact that Γ satisfies ACCP [6, Lemma 3.1] (or [7,
Lemma 2.1]).

Case 2. Λ ∩ Γ∗ is finite. There exist infinitely many members in
(fn)n≥1 such that π(fn) = 0; thus, we may assume that fn(0) 6= 0
for all n ≥ 1. Since each fn is a nonunit, fn(0) is a nonunit in
D by Lemma 1.1(i). If 0 6= g ∈

⋂
n≥1 f1 · · · fn(D + [[EΓ∗,≤]]), then

for each n ≥ 1, there exists an element φn ∈ D + [[EΓ∗,≤]] such that
g = f1 · · · fnφn. Since π(g) =

∑n
i=1 π(fi) +π(φn) = π(φn) for all n≥ 1,

g(π(g)) = f1(0) · · · fn(0)φn(π(φn)) for all n≥ 1, we therefore obtain

g(π(g)) ∈
⋂
n≥1

f1(0) · · · fn(0)E = (0),
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which is a contradiction. In either case,⋂
n≥1

f1 · · · fn(D+ [[EΓ∗,≤]]) = (0).

Thus we conclude that D+[[EΓ∗,≤]] satisfies ACCP [3, Remark 1.1]. �

The proof of the next result is almost parallel to that of Theorem 1.2.
We leave it to the reader.

Theorem 1.3. Let I be a nonzero proper ideal of an integral domain
D and (Γ,≤) a nonzero strictly totally ordered monoid with 0≤ α for
all α ∈ Γ. Then the following statements hold.

(i) If D and Γ satisfy ACCP, then D+ [[IΓ∗,≤]] satisfies ACCP.
(ii) If D+ [[IΓ∗,≤]] satisfies ACCP, then so does D.

It is worth remarking at this point that, for any α ∈ Γ∗ and for any
unit u of E, uXα ∈D+[[EΓ∗,≤]] but uXα /∈D+[[IΓ∗,≤]]. This difference
makes the converse of Theorem 1.3(i) not necessarily true.

The next example shows that the converse of Theorem 1.3(i) does
not hold, i.e., the condition that D+ [[IΓ∗,≤]] satisfying ACCP does not
imply that Γ satisfies ACCP.

Example 1.4. Let Z be the ring of integers and Q0 the set of
nonnegative rational numbers.

(i) Let (fn)n≥1 be an infinite sequence of nonzero nonunits in

Z+ [[(2Z)Q
∗
0 ,≤]]. If there exists a

0 6= g ∈
⋂
n≥1

f1 · · · fn(Z+ [[(2Z)Q
∗
0 ,≤]]),

then for each n ≥ 1, g = f1 · · · fnhn for some hn ∈ Z+ [[(2Z)Q
∗
0 ,≤]], we

have
g(π(g)) = f1(π(f1)) · · · fn(π(fn))hn(π(hn))

for each n ≥ 1. Hence, almost all fn(π(fn)) should be ±1, i.e., π(fn)
= 0 for almost all i. Therefore, by Lemma 1.1(ii), almost all fn are
units in Z+ [[(2Z)Q

∗
0 ,≤]], which contradicts the choice of (fn)n≥1. Thus,

Z+ [[(2Z)Q
∗
0 ,≤]] satisfies ACCP.
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(ii) Note that {1/2n +Q0}n≥1 forms an infinite strictly increasing
sequence of principal ideals of Q0; thus, Q0 does not satisfy ACCP.

It is clear that the monoid Nn0 satisfies ACCP. By applying Theo-
rems 1.2 and 1.3 to the case when D =E or (Γ,≤) is isomorphic to Nn0
with lexicographic order, we regain the following.

Corollary 1.5. Let D ⊆ E be an extension of integral domains, I a
nonzero proper ideal of D and (Γ,≤) a nonzero strictly totally ordered
monoid with 0≤ α for all α ∈ Γ. Then the following assertions hold.

(i) (cf. [7, Theorem 3.2]). [[DΓ,≤]] satisfies ACCP if and only if
D and Γ satisfy ACCP.

(ii) ([3, Proposition 1.2]). D+ (X1, . . . , Xn)E[[X1, . . . , Xn]] satis-
fies ACCP if and only if

⋂
n≥1 a1 · · · anE=(0) for each sequence

(an)n≥1 of nonzero nonunits of D.
(iii) ([4, Proposition 4.6]). D+(X1, . . . , Xn)I[[X1, . . . , Xn]] satisfies

ACCP if and only if D satisfies ACCP.

1.2. When E is présimplifiable. Let R be a commutative ring
with identity and U(R) the set of units in R. Following [2], R is
présimplifiable if, whenever a, b∈R with ab= a, either a= 0 or b∈U(R).
It is clear that any integral domain is présimplifiable, but the converse
does not hold (for example, Zpn for any prime p and integer n ≥ 2).

We first give an equivalent condition for the ring D+ [[EΓ∗,≤]] to satisfy
ACCP under the assumption that E is présimplifiable.

Theorem 1.6. Let (Γ,≤) be a nonzero strictly totally ordered monoid
with 0 ≤ α for all α ∈ Γ. If E is présimplifiable and D is a subring
of E, then D+[[EΓ∗,≤]] satisfies ACCP if and only if the following three
conditions hold.

(i) U(E)∩D = U(D);
(ii) for each sequence (en)n≥1 of E with the property that for each

n ≥ 1, en = en+1dn for some dn ∈ D, e1E ⊆ e2E ⊆ · · · is
stationary; and

(iii) Γ satisfies ACCP.

Proof. (⇒) Assume that D+ [[EΓ∗,≤]] satisfies ACCP.
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(i) Let a ∈ U(E)∩D and α ∈ Γ∗. Then (1/a)Xα(D+ [[EΓ∗,≤]]) ⊆
(1/a2)Xα(D+[[EΓ∗,≤]])⊆· · · is a chain of principal ideals of D+[[EΓ∗,≤]];
thus, it should be stationary. Therefore, there exists a positive integer
m such that

1

am+1
Xα(D+ [[EΓ∗,≤]]) =

1

am
Xα(D+ [[EΓ∗,≤]]).

Hence, aD =D. Thus, a ∈ U(D).

(ii) Let α ∈ Γ∗ and (en)n≥1 be a sequence of E such that, for each

n ≥ 1, en = en+1dn for some dn ∈ D. Then e1X
α(D + [[EΓ∗,≤]]) ⊆

e2X
α(D + [[EΓ∗,≤]]) ⊆ · · · is stationary; thus, we can find a positive

integer m such that enX
α(D + [[EΓ∗,≤]]) = emX

α(D + [[EΓ∗,≤]]) for
all n ≥ m. Hence, enE = emE for all n ≥ m. Therefore, the chain
e1E ⊆ e2E ⊆ · · · stops.

(iii) If α1 +Γ(α2 +Γ( · · · is an infinite ascending chain of principal
ideals of Γ, then Xα1(D+ [[EΓ∗,≤]]) (Xα2(D+ [[EΓ∗,≤]]) ( · · · is also
an infinite ascending chain of principal ideals of D+ [[EΓ∗,≤]], which is
impossible. Thus, Γ satisfies ACCP.

(⇐) Let f1(D+ [[EΓ∗,≤]])⊆ f2(D+ [[EΓ∗,≤]])⊆ · · · be an ascending
chain of nonzero principal ideals of D+ [[EΓ∗,≤]]. Then for each n≥ 1,
fn = fn+1gn for some gn ∈D+ [[EΓ∗,≤]]. If fn is a unit for some n≥ 1,
then there is nothing to prove; thus, we assume that fn is a nonunit for
all n≥ 1. Note that π(f1)≥ π(f2)≥ · · · ≥ 0; hence, we have only two
cases: either π(fn) 6= 0 for all n≥ 1 or π(fn) 6= 0 only for finitely many
indices n.

Case 1. π(fn) 6= 0 for all n ≥ 1. Let β2 be the smallest member
in supp(f2) such that (β2, γ1) ∈ Xπ(f1)(f2, g1) and f2(β2)g1(γ1) 6= 0
for some γ1 ∈ supp(g1). For each n ≥ 2, we denote by βn+1 the
smallest element in supp(fn+1) such that (βn+1, γn) ∈ Xβn(fn+1, gn)
and fn+1(βn+1)gn(γn) 6= 0 for some γn ∈ supp(gn). Then

π(f1) = γ1 + · · ·+ γn +βn+1 for all n≥ 1;

hence, π(f1) ∈
⋂
n≥1(γ1 + · · ·+ γn + Γ). If γn 6= 0 for infinitely many n,

then it contradicts the fact that Γ satisfies ACCP [6, Lemma 3.1] (or
[7, Lemma 2.1]). Hence, γn 6= 0 for finitely many n. Let m be the
largest positive integer such that γm 6= 0. (If there is no such m, then
we take m = 0 and β1 = π(f1).) Then γk = 0 for all k ≥m+ 1; thus,
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βk = βm+1 for all k ≥ m+ 1, which implies that, for all k ≥ m+ 1,
fk(βk) = fk+1(βk+1)gk(0) by the minimality of βk+1. Note that by (ii),
fm+1(βm+1)E ⊆ fm+2(βm+2)E ⊆ · · · is stationary. Hence, there exists
a large enough integer t ≥m+ 1 such that fk(βk)E = ft(βt)E for all
k ≥ t. Since E is présimplifiable, gk(0) is a unit in E for all k ≥ t; thus,
by (i), gk(0) ∈ U(E)∩D = U(D) for all k ≥ t. By Lemma 1.1(i), gk is a
unit in D+ [[EΓ∗,≤]] for all k ≥ t, which indicates that

ft(D+ [[EΓ∗,≤]]) = ft+1(D+ [[EΓ∗,≤]]) = · · · .

Thus, the chain f1(D+ [[EΓ∗,≤]])⊆ f2(D+ [[EΓ∗,≤]])⊆ · · · stops.

Case 2. π(fn) 6= 0 for finitely many indices n. By eliminating fn
of nonzero orders, we may assume that π(fn) = 0 for all n≥ 1. Then
fn(0) = fn+1(0)gn(0) for all n≥ 1; thus, by (ii), f1(0)E ⊆ f2(0)E ⊆ · · ·
is stationary. Therefore, we can find a positive integer m such that
fn(0)E = fm(0)E for all n ≥ m. Since E is présimplifiable, gn(0)
is a unit in E for all n ≥ m, which indicates that for all n ≥ m,
gn(0) ∈ U(E) ∩ D = U(D) by (i). Thus for all n ≥ m, gn is a
unit in D + [[EΓ∗,≤]] by Lemma 1.1(i), which states that the chain
f1(D + [[EΓ∗,≤]]) ⊆ f2(D + [[EΓ∗,≤]]) ⊆ · · · stops. In either case, the
chain f1(D+ [[EΓ∗,≤]])⊆ f2(D+ [[EΓ∗,≤]])⊆ · · · is stationary, and thus,
D+ [[EΓ∗,≤]] satisfies ACCP. �

Theorem 1.7. Let I be a nonzero proper ideal of a présimplifiable ring
D and (Γ,≤) a nonzero strictly totally ordered monoid with 0≤ α for
all α ∈ Γ. Then the following statements hold.

(i) If D and Γ satisfy ACCP, then D+ [[IΓ∗,≤]] satisfies ACCP.
(ii) If I contains a nonzero idempotent element, then the converse

of (i) is also true.

Proof. (i) Let f1(D+[[IΓ∗,≤]])⊆f2(D+[[IΓ∗,≤]])⊆· · · be an ascending
chain of nonzero principal ideals of D+ [[IΓ∗,≤]]. Then for each n≥ 1,
there exists a gn ∈D+ [[IΓ∗,≤]] such that fn = fn+1gn. If fn is a unit
for some n≥ 1, then the result is obvious.

Assume that fn is a nonunit for all n≥ 1. Note that π(f1)≥ π(f2)≥
· · · ≥ 0; thus, only two cases are possible: either π(fn) 6= 0 for all n≥ 1
or π(fn) 6= 0 for finitely many indices n.
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We first consider the case π(fn) 6= 0 for all n ≥ 1. Let β2 be
the smallest member in supp(f2) such that π(f1) = β2 + γ1 and
f2(β2)g1(γ1) 6= 0 for some γ1 ∈ supp(g1), and for each n≥ 2, we denote
by βn+1 the smallest element in supp(fn+1) such that βn = βn+1 + γn
and fn+1(βn+1)gn(γn) 6= 0 for some γn ∈ supp(gn). Then π(f1) =
γ1 + · · ·+γn +βn+1 for all n≥ 1; thus, π(f1) ∈

⋂
n≥1(γ1 + · · ·+γn + Γ).

Since Γ satisfies ACCP, γn 6= 0 for finitely many n [6, Lemma 3.1]
(or [7, Lemma 2.1]). Let m be the largest positive integer such that
γm 6= 0. (If there is no such m, then we take m = 0 and β1 = π(f1).)
Then βk = βm+1 for all k ≥ m+ 1. Since γk = 0 for all k ≥ m+ 1,
fk(βk) = fk+1(βk+1)gk(0) by the minimality of βk. Since D satisfies
ACCP, fm+1(βm+1)D ⊆ fm+2(βm+2)D ⊆ · · · is stationary, and hence,
there exists an integer t≥m+1 such that ft(βt)D= ft+1(βt+1)D= · · · .
Since D is présimplifiable, for all n≥ t, gn(0) is a unit in D; thus, by
Lemma 1.1(ii), gn is a unit in D+ [[IΓ∗,≤]], which indicates that the
chain fm+1(D+ [[IΓ∗,≤]])⊆ fm+2(D+ [[IΓ∗,≤]])⊆ · · · stops. Thus,

f1(D+ [[IΓ∗,≤]])⊆ f2(D+ [[IΓ∗,≤]])⊆ · · ·
stops.

Next, we assume that π(fn) 6=0 for finitely many indices n. By getting
rid of fn of nonzero order, we may assume that π(fn) = 0 for all n≥ 1.
Then fn(0) = fn+1(0)gn(0) for all n≥ 1; thus, f1(0)D ⊆ f2(0)D ⊆ · · ·
is an ascending chain of principal ideals of D. Since D satisfies ACCP,
we can find an integer t≥ 1 such that fm(0)D = ft(0)D for all m≥ t.
Since D is présimplifiable, for all n≥ t, gn(0) is a unit in D. Thus, by
Lemma 1.1(ii), gn is a unit in D+ [[IΓ∗,≤]] for all n ≥ t, which means
that the chain f1(D+ [[IΓ∗,≤]])⊆ f2(D+ [[IΓ∗,≤]])⊆ · · · stops.

(ii) We assume that D + [[IΓ∗,≤]] satisfies ACCP and let d1D ⊆
d2D ⊆ · · · be an ascending chain of nonzero principal ideals of D.
Then d1(D+ [[IΓ∗,≤]])⊆ d2(D+ [[IΓ∗,≤]])⊆ · · · is an ascending chain of
nonzero principal ideals of D + [[IΓ∗,≤]]; thus, there exists a positive
integer n ≥ 1 such that dm(D + [[IΓ∗,≤]]) = dn(D + [[IΓ∗,≤]]) for all
m≥ n. Hence, dmD = dnD for all m≥ n, and thus, D satisfies ACCP.
Let α1 + Γ ( α2 + Γ ( · · · be an infinite strictly ascending chain of
principal ideals of Γ, and let a be a nonzero idempotent element in
I. Note that, for each n ≥ 1, αn = αn+1 + γn for some γn ∈ Γ∗; thus,
we have aXαn = (aXαn+1)(aXγn) ∈ aXαn+1(D+ [[IΓ∗,≤]]). Therefore,
aXα1(D+[[IΓ∗,≤]])( aXα2(D+[[IΓ∗,≤]])( · · · is also an infinite strictly



1234 JUNG WOOK LIM AND DONG YEOL OH

ascending chain of principal ideals of D+[[IΓ∗,≤]], which is absurd. Thus,
Γ satisfies ACCP. �

Note that if D + [[IΓ∗,≤]] satisfies ACCP, then D satisfies ACCP
without the condition on an ideal I. Hence, by applying Theorems 1.6
and 1.7 to the case when (Γ,≤) is the monoid Nn0 with lexicographic
order, we recover the following.

Corollary 1.8 ([4, Propositions 4.18, 4.21]). Let D⊆E be an extension
of commutative rings with identity and I a nonzero proper ideal of D.

(i) If E is présimplifiable, then D + (X1, . . . , Xn)E[[X1, . . . , Xn]]
satisfies ACCP if and only if U(E) ∩ D = U(D), and, for each
sequence (en)n≥1 of nonzero nonunits of E with en/en+1 ∈ D, the
chain e1E ⊆ e2E ⊆ · · · stops.

(ii) If D is a présimplifiable ring, then D+(X1, . . . , Xn)I[[X1, . . . , Xn]]
and D satisfy ACCP simultaneously.

Let R be a commutative ring and M an R-module. The idealization
of M in R (or trivial extension of R by M) is a commutative ring

R(+)M := {(r,m) | r ∈R and m ∈M}

under usual addition and multiplication, defined as (r1,m1)(r2,m2) =
(r1r2, r1m2 +r2m1) for all (r1,m1), (r2,m2)∈R(+)M . It is well known
that (a,m) is a unit in R(+)M if and only if a is a unit in R [1,
Theorem 3.7] (or [5, Theorem 25.1(6)]).

We close this paper with an example which shows that the assumption
on I in the second part of Theorem 1.7 is essential, which means that
there is a ring D+ [[IΓ∗,≤]] satisfying ACCP, even though Γ does not
satisfy ACCP.

Example 1.9. Let R be any unique factorization domain which is not
a field.

(1) Since R is an integral domain, R(+)R is présimplifiable [1,
Theorem 5.1(1)].

(2) Note that (0)(+)R is a nilpotent ideal of R(+)R of index 2; thus,
(0, 0) is the only idempotent element in (0)(+)R.
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(3) By Example 1.4(ii), Q0 does not satisfy ACCP.

(4) Let D =R(+)R and I = (0)(+)R. Suppose that

f1(D+ [[IQ
∗
0 ,≤]])⊆ f2(D+ [[IQ

∗
0 ,≤]])⊆ · · ·

is an ascending chain of principal ideals of D+[[IQ
∗
0 ,≤]]. Then (π(fn))n≥1

is a decreasing sequence in Γ, and for each n≥ 1, fn = fn+1gn for some
gn ∈D+ [[IQ

∗
0 ,≤]]. Therefore, we have only two cases: either π(fn) 6= 0

only for finitely many n or π(fn) 6= 0 for all n≥ 1.

Case 1. π(fn) 6= 0 for finitely many n. We may assume that
π(fn) = 0 for all n ≥ 1. Let fn(0) = (an, bn) and gn(0) = (cn, dn)
for each n ≥ 1. Since fn(0) = fn+1(0)gn(0) for all n ≥ 1, we have
(a1, b1) = (an+1, bn+1)(c1, d1) · · · (cn, dn) for all n ≥ 1. Note that if
ak = 0 for some k ≥ 1, then ai = 0 for all 1≤ i≤ k; thus, we have two
possibilities: either an = 0 for all n≥ 1 or there exists an integer m≥ 1
such that an 6= 0 for all n≥m. If an = 0 for all n≥ 1, then the cis are
units, except for finitely many i, since R is a UFD and b1 = c1 · · · cnbn+1

for all n≥ 1. Hence, almost all gi are units by Lemma 1.1(ii), and thus,
our chain should be stationary. If we have an integer m≥ 1 such that
an 6= 0 for all n≥m, then we have the same conclusion by applying the
similar argument as the previous case to ans for n≥m.

Case 2. π(fn) 6= 0 for all n ≥ 1. Since fn = fn+1gn for each n ≥ 1,
f1 = fn+1hn, where hn = g1 · · · gn ∈D+ [[IQ

∗
0 ,≤]]. Note that

f1(π(f1)) =
∑

(α,β)∈Xπ(f1)(fn+1,hn)

fn+1(α)hn(β).

For (α, β)∈Xπ(f1)(fn+1, hn) with α 6= π(f1), we have fn+1(α)hn(β) = 0
since π(f1)> α≥ π(fn+1)> 0 and β > 0. Therefore, fn(π(f1)) 6= (0, 0).
Let fn(π(f1)) = (0, xn) for each n ≥ 1. If (π(fn))n≥1 contains an
infinite strictly decreasing subsequence, then we may assume that
π(fn)> π(fn+1) for all n≥ 1. Note that for all n≥ 1,

fn(π(f1)) =
∑

(α,β)∈Xπ(f1)(fn+1,gn)

fn+1(α)gn(β).

Hence fn(π(f1))=fn+1(π(f1))gn(0) for all n≥1; thus, x1 =xn+1c1 · · · cn,
which implies that almost all ci are units. Hence, by Lemma 1.1(ii),
almost all gi are units, and therefore, the chain f1(D + [[IQ

∗
0 ,≤]]) ⊆

f2(D+ [[IQ
∗
0 ,≤]])⊆ · · · stops. If we have a fixed integer m≥ 1 such that
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π(fn) = π(fm) for all n≥m, then xn = xt+1cn · · · ct for all t≥ n. Hence,
almost all of the ci are units, and therefore, again by Lemma 1.1(ii),
almost all gi are units. Thus, R(+)R+ [[((0)(+)R)Q

∗
0 ,≤]] satisfies ACCP.
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2. A. Bouvier, Anneaux présimplifiables et anneaux atomiques, C.R. Acad. Sci.

Paris 272 (1971), 992–994.

3. T. Dumitrescu, S.O. Ibrahim Al-Salihi, N. Radu and T. Shah, Some factor-

ization properties of composite domains A+XB[X] and A+XB[[X]], Comm. Alg.
28 (2000), 1125–1139.

4. S. Hizem, Chain conditions in rings of the form A+XB[X] and A+XI[X],
pp. 259–274 in Commutative algebra and its applications, edited by M. Fontana et

al., de Gruyter, Berlin (2009).

5. J. Huckaba, Commutative rings with zero divisors, Dekker, New York (1988).

6. J.W. Lim and D.Y. Oh, Chain conditions in special pullbacks, C.R. Math.

Acad. Sci. Paris 350 (2012), 655–659.

7. Z. Liu, The ascending chain condition for principal ideals of rings of

generalized power series, Comm. Alg. 32 (2004), 3305–3314.

8. P. Ribenboim, Noetherian rings of generalized power series, J. Pure Appl.

Alg. 79 (1992), 293–312.

9. , Rings of generalized power series II: Units and zero-divisors, J.
Algebra 168 (1994), 71–89.

10. , Special properties of generalized power series, J. Algebra 173 (1995),
566–586.

Kyungpook National University, College of Natural Sciences, Department
of Mathematics, Daegu 41566, Republic of Korea
Email address: jwlim@knu.ac.kr

Chosun University, Department of Mathematics Education, Gwangju 61452,
Republic of Korea

Email address: dyoh@chosun.ac.kr, dongyeol70@gmail.com


